پیشروی جبهه رطوبتی از منبع نقطه‌ای در سطوح شیب‌دار

بهروز مصطفی زاده، سید نرده موسوی و محمد حسین شریف پیام‌الحق

جکیده

به منظور بررسی اثر شیب زمین دی اثر جهش آب‌انباری و بارش خاک روی جبهه رطوبتی و جهش شنگی سطحی خاک از یک منبع نقطه‌ای، مطالعات صحرایی بر روی سه خاک با نفوذ به‌دراوی مفتاوت، سه دی جهش آب‌انباری (48 و 12 لیتر بر ساعت)، جهش شیب سطحی زمین (سفر، 27 و 10 درصد) و پنج جهش آب‌انباری (0.05، 0.2، 0.5 و 0.75 درصد) در جهش آب‌انباری گرمی. نتایج حاصل نشان داد که افزایش دی جهش آب‌انباری جهش شنگی سطحی شیب‌دار در مزرعه آزمایشی مشابه مزرعه شرکت کرده و افزایش سطحی شیب‌دار در جهش آب‌انباری به یک میلی‌متر تا ٧ میلی‌متر نسبت به خاک‌های بافت سیبک سطح خشک شده جهش شیب‌دار جهش شیب‌دار جهش آب‌انباری جهش شیب‌دار جهش شیب‌دار جهش آب‌انباری به یک میلی‌متر تا ٧ میلی‌متر نسبت به خاک‌های بافت سیبک سطح خشک شده جهش شیب‌دار جهش شیب‌دار جهش آب‌انباری به یک میلی‌متر تا ٧ میلی‌متر

واژه‌های کلیدی - آب‌انباری نقطه‌ای، جبهه رطوبتی، منبع نقطه‌ای

مقدمه

آب‌انباری نقطه‌ای یکی از روشهای آب‌انباری تحت فشار محصول می‌شود. محسوس این روشه德 گسترش که در سال‌های اخیر توجه چشمگیری به گسترش آن معطوف گردید. اصولاً به کارگیری و استفاده صحیح از هر سیستم آب‌انباری مستلزم شناخت کامل و تحمیل مناسب تمامی خصوصیات و یارانه‌های اولیه

به ترتیب دانشگاه و دانشجوی سایر کارشناسی ارشد گروه آب‌انباری، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

13
آپاری قطعه‌هایی داشته و بر مقدار آب آبیاری مؤثر است. در واقع اولین گام برای تضمین عمل آبیاری، تعمیر و اندازه‌گیری جهه رطوبتی است.

شکل پیاز رطوبتی به عوامل مختلفی از قبیل باد و لایه بندی خاک، همگنی چلو، شدت پخش آب، رطوبت اولیه خاک، شیب زمین و حجم آب مصرفی بستگی دارد (7 و 12).

در محیط‌های مهگن و خاک‌های بافتی جهه خرس شدید به صورت افزایش و عمده و تقریباً با یک سرعت حركت می‌کند در خاک‌های با پشت درشت و همگن حركت آب پیامده در جهت عمودی است تا در جهت افقی، که می‌تواند منجر به فرونشست عمده گردد. در طریق بیستم آبیاری قطعه‌های مطمئن، ترین راه تعیین درصد سطح خاک خشک شده پروری ساده می‌شود.

است (1) (2 و 5). اگر یکی از سال 1375، در بررسی‌هایی که در مورد انواع قطعه، چکانی انجام گرفت، نشان داد که مفروضتی در خاک‌های شنی به طور عمدی نیروی کمیل است. حال آنکه در خاک‌های رسی عمده اصلی تعیین کننده شکل پیاز رطوبتی خاک نیروی میویگین است (1). این بدان معنی است که در خاک‌های شنی پیاز رطوبتی به صورت عمودی و باریک ویل در خاک‌های رسی به صورت نیم‌دایره قوچک یا یوزگی است که مرکز آن در زیر قطره چکان قرار دارد. علا به خان و همان‌کن (6) توزیع آب در نیم‌مرخ خاک را به یک منبع نقدی می‌نمودند و تجربه گرفتن آب آپاری که افزایش دهی در قطره چکان و حجم آب آپاری افزایش می‌یابد. در یاده‌ها باین، جهه خس شده از عمق بیشتری برخوردار بوده ولی در یاده‌های پیشرفته، افزایش افق افزایش پیدا نموده، از ابعاد نفوذ‌کننده می‌شود.

طبق تحقیقات هرم زاگدا (15) روی حلقه آب در خاک تحت یک منبع نقطه‌ای تجربه گرفته شد که به هنگام شروع جریان آب، نیروی میویگین‌گر خس شدگی را کنترل می‌کند و با افزایش عمق خس شدگی، تأثیر نیروی قلل بیشتر می‌شود. جهه خس شده با دی‌ها کم نسیباً عمیقتر و با دی‌های بیشتر، افق حلقه بیشتری که در شروع جریان آب،
پیشروی جبهه رژیمی از منبع نفتی‌ای در سطوح شیبدار

مجاورت کارخانه‌های ایرانی در جنوب غربی اصفهان
مزروع شماره ۲۴، قطعه زمینی واقع در ناحیه مرغ‌اللذ بر اثر یک راه آهن، جنوب اصفهان.
مزروع شماره ۳ اراضی متفاوت داشته‌گاه صنعتی اصفهان، شمال غربی اصفهان.
مزروع شماره ۴: مزرعه خزانه متعلق به دانشگاه صنعتی اصفهان، واقع در جهادگر شهستان خرمی شهر، شمال غربی اصفهان.
خصوصیات فیزیکی خاک مزارع آزمایشی شامل: شکل خاک، جرم مخلوط، وضعیت اکوسیستم، سطح خاک، محصولات و سایر مشخصات.

کو و لک (۱۲) اثر دی‌های گوناگون بر توزیع رطوبت خاک

رهیافت در اراضی شیبدار انجام داده شده که در دانه‌های شیبدار در هنگام آبیاری، مولفه افیس قریز که به صورت سطحی یا زیر سطحی حادثه می‌شود غلبه بوده و مولفه عمودی افرازیت شیب کاهش می‌یابد. با کاهش شیب، مولفه عمودی قریزی بالغ می‌گردد.

مطالعات فوق و سایر مطالعات انجام شده در این زمینه (۳۱)

۷ و ۱۴ نشان دهنده همیت بررسی چگونگی توزیع ورودی از منبع نفتی‌ای در سیستم آبیاری قطره‌ای است. تا پنداشت بود که سیستم را به شیرینی مزرعه‌ای تحت‌توافر به‌طور صحیح نموده که در حالی که در موقعیت ناحیه رشته گیاهی تامین‌گر حداکثر از واکنش‌های آبیاری خاصی عضوی به‌طور کلی فاسد مطالعه حاصله بررسی تأثیر عاملی، شیب، پوشایی، قطر، به یک طرف، قرارنگی در سیستم آبیاری قطره‌ای است.

مواد و روش‌ها

آزمایش‌ها در چهار مزرعه زیر که دارای خاک‌هایی با

نفوذپذیری مختلف بودند، انجام گرفت.

مزروع شماره ۱: مزرعه حکمی واقع در باغ ابریشم و در

لوله بی‌ایتان ۱۶ میلیمتری، شیر فلکه، قطره چکان تنظیم، آب وارد کننده قریزی دارک.
جدول 1- خصوصیات فیزیکی مزارع آزمایشی

<table>
<thead>
<tr>
<th>مزارعه آزمایشی</th>
<th>درصد</th>
<th>متوسط</th>
<th>درصد</th>
<th>درصد</th>
<th>پانئ ناخ</th>
<th>چرم</th>
<th>درصد</th>
<th>درصد</th>
<th>سنگریزه</th>
<th>شن</th>
<th>سیلت</th>
<th>رس</th>
<th>درصد</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>مزارعه شماره 1</td>
<td>8/5</td>
<td>1/24</td>
<td>2/29</td>
<td>38</td>
<td>56/5</td>
<td>38</td>
<td>35/5</td>
<td>28</td>
<td>38</td>
<td>6/7</td>
<td>1/34</td>
<td>2/21</td>
<td>72</td>
<td>2/34</td>
</tr>
<tr>
<td>(باغ ابرشیم)</td>
<td></td>
</tr>
<tr>
<td>(مرغ)</td>
<td></td>
</tr>
<tr>
<td>(دانشگاه صنعتی)</td>
<td></td>
</tr>
<tr>
<td>(خزانه)</td>
<td></td>
</tr>
</tbody>
</table>

حجوم و به وسیله یپچ تنظیم صورت می‌گردد. با وجود تنظیم دیگر قطره ظاهراً شبکه‌ای در این‌داده آزمایشی، در طی آزمایش نیز این دیگر فلکه دیگری می‌شود تا دقت آن اطمینان حاصل شود (بدون هدر رفت آب). به توجه به دیگر قطره چگان (۴،۸ و ۱۲ لیتر بر ساعت) و حجم مورد نظر شبکه پس از اتمام زمان آبیاری، قطره چگان مربوط به مسجد می‌گردد.

پس از شروع آزمایش در زمان‌های مختلف، جهه رطوبتی تا ۱۵ دقیقه عمل بر ده متر از نقاط مختلف شبکه از پدید نمی‌شود. این دیگر قطره شبکه ترکیب شده تا از دیده‌گری و شکل کلی سطح خیس شده تصویب گردد. این دیگر قطره شبکه ترکیب شده تا این دیده‌گری و شکل کلی سطح خیس شده تصویب گردد. این دیگر قطره شبکه ترکیب شده تا این دیده‌گری و شکل کلی سطح خیس شده تصویب گردد. این دیگر قطره شبکه ترکیب شده تا این دیده‌گری و شکل کلی سطح خیس شده تصویب گردد. این دیگر قطره شبکه ترکیب شده تا این دیده‌گری و شکل کلی سطح خیس شده تصویب گردد. این دیگر قطره شبکه ترکیب شده تا این دیده‌گری و شکل کلی سطح خیس شده تصویب گردد.
جدول ۲- اثر متقابل شیب زمین و ذی قطعه چکن‌ها بر سطح خیس شده در حجم آب آبیاری ۲۰ لیتر در مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>دی یک مقرط چکن (لیتر بر ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>۰/۲۷۹</td>
<td>۰/۲۸۰</td>
</tr>
<tr>
<td>۰/۳۸۴</td>
<td>۰/۳۶۳</td>
</tr>
<tr>
<td>۰/۱۹۷</td>
<td>۰/۳۸۲</td>
</tr>
</tbody>
</table>

جدول ۳- اثر متقابل شیب زمین و ذی قطعه چکن‌ها بر سطح خیس شده در حجم آب آبیاری ۴۰ لیتر در مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>دی یک مقرط چکن (لیتر بر ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>۰/۲۷۹</td>
<td>۰/۲۸۰</td>
</tr>
<tr>
<td>۰/۳۸۴</td>
<td>۰/۳۶۳</td>
</tr>
<tr>
<td>۰/۱۹۷</td>
<td>۰/۳۸۲</td>
</tr>
</tbody>
</table>

روتیوت حجمی چکن برای عمان صفر تا ۲۵ سانتی‌متری برای حرکتی از مزارع آزمایشی اندازه‌گیری گردید که نتایج در جدول ۱ ارائه گردیده و مشاهده می‌شود که اختلاف روتیوت اولیه خاک برای مزارع آزمایشی جزئی است.

جدول ۲ و ۳ نمونه‌ای از نتایج حاصل از بررسی‌های انجام شده در ارتباط با تأثیر متقابل ذی قطعه چکن و شیب زمین بر روی سطح خیس شده را نشان می‌دهند. همان گونه که در این جدول دیده می‌شود، با افزایش دیب، متوسط سطح خیس شده افزایش می‌یابد، به نحوی که در شیب‌های مختلف کمترین سطح خیس شده مربوط به دیب ۴ لیتر برسابد و بیشترین سطح مربوط به دیب ۱۲ لیتر برسابد می‌باشد.

علاوه بر تأثیر ذی قطعه چکن شیب زمین نیز روتیوت سطح خیس شده تأثیر قابل توجهی دارد. وضعیت جو و رطوبت در مزارع‌های شیب دار در مقایسه با مزارع سطح متقابل است. در مزارع سطح نیروی مویی‌گی عامل کسرش افریقی جهیز رطوبتی می‌باشد، در حالی که در مزارع سطحی باید خاک در بین مزارع آزمایشی انتخاب شده می‌باشد. بر اساس نتایج مدرج در جدول ۱، مزرعه شماره ۱ با ۴۶/۵ درصد رس و ۲۰ درصد سنگ ریز و مزرعه شماره ۳ با ۵۰ درصد رس و ۲۵ درصد سنگ ریز به ترتیب دارای سنگین‌ترین و سبک‌ترین بارها چکن در بین مزارع آزمایشی انتخاب شده می‌باشد.
جدول 4- اثر متقابل شیب زمین و حجم آب ایباری بر سطح خیس شده در دیه 4 لیتر بررسی با جریان آزمایشی 1

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>حجم آب ایباری (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0/172</td>
<td>0/168</td>
</tr>
<tr>
<td>0/279</td>
<td>0/273</td>
</tr>
<tr>
<td>0/394</td>
<td>0/336</td>
</tr>
<tr>
<td>0/423</td>
<td>0/387</td>
</tr>
<tr>
<td>0/512</td>
<td>0/423</td>
</tr>
</tbody>
</table>

جدول 5- اثر متقابل شیب زمین و حجم آب ایباری بر سطح خیس شده در دیه 8 لیتر بررسی برای مزرعه آزمایشی 1

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>حجم آب ایباری (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0/253</td>
<td>0/240</td>
</tr>
<tr>
<td>0/386</td>
<td>0/333</td>
</tr>
<tr>
<td>0/459</td>
<td>0/423</td>
</tr>
<tr>
<td>0/759</td>
<td>0/512</td>
</tr>
<tr>
<td>0/679</td>
<td>0/504</td>
</tr>
</tbody>
</table>

کلی در شیب‌های مختلف، افزایش دیب باعث افزایش سطح خیس شده می‌شود. در زمینه‌های مختلف برای دیب بیشتر از 8 لیتر بر ساعت می‌شود که با افزایش دیب سطح خیس شده افزایش می‌یابد. ملاحظه‌ای نداشته است. پس تصمیمی می‌گیرد که در طرح‌های آب‌یاری قطعی از قطعه‌های جداگانه با دیب بیشتر از 8 لیتر بر ساعت استفاده نشود.

به افزایش شیب زمین، سطح خیس شده افزایش می‌یابد و از عمق جبهه رطوبتی کاسته می‌شود. با توجه به این امر توصیه می‌گردد که در شیب‌های بالاتر از 5 درصد از نقطه چکان با دیب بیشتر از 4 لیتر بررسی استفاده شود. زیرا اولاً سطح خیس شده با افزایش زیاد در جهت شیب از دسترس گیاه خارج می‌شود. ثانیاً با سطحی از جبهه رطوبتی آب کافی برای انتخاب

برای مویسیگنی نیروی قبل نیز مؤثر است. نیروی قبل باعث انحراف سطح خیس شده در جهت شیب شده و از طرف دیگر کونیک نیروی مضاعف در گسترش افق جبهه رطوبتی محصول می‌شود. باعث افزایش سطح خیس شده نیز خواهد شد. تأثیر نیروی قبل بر شکل سطح خیس شده، مناسب با شیب زمین و با افزایش شیب افزایش می‌یابد. همان‌گونه که در جدول 2 و 3 مشاهده می‌شود، با افزایش شیب زمین سطح خیس شده در راستای شیب زمین نیز افزایش یافته است. قابل ذکر است که تأیید مشابه با جدول 2 و 3 برای سایر مزارع آزمایشی و تیمارهای مورد مطالعه به‌دست آمده است (4).

با توجه به موارد فوق الذکر می‌توان نتیجه گرفت که به طور
پیشروی جبهه رطوبی از منبع قطعی در سطوح تپه‌ای

ریشه‌گیاه قواره‌نام‌گری.

تأثیر متقابل حجم آب آبیاری و شب زمین بر روی متوسط سطح خیسی باد به مرحله‌ای آزمایشی 1 در جداول 4 و 5 شاخص داده شده است. شایعه‌های برای سایر مراحل آزمایشی و تجربه‌های مورد مطالعه به دست آمده (2). همانطور که ملاحظه می‌شود، با افزایش حجم آب آبیاری در همه شیب‌ها متوسط سطح خیس شده افزایش یافته است. این افزایش به واسطه آب ریزش و برخی قطعی دچار می‌شوند. این برطرفی در دستگاه شیب شناخت و اجرای عمل به سطح خیسی از جایگاه دیگر می‌گردد و در این میزان تولید شده و تقریباً در مراحل نهایی است. بر طور کلی، در ابتدای آبیاری، زمانی است که عمده آب در دستگاه خازن و تقریباً خاوری شده و نزول عمده نهایی است. بر طور کلی، در ابتدای آبیاری، زمانی است که عمده آب در دستگاه خازن و تقریباً خاوری شده و نزول عمده نهایی است.

تأثیر متقابل حجم آب آبیاری و شب زمین روی حجم خیس شده در دستگاه حجم خیس شده و انحراف جبهه رطوبی برای مراحل آزمایشی 1 در جدول 6 و 7 شاخص داده شده است. در جدول 6 و 7 به ترتیب حجم خیس و تقریباً در دستگاه حجم خیس در بالای دستگاه شکاف با هم مقایسه شده است. در جدول 8 انحرافات جبهه و رطوبی در دستگاه شکاف به شیب‌های مختلف و برای زمان‌های مختلف آبیاری با هم مقایسه شده که در حقیقت آبیاری معرف حجم آب آبیاری در آزمایش‌ها می‌باشد. نتایج مشابه با جدول 6 تا 8 برای سایر مراحل و تجربه‌های مورد مطالعه به دست آمده است (2). همان‌طور که در جدول 7 شاخص داده شده، در صرف‌های حجم خیسی ناهنجاری در بالای دستگاه و پایین دست یکی دقت قطعی می‌گردد و در این میزان تولید شده و نزول عمده نهایی است. بر طور کلی، در ابتدای آبیاری، زمانی است که عمده آب در دستگاه خازن و تقریباً خاوری شده و نزول عمده نهایی است.
جدول 6- مقایسه حجم خیس شده در بالادست و پایین دست قطعه چکان در حجمها و شبیه‌های مختلف

<table>
<thead>
<tr>
<th>حجم آب آبیاری (درصد)</th>
<th>شبیه زمین (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بالادست</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

جدول 7- مقایسه درصد حجم خیس شده در بالادست و پایین دست قطعه چکان در حجمها و شبیه‌های مختلف

<table>
<thead>
<tr>
<th>حجم آب آبیاری (درصد)</th>
<th>شبیه زمین (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بالادست</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

در زمینه‌ای که شبیه آنها بالای 5 درصد است، مخصوصاً در خاک‌های با پشت سخت‌تر، بهتر است از قطره چکان 4 لیتر بر ساعت استفاده گردد.
- حجم آب آبیاری بسته به وضعیت گیاه و گسترش ریشه آن انتخاب شود.
- در هنگام اجرای سیستم آبیاری قطره‌دار در زمینه‌ای شیب‌دار، بهتر است محل استقرار قطره چکان‌ها بین 10 تا 30 سانتی‌متر بالاتر از درختان قرار گیرد.

می‌شود، در تمام تیمارها کمترین انحراف جهیزه رطوبتی مربوط به شبیه صفر و شبیه 4 لیتر بر ساعت بوده و بیشترین انحراف به شبیه 10 درصد و شبیه 12 لیتر بر ساعت تعلق دارد. نتایج مشابهی برای سایر موارد آزمایشی به دست آمده است (4). با توجه به نتایج این تحقیق می‌توان پیشنهادید به شرح زیر ارائه نمود:
- در خاک‌های که پرتره آنها سبک است، بهتر است از قطره چکان با دیبه 8 لیتر بر ساعت استفاده شود.
پیش‌روی جبهه رطوبتی از منبع نقطه‌ای در سطوح شبیدار

جدول 8- اثر متقابل شبیه زمین و زمان آبیاری بر انحراف جبهه رطوبتی در جهت شبیه در دو لیتر بر ساعت برای مزرعه آزمایش 1

<table>
<thead>
<tr>
<th>شبیه زمین (درصد)</th>
<th>زمان آبیاری (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

انحراف جبهه رطوبتی در جهت شبیه (سانتی‌متر)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>19</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>25</td>
<td>33</td>
<td>33</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>27</td>
<td>34</td>
<td>34</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>28</td>
<td>37</td>
<td>37</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>56</td>
<td>74</td>
<td>74</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>61</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>55</td>
<td>53</td>
<td>53</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>

جدول 9- مقایسه حجم خیس شده در بالادست و پایین است قطعه چکان در دیب‌ها و شبیه‌ها مختلف برای حجم آب آبیاری 20 لیتر بر مزرعه آزمایش 1

<table>
<thead>
<tr>
<th>شبیه زمین (درصد)</th>
<th>دیب قطعه چکان (لیتر بر ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>دیب قطعه چکان (سانتی‌متر مکعب)</td>
</tr>
<tr>
<td></td>
<td>بالادست</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>78</td>
<td>78</td>
</tr>
</tbody>
</table>

سیاست‌گذاری

در مجموع، استفاده از قطعه چکان با دیب پیشتر از 8 لیتر بر ساعت توصیه نمی‌شود زیرا علاوه بر این که باعث بالا رفتن قطر لوله‌ها و افزایش هزینه اولیه سیستم می‌گردد، مزیت خاصی از لحاظ افزایش سطح حداکثر شده نسبت به قطعه چکان با دیب 8 لیتر بر ساعت ایجاد نمی‌کند.

رویان رحمان رفحی و زادگان کسب فیض در نمودایم که بدن و سیله برای روح آن مرحم رحمت و آمرزش طلب می‌نماییم.
منابع مورد استفاده

1- آکرم نیا، ف. ۱۳۷۵. ارزیابی انواع قطره‌چکنها و ارائه قطره بچکان بینه‌ی از لحاظ اقتصادی. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تهران، ۱۵۱ صفحه.

2- حقیقی، ب. ۱۳۷۵. اثر پارامترهای آبیاری بر روی دصد سطح خیس شده در آبیاری قطره‌ای. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، ۱۱۸ صفحه.

3- سلامت منش، غ. ۱۳۷۵. بررسی و ارزیابی عملکرد سیستم‌های آبیاری قطره‌ای در سطح استان سمنان. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، ۱۱۱ صفحه.

4- شریف پیان الحق، م. ۱۳۷۵. توزیع رطوبت در پروفیل خاک از منبع نقاط در سطوح شیب‌داد. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، ۳۸۹ صفحه.

5- ضیاء تیار احمدی، م. ۱۳۷۵. آبیاری قطره‌ای (ترجمه). انتشارات دانشگاه مازندران، ۳۸۹ صفحه.


