پیشروی جبهه رطوبتی از منبع نقطه‌ای در سطوح شیب‌دار

بهور محصصی‌زاده، سید نرده‌ی موسوی و محمد حسین شریف بیانالحق

چکیده

به منظور بررسی اثر شیب زمین، دی و قطره چکان، حجم آب آبیاری و باند خاک روی جبهه رطوبتی و قسمت شناختی سطحی خاک از یک منبع نقطه‌ای، مطالعات صحراوردی بر روی سه خاک با نفوذ پذیری مختلف، مبنی بر قطره چکان (۶۷ و ۱۲ لیتر بر ساعت)، چاه سبیل سطحی زمین (۱۰۵ و ۱۵ درصد) و باند حجم آب آبیاری (۹۰ و ۶۰ درصد) در روستای انجام گردید. نتایج حاصل نشان داد که افزایش دمای قطره چکان موجب افزایش حجم سطحی خس از دیدگاه شیب‌دار بود. تغییرات سطحی خس شده از دیدگاه دمای قطره چکان در مزارع آزمایشی شیب دار به اثرات خاک افزایشی بود. در مزارع آزمایشی شیب دار، در اثر افزایش دمای قطره چکان، خس از دیدگاه دمای قطره چکان در مزارع آزمایشی شیب دار به اثرات خاک افزایشی بود. در اثر افزایش دمای قطره چکان، خس از دیدگاه دمای قطره چکان در مزارع آزمایشی شیب دار به اثرات خاک افزایشی بود.

واژه‌های کلیدی - آبیاری نقطه‌ای، جبهه رطوبتی، منبع نقطه‌ای

مقدمه

آبیاری نقطه‌ای یکی از روش‌های آبیاری تحقیق محسوب می‌شود. محسوب این روش باعث گردید که در سالانه‌ی اخیر توجه چشم‌گیری به گسترش آن معمول گردید. اصولاً به کارگیری و استفاده صحیح از هر سیستم آبیاری مستلزم شناخت کامل و تخمین مناسب تمامی خصوصیات و پارامترهای اولیه.

آبیاری نقطه‌ای یکی از روش‌های آبیاری تحقیق محسوب می‌شود. محسوب این روش باعث گردید که در سالانه‌ی اخیر توجه چشم‌گیری به گسترش آن معمول گردید. اصولاً به کارگیری و استفاده صحیح از هر سیستم آبیاری مستلزم شناخت کامل و تخمین مناسب تمامی خصوصیات و پارامترهای اولیه.

آن‌هایی که نواحی اطراف روی خواص سیستم موجب بالاترین میزان خطا و اشباع در به کارگیری و پایین آمدن یابده شیب و افزایش هزینه آن خواهد شد. شناخت‌گاهی خیس شدن پرورش خاک توسط یک منبع نقطه‌ای که اصطلاحاً به آن بیان (با جبهه) رطوبتی گفته می‌شود، مهم برخی از طراحی
علم کشاورزی و منابع طبیعی/جلد دوم/شماره سوم/پاییز 1377

آبیاری قطع‌های داشته و بر مقدار آب آبیاری مؤثر است. در واقع اولین گام برای تضمین عمل آبیاری، تعیین و انتخاب گیره جوی رطوبتی است.

شکل پیاز رطوبتی به عوامل مختلفی از قبیل بیان و لایه بندی خاک، همگنی خاک، شدت پیاز آب، رطوبت اولیه خاک، شیب زمین و حجم آب مصرفی بستگی دارد (17 و 12). در محیط‌های همگن و خاک‌های بافت ریز، جوی رطوبتی به صورت افقی و عمودی و ترتیباً با یک سرعت تقریباً می‌کند.

در خاک‌های با بافت درشت و همگن، شکل آب پیاز در جهت عمودی است. در جهت افقی که می‌تواند مزاج گرفته شود. در محیط‌هایی که رطوبت قطعی است در ناحیه خس شده بررسی ساده می‌باشد.

فلج و ویلسم (100) کیل ملد کامپیوتری را در توی‌رطوبت در زیر یکی از وضعیت‌های پایه‌ای خاک با طبقه‌بندی مثبت علت بدنایی شاخص جوی رطوبتی است. این داده معنی است که در خاک‌های فلور و ویلسم، مقدار موادی را که مقدار بدنایی داشته و بر مقدار آب مصرفی مؤثر است. این داده معنی است که در خاک‌های فلور و ویلسم، مقدار موادی را که مقدار بدنایی داشته و بر مقدار آب مصرفی مؤثر است.

چکاکان این احتمال دارد که مقدار بدنایی در خاک‌های شیبی به طور عادی تابع نوردی قرار است. حال آن که در خاک‌های رسی عامل اصلی بودن نور شکل پیاز رطوبتی خاک بی‌ربط می‌باشد. این بدان معنی است که در خاک‌های شیبی به صورت عمومی و باریک ولی در خاک‌های رسی به صورت بندیکت کپک با بی‌ربطی است که به اولیت آبیاری نیاز دارد. علاوه بر همکاری (6) توزیع آب در نور نگهداری خاک را به ترتیب نور و همچنین بودن نیور شکل پیاز رطوبتی خاک بی‌ربطی نیز در عمل بی‌ربطی برخوردار بوده ولی در دیه‌های بی‌ربطی، پیشروی افزایش پیدا نمی‌نماید.

طقس تحقیقات حرم زاغران (15) روی حکمر آب در خاک تحت یکی از وضعیت‌های تجهیز مقر که به هندامی شروع چراین آب، توزیع مویینگی النگ خس شده گرفت. در مقدار و با افزایش عمل خس شده، تأثیر نوری قار قرار گرفت. این مقدار و جویی خس شده، تأثیر بی‌ربطی قار قرار گرفت.

دی‌های بی‌ربطی، اقفی حکمر می‌باشد. در شروع حرم چراین آب،
مجاورت کارخانه ایرانیت، در جنوب غربی اصفهان، مجموعه شامل ۲۴ تقعه زمینی واقع در ناحیه مرز ایران و بل راه آهن جنوب اصفهان. مجموعه شماره ۳ اراضی مفروض داشته‌گاه صنعتی اصفهان، شمال غربی اصفهان، مجموعه شماره ۲: مجموعه خزان متعلق به دانشگاه صنعتی اصفهان، واقع در جنوب شرقی شیراز، شمال غربی اصفهان.

خصوصیات ویژه خاک مرزی آزمایشی شامل: بافت خاک، جرم مخلوطی، ظاهری خاک، رطوبت اولیه و سرعت نفوذ آب به خاک در جدول ۱ آرا بری، است فیزیکی خاک مرزی آزمایشی شامل: بافت خاک، جرم مخلوطی، ظاهری خاک، رطوبت اولیه و سرعت نفوذ آب به خاک در جدول ۱ آرا بری، است.

به منظور بررسی اثرات برای طرح عبارت از صفر، ۳، ۵ و ۱۰ درصد بود. با توجه به این که شبیه‌جویی در محل‌های مختلف متغیر است، در این طرح با استفاده از خطکش مرکز و توزیع شبیه‌نجات در محل تغییر جهت رطوبتی اندازه‌گیری شد.

به منظور بررسی اثرات دری در خاک‌های بروزی جهنه رطوبتی، سه دی و ۱۴ اسفند برای اختصاصی‌گری در این طرح از خاک بجاتی نتخیب شوند. استفاده شد. در هر یک از قطعه بجاتی به روش حساسیتی قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.

به منظور اجرای پروژه اکثریت دری در قطعه جهانی به روش حساسیتی قطعه جهانی شد.
جدول 1 - خصوصیات فیزیکی مزارع آزمایشی

<table>
<thead>
<tr>
<th>مزرعه آزمایشی</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>بانک خاک</th>
<th>جرم</th>
<th>مخیمه</th>
<th>رطوبت</th>
<th>سرعت</th>
<th>شگردیه</th>
<th>رس</th>
<th>نتیجه تهیه</th>
<th>بر سانتیمتر</th>
<th>در ساعت</th>
<th>مکعب</th>
</tr>
</thead>
<tbody>
<tr>
<td>مزرعه شماره 1</td>
<td>2/29</td>
<td>8/5</td>
<td>1/26</td>
<td>28</td>
<td>3/15/5</td>
<td>28</td>
<td>5/6</td>
<td>2/41</td>
<td>6/7</td>
<td>1/34</td>
<td>3/32</td>
<td>7/7</td>
<td>3/28</td>
<td>6/85</td>
<td>2/76</td>
</tr>
<tr>
<td>(باغ ایران)</td>
<td></td>
</tr>
<tr>
<td>(مربی)</td>
<td></td>
</tr>
<tr>
<td>(دانشگاه صنعتی)</td>
<td></td>
</tr>
<tr>
<td>(خزانه)</td>
<td></td>
</tr>
</tbody>
</table>

شونده، کنونومتر، استوانه مدرج، ترازو، متر و اتصالات شامل سه راه را بانو و مستتیه‌ای. آزمایش‌ها به شرح زیر انجام گرفت: آب برای آی بار در یک منبع 120 لیتری ذخیره می‌شود که دارای یک شیر فلکی در قسمت تحتانی بود. شبکه‌ای با سه انتهای موجود و سراسری (با توجه به شبکه تکرار آزمایش) به فواصل 2 متر از لوله پل اتیلن 16 میلی‌متری تشکیل شد و به منبع وصل گردید. بروی هر انتهای شاتر 5 قطره چکان (با توجه به 5 حجم مختلف آب آبایی) به فواصل 2 متر از یکدیگر نصب گردید تا تأثیر بر روی هم نداشته باشد.

با توجه به تأثیر بانک و رطوبت اولیه خاک بر نتایج به دست آمده، نمونه‌هایی از خاک محل آزمایش برای اندازه‌گیری آزمایش‌گاهی برداشته شد. شه علت موجود نبود در آب جهت ثابت کردن و نشان داد که قانونی قاب‌خورده و نمی‌توانست در روی قابل مقایسه گردید. سپس با حفر تراز، و ضریب جهت رطوبت در اعداد مختلف پر گردید. حفر ترازها تا انتهای پایین رطوبت آدامه می‌یافت. سطح مقطع و عمر تراز، به شدت بانک خاک و حجم
جدول 2- اثر متقابل شیب زمین و دیه قطره چکان‌ها بر سطح خیس شده در حجم آب آپاری ۲۰ لیتر در مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>دیه قطره چکان (لیتر بر ساعت)</th>
<th>سطح خیس شده (متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰</td>
<td></td>
<td>۲۷۹/۸۷۶</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۸۰/۳۷۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۷۹/۸۷۶</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۸۰/۳۷۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۸۰/۳۷۳</td>
</tr>
</tbody>
</table>

جدول 3- اثر متقابل شیب زمین و دیه قطره چکان‌ها بر سطح خیس شده در حجم آب آپاری ۴۰ لیتر در مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>دیه قطره چکان (لیتر بر ساعت)</th>
<th>سطح خیس شده (متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰</td>
<td></td>
<td>۲۷۹/۸۷۶</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۸۰/۳۷۳</td>
</tr>
</tbody>
</table>

راوی در موج‌های فوق تا ۲۰ سانتی‌متری برای هر یک از مزارع آزمایشی تهیه گردید. همان‌گونه که در جدول ۱ ارائه گردیده و مشاهده می‌شود، این اختلاف رطوبت اولیه خاک برای مزارع آزمایشی غربی است.

جدول ۱ و ۳ نمونه‌ای از تناوب حاصل از انجام آزمایش در ارتباط با تأثیر متقابل دیه قطره چکان و شیب زمین بر روی سطح خیس شده را نشان می‌دهند. همان‌گونه که در این جدول دیده می‌شود، در این ابزار می‌تواند سطح خیس شده افزایش می‌یابد، به نحوی که در شیب‌های مختلف کمترین سطح خیس شده مربوط به ۴ لیتر بر ساعت و بیشترین سطح مربوط به ۴۲ لیتر بر ساعت می‌باشد.

در عملیات بهبود براساس تناوب مندرج در جدول ۱ مزرعه شماره ۱ با ۲۵/۵ درصد رس و ۴۵ درصد سنگ زره و مزرعه شماره ۳ با ۵۰ درصد سنگ زره و ۲۵ درصد رس به ترتیب دارای سنگین‌ترین و سنگ‌ترین بات‌های خاک در بین مزارع آزمایشی انتخاب شده می‌باشند. یکی از انجام آپاری، متوسط درصد

نتایج و بحث

ورودی شماره ۱ با ۲۵/۵ درصد رس و ۴۵ درصد سنگ زره و مزرعه شماره ۳ با ۵۰ درصد سنگ زره و ۲۵ درصد رس به ترتیب دارای سنگین‌ترین و سنگ‌ترین بات‌های خاک در بین مزارع آزمایشی انتخاب شده می‌باشند. یکی از انجام آپاری، متوسط درصد
جدول ۴- اثر مقاوم شیب زمین و حجم آب آبایی بر سطح خیس شده در دی ۴ لیتر بررسیت برای مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>حجم آب آبایی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱/۱۷۲</td>
<td>۰/۱۷۳</td>
</tr>
<tr>
<td>۱/۲۷۹</td>
<td>۰/۲۸۰</td>
</tr>
<tr>
<td>۱/۳۹۴</td>
<td>۰/۳۷۶</td>
</tr>
<tr>
<td>۱/۴۷۳</td>
<td>۰/۴۲۲</td>
</tr>
<tr>
<td>۱/۴۲۲</td>
<td>۰/۴۵۶</td>
</tr>
<tr>
<td>۱/۵۱۲</td>
<td>۰/۵۱۲</td>
</tr>
</tbody>
</table>

جدول ۵- اثر مقاوم شیب زمین و حجم آب آبایی بر سطح خیس شده در دی ۸ لیتر بررسیت برای مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>حجم آب آبایی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱/۲۵۳</td>
<td>۰/۲۴۰</td>
</tr>
<tr>
<td>۱/۳۸۶</td>
<td>۰/۳۳۳</td>
</tr>
<tr>
<td>۱/۴۲۹</td>
<td>۰/۴۲۲</td>
</tr>
<tr>
<td>۱/۵۱۶</td>
<td>۰/۵۱۲</td>
</tr>
<tr>
<td>۱/۶۷۹</td>
<td>۰/۶۷۹</td>
</tr>
<tr>
<td>۱/۷۸۴</td>
<td>۰/۷۸۴</td>
</tr>
</tbody>
</table>

کلی در شیب‌های مختلف، افزایش دیب باعث افزایش سطح خیس شده می‌شود. در زمین‌های سطحی برای دیب بیشتر از ۸ لیتر بر ساعت مشاهده می‌شود که با افزایش دیب سطح خیس شده افزایش می‌یابد. افزایش حجم و سطح خیس شده نیز خواهد شد. تأثیر نیروی تلقی بر شکل سطح خیس شده، متاناسب با شیب زمین بوده و با افزایش شیب افزایش می‌یابد. این گونه

که در حالی ۲ و ۳ مشاهده می‌شود. با افزایش شیب زمین سطح خیس شده در راستای شیب زمین نیز افزایش یافته است. قابل ذکر است که نتایج مشابه با قدیمی ۲ و ۳ برای سایر مزارع آزمایشی و تیمارهای مورد مطالعه به

دبست آمده است (۴). با توجه به موارد فوق الذکر می‌توان نتیجه گرفت که به طور
هشته گیاه قوار تیم‌گرَد
تأثیر متقابل حجم آب آبیاری و شیب زمین بر روی متوسط سطح کارس در مزرعه آزمایشی 1 در جدول 4 و 5 نشان داده شده است. نتایج مسابقه برای سایر مزارع آزمایشی و تیمارهای مورد مطالعه به دست آمد (2). همانطور که ملاحظه می‌شود، با افزایش حجم آب آبیاری در همه این مزارع سطح خیس شده آب آبیاری یافته است. این افزایش به دلیل بهبود خاک و دیگر عواملی که مطرح است. به طور کلی، در ابتدا آبایی قسمت عمدتاً آب در سطح خاک توزیع شده و تقدیم عوامل ناجی است. با توجه به محدودیت اعمال شده بر سطح خیس شده از جانب دیگر قطور خاک، خاک و شیب زمین در ادامه آبایی پیشنهاد اتفاق جهت رطوبیت در سطح خاک کاهش می‌یابد و بر نفوذ عمق جهت رطوبیت افزوده می‌شود. پس می‌توان چنین استنتاج کل که در حجم‌های پایین، بخش آب در سطح خاک توزیع شده و صرف توسط سطح خیس شده می‌شود، ولی در حجم‌های بالا بخش آب صرف کسترش مولفه عمده جهش رطوبیت می‌گردد.

تأثیر متقابل حجم آب آبیاری و شیب زمین روی حجم خیس شده در حجم خیس شده و انحراف جهت رطوبیت در مزرعه آزمایشی 1 در جدول 6 و 7 نشان داده شده است. در جدول 6 و 7 به ترتیب حجم خیس شده و در حجم خیس شده فاصله، دستگاه یکه شرکت تجهیزات دیگر، موارد مطالعه به دست آمده است. همان‌طور که ملاحظه می‌شود، با افزایش حجم آب آبیاری در همه این مزارع سطح خیس شده آب آبیاری یافته است. این افزایش به دلیل بهبود خاک و دیگر عواملی که مطرح است. به طور کلی، در ابتدا آبایی قسمت عمدتاً آب در سطح خاک توزیع شده و تقدیم عوامل ناجی است. با توجه به محدودیت اعمال شده بر سطح خیس شده از جانب دیگر قطور خاک، خاک و شیب زمین در ادامه آبایی پیشنهاد اتفاق جهت رطوبیت در سطح خاک کاهش می‌یابد و بر نفوذ عمق جهت رطوبیت افزوده می‌شود. پس می‌توان چنین استنتاج کل که در حجم‌های پایین، بخش آب در سطح خاک توزیع شده و صرف توسط سطح خیس شده می‌شود، ولی در حجم‌های بالا بخش آب صرف کسترش مولفه عمده جهش رطوبیت می‌گردد.

در جدول 8 انحراف جهت رطوبیت در حجم خیس شده در حجم مداوم شرکت تجهیزات دیگر، موارد مطالعه به دست آمده است. همان‌طور که ملاحظه می‌شود، با افزایش حجم آب آبیاری در همه این مزارع سطح خیس شده آب آبیاری یافته است. این افزایش به دلیل بهبود خاک و دیگر عواملی که مطرح است. به طور کلی، در ابتدا آبایی قسمت عمدتاً آب در سطح خاک توزیع شده و تقدیم عوامل ناجی است. با توجه به محدودیت اعمال شده بر سطح خیس شده از جانب دیگر قطور خاک، خاک و شیب زمین در ادامه آبایی پیشنهاد اتفاق جهت رطوبیت در سطح خاک کاهش می‌یابد و بر نفوذ عمق جهت رطوبیت افزوده می‌شود. پس می‌توان چنین استنتاج کل که در حجم‌های پایین، بخش آب در سطح خاک توزیع شده و صرف توسط سطح خیس شده می‌شود، ولی در حجم‌های بالا بخش آب صرف کسترش مولفه عمده جهش رطوبیت می‌گردد.
جدول 6- مقایسه حجم خیس شده در بالادست و پایین دست قطره چکان در حجمها و شیب‌های مختلف

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>حجم آب آبایی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

جدول 7- مقایسه درصد حجم خیس شده در بالادست و پایین دست قطره چکان در حجمها و شیب‌های مختلف

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>درصد حجم خیس شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

می‌شود، در تمام تیمارها کمترین انحراف جهش رطوبتی مربوط به شیب صفر و در 4 لیتر بر ساعت، بیشترین انحراف به شیب 10 درصد و در 12 لیتر بر ساعت تحقیق دارد. نتایج مشابهی برای سایر مزارع آزمایشی به دست آمده است (4). با توجه به نتایج این تحقیق می‌توان پیشنهادهایی به شرح زیر ارائه نمود:
- در زمین‌هایی که شیب آنها بالای 5 درصد است، مخصوصاً در خاک‌های با بارش سنگین، بهتر است از قطره چکان 4 لیتر بر ساعت استفاده گردد.
- حجم آب آبایی پایین‌تر به وضعیت گیاه و گسترش ریشه به عنوان مورد انتخاب شود.
- در هنگام اجرای سیستم آب‌پذیری قطره‌ای در زمین‌های شیب‌دار، بهتر است محل استقرار قطره چکان‌ها بین 10 تا 20 سانتی‌متر بالاتر از درختان قرار گیرد.
پیش‌ریزی جیهه رطوبی از منبع نقطه‌ای در سطوح هوردار

جدول 8- اثر متقابل شیب زمین و زمان آب‌پیاری بر انحراف جیهه رطوبی در جهت شیب، در دبیر ۴ لیتر بر ساعت برای موزه‌های آزمایش

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>زمان آب‌پیاری (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>۳۰</td>
<td>۱۷</td>
</tr>
<tr>
<td>۳۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>۴۰</td>
<td>۱۷</td>
</tr>
<tr>
<td>۴۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>۵۰</td>
<td>۱۷</td>
</tr>
<tr>
<td>۵۵</td>
<td>۱۷</td>
</tr>
</tbody>
</table>

انحراف جیهه رطوبی در جهت شیب (سانتی‌متر)

جدول ۹- مقایسه حجم خیس شده در بالادست و پایین دست قطره چکان در دبیرها و شیب‌های مختلف برای حجم آب آب‌پیاری ۲۰ لیتر بر ساعت برای موزه‌های آزمایش

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>قطره چکان (دبیر بر ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۰</td>
</tr>
<tr>
<td>۳۰</td>
<td>۰</td>
</tr>
<tr>
<td>۳۵</td>
<td>۰</td>
</tr>
<tr>
<td>۴۰</td>
<td>۰</td>
</tr>
<tr>
<td>۴۵</td>
<td>۰</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۵۵</td>
<td>۰</td>
</tr>
</tbody>
</table>

حجم خیس شده (سانتی‌متر مکعب)

| بالادست پایین دست بالادست پایین دست بالادست بالادст...|

سیاسگزاري

در مجموع، استفاده از قطره چکان با دبیر بی‌شتهر از ۸ لیتر برساوات توصیه نمی‌شود زیرا علاوه بر این که باند بالا رفتین قطر لوله‌ها و افزایش هزینه اولیه سیستم می‌گردد، مرتب خاصی از لحاظ افزایش سطح خیس شده نسبت به قطره چکان با دبیر ۸ لیتر بر ساعت ایجاد نمی‌کند.

۲۱
22

منابع مورد استفاده
1- آکرم نیا، ف. ۱۳۷۵. ارزیابی انواع قطره چکانها و ارائه قطره چکان بهینه از لحاظ اقتصادی. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تهران، صفحه ۱۵۱.
2- حسینی، ب. ۱۳۷۵. اثر پارامترهای آبیاری بر روی درصد سطح خیس شده در آبیاری قطرهای. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، صفحه ۱۸۸.
3- سلامتی منشی، غ. ۱۳۷۵. بررسی و ارزیابی عملکرد سیستم‌های آبیاری قطرهای در سطح استان سمنان. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تهران، صفحه ۱۱۱.
4- شریفی، ب. ۱۳۷۶. توزیع رطوبت در پروفاژ خاک از منبع نقطه‌ای در سطوح شیبدار. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، صفحه ۱۴۹.
5- ضیاء، ب. ۱۳۷۱. آبیاری قطرهای (ترجمه). انتشارات دانشگاه مازندران، صفحه ۳۹.