اثر باکتری تولید کننده اسید لاکتیک (LAB) و اوره بر ترکیب شیمیایی و ارزش غذایی علوفه کامل چو

چکیده
این آزمایش به منظور بررسی اثر باکتری تولید کننده اسید لاکتیک (LAB) و اوره بر ترکیب شیمیایی، ارزش غذایی و ویژگی‌های مالع شکم علوفه کامل چو، در یک طرح کامل‌الاحجام گردید. در گروه بزرگ ترکیب شیمیایی و صورت سیاه‌پوستی چهار گونه‌شناسی نر سالولک بوده‌اند. برای ارزیابی مقادیر علوفه کامل چو با دو سطح لیزری به میزان 60 و 120 گیاه و 20 خانواده، از انواع سیلازهای با عوامل علوفه گزارش شده و تعیین ذرت ناموفق و یا مشکل است. همچنین، این استفاده از این گیاهان به صورت مطلوب، به معنی زیاد در تعقیب دام استفاده می‌شوند. علوفه کامل چو با دو سطح لیزری اثرات اقلیمی و به‌طور عمده به میزان 30 درصد مایع علوفه کامل چو با حدود 12 درصد مایع علوفه کامل چو با حدود 30 1. استادیار علوم دام، دانشگاه کشاورزی، دانشگاه شیراز
درصد (55 درصد) استفاده شد. گیاهی با ماده خشک کم LAB با پودر افروتنی پا از افروتن محلول تبلیغی حاوی (G. plantarum) و Enterococcus faecium که از گسترش استفاده آنزیم‌های سیلوپ، کم در این مرحله دارای ارزش غذایی زیاد و قابلیت هضم خوری است و تخمیر به خوبی صورت می‌گیرد، یا یکی که ماده خشک کم درصد خشک خشک و پس از افروتن اثر سیلوپ می‌کند که به علت قند‌های محلول کم تخمیر شدید صورت نگرفته، و لیکوسولز که گیاه بذر‌دار و مواد گسترش آنها 3 و 4 به شکل تیره‌پوشیده نوشته گیاهی می‌شود. ولی مسالن مانند دفع دانه‌های خشک، افراد مصرف انسانی برای دفع زیادی، به آسیب رسیدن به پروتئین گیاه اثر استفاده زیادی از این (9)، آلوپاez می‌گذارد (21) و مسمومیت وجود خواهد داشت، به هر حال، عمل آوری با اثری در مورد گیاهی با ماده خشک خشک یازد، مؤثرتر از گیاهی با ماده خشک کم است (7).

آزمایش‌های بسیاری در مورد عوامل مؤثر بر کیفیت علوفه‌های سیلوپ شده انجام گرفته است. برای تهیه سیلوپ با کیفیت عالی و با دقت‌کاری کاهش مواد غذایی، مواد افروتنی زیادی به کار می‌روند. در سال‌های اخیر به علت مشکلات سلامتی و حمل و نقل، توجه زیادی به استفاده از افروتن‌های بیولوژیک به جای مواد شیمیایی شده است. استفاده از بیکاره‌های تولید کننده اسید لکتیک (LAB) مواد کاهش موجب کاهش (La Roche Ltd. Diagnostic Division, Switzerland) در استفاده از دستگاه Cobas Mira Automatic Analyser (٢٥) و (١٧) در (١٧). لیبت سیلوپ و کاهش تجزیه پروتئین‌های گیاهی (٢٥) می‌گردد.

این آزمایش با منظور بررسی اثر افروتن با میزان دو LAB لیتر به هر تن گیاه با ماده خشک کم، و اواک به میزان چهار کیلوگرم به هر تن ماده خشک گیاهی کامل جو با ماده خشک زیاد، بر اثر ترکیب شیمیایی و ارزش غذایی و ویژگی‌های ماده خشک شکم‌های انجام گرفت.

مواد و روش‌ها

برای نهی سیلوپ، از گیاهی کامل جو با ماده خشک کم (٣٥)
جدول: مقایسه تركيب شيميايی گياه جو در ميزان ماده خشک را نشان مي‌دهد. در گياه با ماده خشک کم در مقایسه با ماده خشک زياد، نسبت pH ديواره سلولی و ديواره سلولی بدون هم سلول کمتر، ولی فندرخت محلول آب و آت زن‌پشت بود. اين نتایج ببينه اندرك ش aprol در سردور گياه كامل جو هم خوانی در دارم (۱۴). سیارن فندرخت محلول در تيمراهی ۱ و ۲ (۳۵/۵ کرم در هر کیلوگرم ماده تیر) پشتیرو و در تيمراهی ۱ و ۴ (۱۹/۵ کرم در هر کیلوگرم ماده تیر) کمتر از ۲۰-۰۲۰ کرم که برای تولد به تحصي‌خورده مورد نیاز یک‌میلی‌متری (۲۲). تركيب شيميايی تيمراهی در هر دو ميزان ماده خشک مشابه، ولی از کل pH چهار پشتیرو ۴ تیمار ۱ بود. نشان مي‌دهد شرط سیال كنر دري مي‌کمک تيمراه‌ها بیشتر بود و تلاش شده كه هدای سیالها به خوبي فشرده و بي‌درنگ روی آنها پوزشانده شود. تيمراهی ۱ و ۲ (ب ما‌اده خشک‌کم) درای PH پایین‌تر قدرت محلول در آب باقب‌کُرده، ازت ام‌آبیکاک، اسیده‌ها لابیکاب، استیک، نسبت لاکات به استات و انانول پشتیرو از تيمراهی ۱ و ۲ بود، كه با نتایج غارگوش شده در مورد سیالاژ جو با ماده خشک مشابه، هم خوانی دارد (۲۴).

به‌چنین مقایسه تركيب شيميايی تيمراهی در دو سطح ماده خشک، اثر معادن شدن درخت تخمیر با افزایش ماده خشک، ادم‌سیدتی پشتیرو و اسیده‌ها چرب فرار كمتر را نشان مي‌دهد (۲۸). تيم‌دار ۳ اسید لاکتیک پشتیرو نسبت به تيم‌دار ۱ داشت، كه نشان دهنده اثر مناسب هوروند بر تولد اسید لاکتیک است (۲۰ و ۲۲). پشتیرو یک استاد اسید لاکتیک در تيم‌دار ۴ بوضعي علت آزاد شدن گروه استقلال از تركيبات هم سلولی، در اثر افزودن گياه با اوره مي‌باشد (۲۳).

کمتر بودن از ام‌آبیکاک (۲۶) و نبود اسید بی‌تریک در تيم‌دار ۲ در مقایسه به تيم‌دار ۱ نشان دهنده تخمیر مناسب كمتر مودا غذايي و جدول‌گردي از غفارت كلسترودرهاي در تخمیر قند و اسید لاکتیک، در اثر افزودن LAB است (۱۶). نبود اسید LAB منجر به رشد شده دردسته‌آمیزی تيمراه‌ها و آسم اسید لاکتیک است. نتایج و بحث

تحليل و بحث

ترکيب شيميايی

ترکيب شيميايی گياه كامل جو پس از افزودن LAB و اوره و پيش از سیال كنر در جدول ۱ نشان داده شده است. اين
جدول 1. ترکیب شیمیایی علوفه کامل جو (گرم در کیلوگرم ماده خشک) در دو مرحله رشد. پیش از سیلو کردن

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 3</th>
<th>تیمار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک (گرم در کیلوگرم ماده تر)</td>
<td>582</td>
<td>551</td>
<td>327</td>
<td>350</td>
</tr>
<tr>
<td>pH</td>
<td>8/08</td>
<td>6/43</td>
<td>6/47</td>
<td>6/6</td>
</tr>
<tr>
<td>ازت کل</td>
<td>9/0</td>
<td>11/1</td>
<td>12/3</td>
<td>12/1</td>
</tr>
<tr>
<td>فندهای محلول در آب</td>
<td>32/1</td>
<td>16/2/4</td>
<td>137/9</td>
<td>123/9</td>
</tr>
<tr>
<td>نشانه دیوئول سلولی</td>
<td>300</td>
<td>90</td>
<td>301</td>
<td>301</td>
</tr>
<tr>
<td>دیوئول سلولی بدون همی سلولز</td>
<td>505</td>
<td>456</td>
<td>461</td>
<td>461</td>
</tr>
<tr>
<td>LAB</td>
<td>283</td>
<td>281</td>
<td>282</td>
<td>282</td>
</tr>
</tbody>
</table>

هر عدد میانگین 3 تکرار است. تیمار 1 = گیاه کامل جو با ماده خشک کم تیمار 2 = گیاه کامل جو با ماده خشک کم + LAB تیمار 3 = گیاه کامل جو با ماده خشک زیاد تیمار 4 = گیاه کامل جو با ماده خشک زیاد + آوره

جدول 2. ترکیب شیمیایی گیاه کامل جو (گرم در کیلوگرم ماده خشک) در دو مرحله رشد. ۲۰ روز پس از سیلو کردن

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 3</th>
<th>تیمار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک (گرم در کیلوگرم ماده تر)</td>
<td>567</td>
<td>530</td>
<td>300</td>
<td>285</td>
</tr>
<tr>
<td>ازت کل</td>
<td>3/1</td>
<td>15/7</td>
<td>16/5</td>
<td>16/5</td>
</tr>
<tr>
<td>دیوئول سلولی</td>
<td>0/6</td>
<td>5/13</td>
<td>5/6</td>
<td>5/6</td>
</tr>
<tr>
<td>نشانه دیوئول سلولی بدون همی سلولز</td>
<td>247</td>
<td>277</td>
<td>319</td>
<td>319</td>
</tr>
<tr>
<td>قندهای محلول در آب باقی مانده</td>
<td>308</td>
<td>310</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>ازت آمونیاکی (درصد از ازت کل)</td>
<td>5/9</td>
<td>6/6</td>
<td>10/1</td>
<td>13</td>
</tr>
<tr>
<td>اسید نیکیکی</td>
<td>4/0</td>
<td>5/0/5</td>
<td>10/1/1</td>
<td>10/1/1</td>
</tr>
<tr>
<td>اسید استیکی</td>
<td>4/8</td>
<td>9/8</td>
<td>39/5</td>
<td>39/5</td>
</tr>
<tr>
<td>اسید بیوتیریک</td>
<td>8/4</td>
<td>3/2/2</td>
<td>23/4</td>
<td>23/4</td>
</tr>
<tr>
<td>تست لاکتات به استات</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>انثالول</td>
<td>0/8</td>
<td>3/6</td>
<td>1/7</td>
<td>1/7</td>
</tr>
<tr>
<td>LAB</td>
<td>1/4</td>
<td>1/8</td>
<td>0/6</td>
<td>0/6</td>
</tr>
</tbody>
</table>

هر عدد میانگین 3 تکرار است. تیمار 1 = سیلاب گیاه کامل جو با ماده خشک کم تیمار 2 = سیلاب گیاه کامل جو با ماده خشک کم + LAB تیمار 3 = سیلاب گیاه کامل جو با ماده خشک زیاد تیمار 4 = سیلاب گیاه کامل جو با ماده خشک زیاد + آوره

گیاه کامل جو با ماده خشک زیاد تیمار 4 = سیلاب گیاه کامل جو با ماده خشک زیاد + آوره

بوتیریک در تیمار 2 کمتر از 10 درصد ازت کل بوده که نشانه آمونیاکی در تیمار 2 کمتر از 10 درصد ازت کل بوده که نشانه لاکتیک و رطوبت کمتر در این تیمارها باشد، زیرا گیاه هر در افزودن آوره معنی تک‌هارداری خوب سیلاب در حالت قبیلی ی دارد. در حلال، میزان ازت بوتیریک در تیمارهای 3 و 4 می‌تواند به میزان قند، است.
کنتنه آمیابکان محور میکرواگانزیمه‌های موجود در سیستم‌گردید.

تیمار ۳ نسبت به تغییر پس از باز کردن بسیار حساس بود.

چند روندی نیز در مورد سیلیز غلبه به کار خشک زیاد،

پس از افزایش تیمار ۳۴ به ۱۰۰۰ نسبت به کشتی‌های میکرواگانزیمه‌های خراب کننده مناسب است، بسیار عادت و

غیر قابل استفاده شد. این موضوع لزوم افزودن ادویت میکروب‌های میانه مانند هیدرکسید سدیم (۳۷ و ۳۸) را برای تگه‌داده‌ی

جنا بیان ماده خشک زیاد نیاز مشابه می‌دهد.

کاهش میزان دیواره سلولی بدن میکروآمیابک در فاصله بین

روز ۳۰ و ۶۰ در تیمارهای ۳ و ۴، ناشان دهنده کاهش سیلولی

در خلاء تیماری (۲۹) می‌باشد. (۳۷) همچنین، میزان دیواره سلولی

در فاصله بین روز ۳۰ و ۶۰ در تیمار ۴ کاهش یافته، که

می‌تواند به ویژه افزایش قابلیت حل فیبر گیاه‌های اثر عمل

آمیابکایان باشد (۱۲). افزایش میزان دیواره سلولی (ییاده) به

اساس گرم در کیلوگرم ماده خشک) در تیمارهای ۱ و ۲ به

خاطر کاهش مواد قابل تغییر در خلاء سیلولی کردن (۲۵)، و یا

اشتهای در نمونه‌گیری است.

قابلیت هضم و ویژگی‌های مایع شکم‌های مایوین الیف، قابلیت هضم مواد غذایی و میزان آنزیم‌های تگه‌داده‌ی شده

تیمارها در جدول ۳ و ویژگی‌های مایع شکم‌های در جدول ۴

نشان داده شده است. قابلیت هضم تمام مواد غذایی (بیر

نشانه) در تیمار ۱ به طور معنی‌داری کمتر از بقیه تیمارها بود.

قابلیت هضم ماده خشک بیشتر از طور معنی‌داری (۱۰۰ برابر)

تیمار افزایش قابلیت هضم ماده آلی (۱۱) در تیمارهای ۲ و ۴، احتمالاً به علت کاهش

هدروژ ماده آلی، در طول سیلول کردن افزودن حاوی در ویژگی‌های مایع شکم‌های

آنزیم‌های تگه‌داده‌ی شده و دسته مورد مکاشفه و شکم‌های

(۴۴) و بالاخره از افزایش گزارش شده توسط مرکوری و پرتاند
جدول 3. قابلیت هضم مواد غذی (گرم در هر کیلوگرم ماده خشک) و ازت تکه‌داداری شده تیمارهای آزمایشی

<table>
<thead>
<tr>
<th>مواد غذی</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 4</th>
<th>معنی‌دار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک</td>
<td>۷۸۷ a</td>
<td>۷۲۰ a</td>
<td>۶۴۵ b</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>ماده آلی</td>
<td>۶۳۳ b</td>
<td>۶۳۳ b</td>
<td>۶۳۳ b</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>دی‌واره سلولی</td>
<td>۶۱۹ b</td>
<td>۶۱۹ b</td>
<td>۶۱۹ b</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>دی‌واره سلولی بدون همی‌سولول</td>
<td>۵۸۱ c</td>
<td>۵۸۱ c</td>
<td>۵۸۱ c</td>
<td>NS (99%)</td>
</tr>
</tbody>
</table>

جدول 4. اثر تغذیه سیلایژ‌های آزمایشی بر میزان تخمیر شکمی

<table>
<thead>
<tr>
<th>معیار</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 4</th>
<th>معنی‌دار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>۶/۸۸ a</td>
<td>۶/۴۹ a</td>
<td>۶/۴۹ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>ازت آمونیاک (لیتر/میلی‌گرم)</td>
<td>۱۰۷/۳۳ b</td>
<td>۱۰۷/۳۳ b</td>
<td>۱۰۷/۳۳ b</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>اسیدهای چرب سه‌پر</td>
<td>۱۱۶/۸۴ a</td>
<td>۱۱۶/۸۴ a</td>
<td>۱۱۶/۸۴ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>استاندارد</td>
<td>۶/۷۲ a</td>
<td>۶/۷۲ a</td>
<td>۶/۷۲ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>پروپیونات</td>
<td>۳۳/۳۴ a</td>
<td>۳۳/۳۴ a</td>
<td>۳۳/۳۴ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>ایزوپروپیونات</td>
<td>۱/۳۷ a</td>
<td>۱/۳۷ a</td>
<td>۱/۳۷ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>بوتیرات</td>
<td>۸/۸۱ a</td>
<td>۸/۸۱ a</td>
<td>۸/۸۱ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>ایزوپریونات</td>
<td>۱/۳۴ a</td>
<td>۱/۳۴ a</td>
<td>۱/۳۴ a</td>
<td>NS (99%)</td>
</tr>
</tbody>
</table>

نتیجه‌های مواد (درصد)

<table>
<thead>
<tr>
<th>معیار</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 4</th>
<th>معنی‌دار</th>
</tr>
</thead>
<tbody>
<tr>
<td>استاندارد</td>
<td>۷/۷۶ b</td>
<td>۷/۷۶ b</td>
<td>۷/۷۶ b</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>پروپیونات</td>
<td>۷/۷۶ b</td>
<td>۷/۷۶ b</td>
<td>۷/۷۶ b</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>ایزوپروپیونات</td>
<td>۱/۲۲ a</td>
<td>۱/۲۲ a</td>
<td>۱/۲۲ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>بوتیرات</td>
<td>۸/۸۱ a</td>
<td>۸/۸۱ a</td>
<td>۸/۸۱ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>ایزوپریونات</td>
<td>۱/۲۲ a</td>
<td>۱/۲۲ a</td>
<td>۱/۲۲ a</td>
<td>NS (99%)</td>
</tr>
<tr>
<td>والیورات</td>
<td>۱/۳۴ a</td>
<td>۱/۳۴ a</td>
<td>۱/۳۴ a</td>
<td>NS (99%)</td>
</tr>
</tbody>
</table>

نتیجه‌های بیشتر استاندارد به پروپیونات

** جدول 1 = سیلایژ گیاه کامپ جو با ماده خشک کم **
** جدول 2 = سیلایژ گیاه کامپ جو با ماده خشک زیاد + اوره **
** جدول 3 = سیلایژ گیاه کامپ جو با ماده خشک کم + اوره **
** جدول 4 = سیلایژ گیاه کامپ جو با ماده خشک زیاد + اوره **

در هر راهنداز، تفاوت بین میانگین‌هایی که حرف همان‌دادن معنی‌دار نیست (P<0.05).
این عمومی در مورد گیاه کامل جو، که از نظر پروتئین فیبر است، بسیار مهم می‌باشد. کمتر بودن pH شکم‌های باکتری شعله‌دار به تیمار 2 سبب نگهداری پروتئین در محلول شکم‌های به علت کاهش جذب آمینه‌ها و در نتیجه افزایش سنتی پروتئین می‌شود.

موج افراشی مسمومیت آمینیک از دیواره شکم‌های سرپوشیده در جذب انیلیشن نسبت آن به تیمار 4 به علت تولید نسبت‌های کمتر پروپیونات با کاراکریه می‌باشد.

کمتر برای تولیدات دام مصرف می‌شود. مصرف تیمار 2 و 4 موجب کاهش درصد موارد استرس نسبت به تیمارها 1 و 4 و افزایش معنی‌دار درصد موارد پروپیونات نسبت به تیمار 4 و افراشی غیرمعنی‌دار درصد موارد بویورات نسبت به دیگر تیمارها گردید.

بر اساس تحلیل آزمایش‌های تولید کننده مستند می‌باشد این تغییرات ممکن است به علت افراشی مصرف لکات بی‌بی‌بی باعث جوش کمتر باشد.

(7). به هر حال، اسکالند و همکاران (13 و 14) گزارش کرده‌اند که پروپیونات اسید موج افراشی بیشتر زندگی ندارند.

تأثیر را داشته. ایزوپروپیونات و ازوآکسیژنات در شکم‌های، در اثر تجزیه پروتئین، و یا دی‌آمیناسید پروتئین و اسید آمینه تولید می‌گردد.

ناشان داده شده است که این اسیدها از تجزیه والین و لوسین (8) ممکن است استفاده

