ارزیابی عملکرد سیستم آبیاری بارانی عقیقه‌ای در کرج

چکیده
طراحی و اجرای یک سیستم آبیاری مکنن است به درستی و با بهره‌برداری از طبیعت، سازگاری و دوستسادی این سیستم آبیاری برای مصرف بهره‌برداری از سیستم کنونی را درآمده دهد که آن را بهبود بخشید. هدف اصلی ایمنی و عضویت عوامل ارزیابی سیستم آبیاری بارانی از نوع عقیقه‌ای بوده که مطلق در میانکرد سیستم آبیاری موثر می‌شود. سیستم بیانی شده، مدل واقعی سیستم آبیاری بارانی صنعتی و با وضویت موجود این سیستم بهره‌برداری قرار گرفته. برای ارزیابی در چهار رده معیار، فهرست معیار، سیستم واقعی بازدهی کاربردی، بازدهی کاربرد واقعی و بازدهی کاربردی به ترتیب، 0.3، 0.7 و 0.6 توزیع گردیده. به ترتیب این سیستم در صنعتی، فنی، فیزیکی، سیستم واقعی و بازدهی کاربردی توزیع گردیده و به ترتیب بزرگتر، کوچکتر و بزرگتر. سیستم بیانی سیستم آبیاری بارانی از نوع عقیقه‌ای به علت ویژگی‌های ارائه شده، استنتاج، میزان کارایی و بازدهی کاربردی پتانسیل به عنوان نمونه‌گذاری شرایط کارکرد و طراحی سیستم برده است. اختلاف بین بازدهی کاربرد واقعی و پتانسیل، میزان مشکلات مدیریت در بهره‌برداری از سیستم را می‌باشد.

واژه‌های کلیدی - عملکرد، ارزیابی، آبیاری، عقیقه‌ای، متریپورت

مقدمه
به طور کلی تحلیل هر سیستم آبیاری را به پایه‌ای از اصولی بر سری سیستم‌های آبیاری مکنن (آبیاری می‌ندامند)، ارزیابی از آن جریان مهم است که بارای متریپورت روش مسازد که آب به بهره‌برداری از سیستم کنونی را ادامه دهد و با آن اصلاً تا اصلاح نماید. بهبود مدیریت کاربرد آب در مزرعه باعث صرفه‌جویی در آب، تبیین کار و حفاظت از خاک شده و نتیجه‌ی مواجه محصول محصول می‌باشد.

* به ترتیب استادان و دانشجوی سابق کارشناسی ارشد گروه مهندسی آبیاری و آبادان، دانشکده شارودی، دانشگاه تهران
جهت انددازه‌گیری میزان ذخیره سطحی خاک، هنگامی که میزان باشک آب از سطح پیش‌تریخته شود، آغاز ثبت آن شده و با توجه به تغییرات شیب اغلب برای این منظور ارائه داده شده و پس از گزارش نمونه در پاییز سیستم آبیاری بارانی برای وضعیت سیستم های S (طول بالا) بزرگ یا ۲۰۰ متر است مصرف شده و ارائه پایه‌ای است. سیستم‌های آبیاری همچنین هند زیر حاصل می‌گردد:

1. تعیین بازده واقعی سیستم در زمان بهبودیاری.
2. پاسخ به این پرسش که سیستم حوزه به چه پایانی می‌رسد.
3. کسب اطلاعاتی که به‌عنوان این امور را در طراحی سیستم‌های دیگر کار باشد.
4. گردآوری داده‌هایی که مقایسه روشهای، سیستم‌ها و شیوه‌های مختلف را به‌わたی به قابل اندازه‌گیری و قابل استفاده می‌باشد.
به عبارت دیگر میانگین یک چهارم کمترین عمق آب ذخیره‌شده در مهندسه رشته‌های میانگین یک چهارم کمترین مقداری‌که از آنرها گیری شده است. ممکن که یک چهارم کمترین عمق آب نفوذی مطلوب، برای مجموع SMD و عمق آب آشپزی مورد نیاز می‌باشد. که یک حداکثر تولید از هر واحد آب مصرف شده (با محدودس رشته‌های خاص) می‌باشد. شاخص اینکه انتخابی در این‌جا اهمیت است. اما این ممکن است که محدودس سطح آبیاری بیشتر از انرها به‌طور کلی، در صورتی که این نشان‌دهنده کاهش سطح آبیاری به‌طور کلی مدیریت سیستم ایبایی (7) بخشی از اراضی و یا تماسی و یا محیط سیستمی که از آن‌ها ترکیب در مراحل اولیه تولید و پخش آبیاری کمتر از نیاز مصرف کرده دیگری، از یک‌بار مورد توجه قرار می‌گیرد.

5- بازده پتانسیل آبیاری؟
این شاخص باید بر عهده آبیاری می‌باشد. و برای حداقل کمترین عمق نفوذی مطلوب PELQ می‌باشد. از یک‌بار مورد توجه قرار می‌گیرد. در صورتی که میانگین کمترین عمق نفوذی آب در مقایسه به کار برد شود، بازده پتانسیل از فرمول زیر محاسبه می‌شود.

\[
\text{PELQ} = \frac{\text{میانگین کمترین عمق نفوذی زمانی که برای MAD ساخت}}{100} \times \text{ساخت}
\]

6- بازده واقعی آبیاری?

شایسته است که نشان‌دهنده می‌باشد. و برای برداری قرار می‌گیرد و طبق لیست برای این است (1):

\[
\frac{\text{میانگین یک چهارم حداقل عمق نفوذی آب}}{100} \times \text{میانگین عمق نفوذی مطلوب}
\]

\[
\text{AELQ} = \frac{\text{میانگین عمق ناخالص آب}}{100} \times \text{ساخت}
\]

1- Distribution Uniformity (DU)
2- Application Efficiency of Low Quarter (AELQ)
3- Potential Application Efficiency of Low Quarter (PELQ)
جدول 1- مشخصات خاک مزرعه 500 هکتاری موسم تحقیقات اصلاح و تهیه پذیر مشکین آب کریج

<table>
<thead>
<tr>
<th>وزن محصول ظاهراً</th>
<th>رطوبت در نقطه پذیری</th>
<th>تخلخل</th>
<th>زراعی</th>
<th>یکپارچه</th>
<th>درصد وزنی</th>
<th>درصد وزنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm)</td>
<td>(gr/cm³)</td>
<td>(%)</td>
<td>ZR</td>
<td>PWP</td>
<td>(درصد وزنی)</td>
<td>(درصد وزنی)</td>
</tr>
<tr>
<td>0 - 25</td>
<td>1/36</td>
<td>29</td>
<td>13/5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 50</td>
<td>1/45</td>
<td>47</td>
<td>21/1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 - 75</td>
<td>1/55</td>
<td>75</td>
<td>5/7</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 - 95</td>
<td>1/44</td>
<td>67</td>
<td>4/3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95 - 115</td>
<td>1/40</td>
<td>75</td>
<td>5/7</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115 - 135</td>
<td>1/35</td>
<td>90</td>
<td>9/10</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دستگاه سیستم آبیاری بارانی عقبنهای دارای 6 برج و 7 دهانه ای بهره از طول لوله جابجای آن 30/8/30 متر، فاصله از محاور تا برج آخر 29/1 متر، طول بال بال 16 متر، طول برج 7/9 متر و حداکثر سرعت برج 1/22 متر در دقیقه بود. نتایج سیستم 25 ایرانی به ثبت رسید که در فشار کارکرد حدود 30/2 kPa. سیستم پذیری خاک زمره ای در نمایه دوم سیستم تحقیقات اصلاح و تهیه پذیر مشکین آب کریج برابر 2/02 از متوسط سیستم بود.

شیب زمین زیر پوشش این سیستم 0/98 درصد است. بافت خاک لایه سطحی آن 0/5-5 سانتیمتری عموماً لوسه و در عمقاد 0.5 تا 100 سانتیمتری دارای شب و سنگریزی زیاد و عملای غیرقابل زراعت بود و مدل خاکی بافت خاکی نبود. نتایج نشان می‌دهند که پوشش این سیستم ممکن است به‌عنوان یک زهکش طبیعی عمل می‌نماید. خصوصیاتی از خاک مزرعه تحت پوشش آبیاری بارانی در جدول 1 نشان داده شده است.

تفویض نفوذی خاکی به روش استاندارد مفعول انتزاع گیری شد. خاک مربوط به مورد مطالعه تحقیقات اصلاح و تهیه پذیر مشکین آب کریج واقع است که زمینه به وسعت 29/7 هکتار را احاطه می‌نماید. این مطالعه از قیمت 230 هزار قطعه ماده مورد بررسی قرار گرفت و درصد فشار سین (P<0.04) با لوله پویا (برای اندازه‌گیری فشار در سر نازل) در عدد سیلر مدرج با طوفان‌های 150 و 250 میلی لتری (برای اندازه‌گیری حجم آب جمع آوری شده در فصول تابستانی) همه انواع مورد بررسی قرار گرفت.

مواد و روش‌ها

سیستم تحت ارایابی در مزرعه یک هکتاری موسمه تحقیقات اصلاح و تهیه پذیر مشکین آب کریج واقع است که زمینه به وسعت 29/7 هکتار را احاطه می‌نماید. این مطالعه از قیمت 230 هزار قطعه ماده مورد بررسی قرار گرفت و درصد فشار سین (P<0.04) با لوله پویا (برای اندازه‌گیری فشار در سر نازل) در عدد سیلر مدرج با طوفان‌های 150 و 250 میلی لتری (برای اندازه‌گیری حجم آب جمع آوری شده در فصول تابستانی) همه انواع مورد بررسی قرار گرفت.

D = 1/7817 + 5/6
D = 2/2484 + 5/6

در این معادلات T مدت زمان نفوذ (دقیقه) و D عمق آب

نوشته بانفته (mm)

یک برج با رایانه بسته نوری از برج دست داده شده است.

پوشش سیستم آبیاری بارانی، ابزار ممر نیز و تعرق پتانسیل ماهیانه با استفاده از روشن پنمن می‌باشد. سیستم FAO تعیین شد.

1- Span
آوری شده در قوطی‌های فنونه می‌باشد. شکل ۱ توزیع پراکنش آب جمعی آوری شده در قوطی‌های جمع کندنی را در سرت چرخش ۸۰ درصد نشان می‌دهد. با بررسی این نمودار آب‌اندازه‌گیری که اکثراً استفاده می‌شود، نشان می‌دهد که اندازه‌گیری آب در قوطی‌های فنونه می‌باشد.

فهرست از مانیگک، نمونه‌های برداشت شده از هر ابزار یک‌تایی به‌صورت درسی‌های فنونه، در حال حاضر ۲ تا ۵ به‌کار گرفته شده است. با قرارداد گرفتن نمونه برای آب‌اندازه‌گیری شده یک بار و در هر قوطی‌های فنونه، مقدار تبخیر در طول آب‌اندازه‌گیری شده را به‌صورت دقت‌های مورد افزایش و در بالا برده، با توجه به‌صورت نواحی در هر آب‌اندازه، قابل استفاده قرار گرفته است.

تعمیم عوامل آب‌اندازه‌گیری با استفاده از داده‌های مزرعه‌ای

در این بخش، نمونه‌های آب‌اندازه‌گیری در دو طرح مختلف حکمت سیستم، ۸۰ و ۴۰ درصد سرعت حداکثر سیستم انجام گرفت.

نتایج این بخش در این مقاله تا پایان ۸۰ درصد سرعت حداکثر می‌باشد. حداکثر سرعت پیش‌روی ترکیب آب جمع آوری ۱/۷/۳ متر به‌نام بود.

نتایج و بحث

اولین نکته مورد بحث در آب‌اندازه‌گیری حجم آب جمع
جدول ۹ - حجم آب جمع‌آوری شده در توپیه‌های جمع‌کننده و نمونه‌های وزنی آنها

<table>
<thead>
<tr>
<th>شماره شماره قوطی</th>
<th>قطعه نمونه‌های وزنی = نمونه‌های شماره محل</th>
<th>قطعه نمونه‌های وزنی = نمونه‌های شماره محل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱ ۹۸ ۱۹۸</td>
<td>۷ ۸۹ ۴۹۹۲</td>
</tr>
<tr>
<td>۱</td>
<td>۲ ۱۱۰ ۲۲۰</td>
<td>۸ ۷۹ ۱۹۴۳</td>
</tr>
<tr>
<td>۱</td>
<td>۳ ۱۲۲ ۳۶۶</td>
<td>۸ ۹۹ ۲۰۵۰</td>
</tr>
<tr>
<td>۱</td>
<td>۸ ۶۷/۵ ۲۷۰</td>
<td>۸ ۹۳ ۱۹۶۸/۵</td>
</tr>
<tr>
<td>۲</td>
<td>۵ ۰۸۰</td>
<td>۹ ۱۹۸ ۱۹۸۸</td>
</tr>
<tr>
<td>۲</td>
<td>۶ ۴۰۲</td>
<td>۹ ۲۲۲ ۲۸۳۸</td>
</tr>
<tr>
<td>۲</td>
<td>۷ ۷۷ ۵۳۹</td>
<td>۹ ۳۴ ۲۲۰۰</td>
</tr>
<tr>
<td>۳</td>
<td>۸ ۸۶ ۹۸۸</td>
<td>۹ ۳۵ ۲۳۰۰</td>
</tr>
<tr>
<td>۳</td>
<td>۹ ۳۳/۵ ۲۸۴۸</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۱۰ ۸۷ ۸۸۰</td>
<td>۱۰ ۳۷ ۲۵۵۳</td>
</tr>
<tr>
<td>۳</td>
<td>۱۱ ۹۰ ۹۹۰</td>
<td>۱۰ ۳۸ ۲۵۷۷</td>
</tr>
<tr>
<td>۳</td>
<td>۱۲ ۹۴ ۹۳۰</td>
<td>۱۰ ۳۹ ۲۵۳۷</td>
</tr>
<tr>
<td>۴</td>
<td>۱۳ ۷۳ ۹۴۹</td>
<td>۱۰ ۷۳ ۲۵۹۰</td>
</tr>
<tr>
<td>۴</td>
<td>۱۴ ۹۵ ۱۳۳۰</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۱۵ ۲۲ ۱۰۸۰</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۱۶ ۸۰ ۱۲۸۰</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۱۷ ۸۱ ۱۴۲۲</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۱۸ ۷۹ ۱۵۸۸</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۱۹ ۷۵/۵ ۱۳۳۷/۵</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۰ ۷۵ ۱۵۰۰</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۱ ۷۸ ۱۶۱۸</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۲ ۷۸ ۱۶۱۴</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۳ ۴۲ ۱۹۱۴</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۴ ۷۷ ۱۷۷۱</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۵ ۷۸ ۱۸۸۴</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۲۵ ۸۲ ۲۰۰۵</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۲۶ ۸۰ ۲۰۸۰</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۲۷ ۷۷ ۲۰۹۹</td>
<td></td>
</tr>
</tbody>
</table>

مجموع تمامی اعداد محل نمونه‌ها: ۱۲۲۵
مجموع پایین‌ترین اعداد نمونه‌ها: ۰۰۵
مجموع پایین‌ترین اعداد نمونه‌ها: ۹۲۳۱
مجموع پایین‌ترین اعداد نمونه‌ها: ۲۵۷۵
جدول ۳ - حجم آب جمع آوری شده در قطعه‌های جمع کننده و نمونه‌های وزنی آنها

<table>
<thead>
<tr>
<th>شماره وردی</th>
<th>قطعه</th>
<th>نمونه‌های وزنی × شماره محل</th>
<th>نمونه‌های وزنی</th>
<th>قطعه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷</td>
<td>۱۸۰۰</td>
<td>خ ۱۸۰۱</td>
<td>۱۸۰۲</td>
<td>۱۸۰۳</td>
</tr>
<tr>
<td>۶</td>
<td>۲۰۱۰</td>
<td>خ ۲۰۱۱</td>
<td>۲۰۱۲</td>
<td>۲۰۱۳</td>
</tr>
<tr>
<td>۵</td>
<td>۲۲۲۳</td>
<td>خ ۲۲۲۴</td>
<td>۲۲۲۵</td>
<td>۲۲۲۶</td>
</tr>
<tr>
<td>۴</td>
<td>۲۴۳۶</td>
<td>خ ۲۴۳۷</td>
<td>۲۴۳۸</td>
<td>۲۴۳۹</td>
</tr>
<tr>
<td>۳</td>
<td>۲۶۴۹</td>
<td>خ ۲۶۵۰</td>
<td>۲۶۵۱</td>
<td>۲۶۵۲</td>
</tr>
<tr>
<td>۲</td>
<td>۲۸۶۲</td>
<td>خ ۲۸۶۳</td>
<td>۲۸۶۴</td>
<td>۲۸۶۵</td>
</tr>
<tr>
<td>۱</td>
<td>۳۰۷۵</td>
<td>خ ۳۰۷۶</td>
<td>۳۰۷۷</td>
<td>۳۰۷۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تاریخ: ۱۴۰۹/۲/۶
درجه تنظیم سرعت دستگاه (٪): ۸۰

جمع‌شماری اعداد محل نمونه‌ها: ۱۲۷۶۳/۵
جمع‌شماری پایین‌ترین اعداد نمونه‌ها: ۴۴۶
جمع‌شماری پایین‌ترین اعداد محل نمونه‌ها: ۵۸۲۵۰
جدول ۲ - حجم آب جمع‌آوری شده در قطعه‌های جمع‌کننده و نمونه‌های وزنی آنها

dرجه تنظیم سرعت دستگاه (جریان نور): ۸۰
تاریخ: ۲۲/۴/۱۵

| شماره قطعه | قطعه | نمونه‌های وزنی | نمونه‌های محل
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۷۹</td>
<td>۷۹</td>
</tr>
<tr>
<td>۱</td>
<td>۲</td>
<td>۱۴۳</td>
<td>۲۸۶</td>
</tr>
<tr>
<td>۱</td>
<td>۳</td>
<td>۹۸</td>
<td>۲۹۴</td>
</tr>
<tr>
<td>۱</td>
<td>۴</td>
<td>۱۰۲</td>
<td>۴۰۸</td>
</tr>
<tr>
<td>۱</td>
<td>۵</td>
<td>۹۸</td>
<td>۴۹۰</td>
</tr>
<tr>
<td>۱</td>
<td>۶</td>
<td>۹۹</td>
<td>۵۹۴</td>
</tr>
<tr>
<td>۲</td>
<td>۷</td>
<td>۸۹</td>
<td>۴۲۲</td>
</tr>
<tr>
<td>۲</td>
<td>۸</td>
<td>۸۸/۵</td>
<td>۸۰۸</td>
</tr>
<tr>
<td>۲</td>
<td>۹</td>
<td>۷۹</td>
<td>۵۹۹</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰</td>
<td>۷۲</td>
<td>۷۲۰</td>
</tr>
<tr>
<td>۳</td>
<td>۱۱</td>
<td>۷۲</td>
<td>۷۹۲</td>
</tr>
<tr>
<td>۳</td>
<td>۱۲</td>
<td>۷۱</td>
<td>۶۱۲</td>
</tr>
<tr>
<td>۴</td>
<td>۱۳</td>
<td>۶۵</td>
<td>۸۴۰</td>
</tr>
<tr>
<td>۴</td>
<td>۱۴</td>
<td>۶۸/۵</td>
<td>۱۰۹۹</td>
</tr>
<tr>
<td>۴</td>
<td>۱۵</td>
<td>۶۵</td>
<td>۱۱۷۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱۶</td>
<td>۷۴/۵</td>
<td>۱۱۹۲</td>
</tr>
<tr>
<td>۵</td>
<td>۱۷</td>
<td>۷۹</td>
<td>۱۳۳۳</td>
</tr>
<tr>
<td>۵</td>
<td>۱۸</td>
<td>۷۴</td>
<td>۱۳۳۲</td>
</tr>
<tr>
<td>۴</td>
<td>۱۹</td>
<td>۶۵</td>
<td>۱۲۵۶</td>
</tr>
<tr>
<td>۵</td>
<td>۲۰</td>
<td>۶۸</td>
<td>۱۳۶۰</td>
</tr>
<tr>
<td>۶</td>
<td>۲۱</td>
<td>۷۰</td>
<td>۱۶۰۰</td>
</tr>
<tr>
<td>۶</td>
<td>۲۲</td>
<td>۶۳</td>
<td>۱۳۶۸</td>
</tr>
<tr>
<td>۶</td>
<td>۲۳</td>
<td>۸۲</td>
<td>۱۸۸۶</td>
</tr>
<tr>
<td>۶</td>
<td>۲۴</td>
<td>۸۰</td>
<td>۱۸۸۰</td>
</tr>
<tr>
<td>۷</td>
<td>۲۵</td>
<td>۶۸</td>
<td>۱۷۰۰</td>
</tr>
<tr>
<td>۷</td>
<td>۲۶</td>
<td>۶۸</td>
<td>۱۷۶۸</td>
</tr>
<tr>
<td>۷</td>
<td>۲۷</td>
<td>۶۵</td>
<td>۱۸۰۵</td>
</tr>
</tbody>
</table>

مجموع تمامی اعداد محل نمونه‌ها: ۸۴۸۳۰
مجموع لیست‌های ترین اعداد نمونه‌ها: ۱۲۹۱۲
جدول ۵ - حجم آب جمع آوری شده در قطعه‌های جمع کننده، و نمونه‌های وزنی آنها

<table>
<thead>
<tr>
<th>شماره قطعه</th>
<th>نمونه‌های وزنی</th>
<th>نمونه‌های محل</th>
<th>قطعه</th>
<th>شماره قطعه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۷۱</td>
<td>۸۸</td>
<td>۱</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲</td>
<td>۱۵۶</td>
<td>۸۸</td>
<td>۲</td>
<td>۸۸</td>
</tr>
<tr>
<td>۳</td>
<td>۸۸۳</td>
<td>۸۸</td>
<td>۳</td>
<td>۸۸</td>
</tr>
<tr>
<td>۴</td>
<td>۸۸۵</td>
<td>۸۸</td>
<td>۴</td>
<td>۸۸</td>
</tr>
<tr>
<td>۵</td>
<td>۸۸۶</td>
<td>۸۸</td>
<td>۵</td>
<td>۸۸</td>
</tr>
<tr>
<td>۶</td>
<td>۸۸۷</td>
<td>۸۸</td>
<td>۶</td>
<td>۸۸</td>
</tr>
<tr>
<td>۷</td>
<td>۸۸۸</td>
<td>۸۸</td>
<td>۷</td>
<td>۸۸</td>
</tr>
<tr>
<td>۸</td>
<td>۸۸۹</td>
<td>۸۸</td>
<td>۸</td>
<td>۸۸</td>
</tr>
<tr>
<td>۹</td>
<td>۸۸۱</td>
<td>۸۸</td>
<td>۹</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۰</td>
<td>۸۸۲</td>
<td>۸۸</td>
<td>۱۰</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۱</td>
<td>۸۸۳</td>
<td>۸۸</td>
<td>۱۱</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۲</td>
<td>۸۸۴</td>
<td>۸۸</td>
<td>۱۲</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۳</td>
<td>۸۸۵</td>
<td>۸۸</td>
<td>۱۳</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۴</td>
<td>۸۸۶</td>
<td>۸۸</td>
<td>۱۴</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۵</td>
<td>۸۸۷</td>
<td>۸۸</td>
<td>۱۵</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۶</td>
<td>۸۸۸</td>
<td>۸۸</td>
<td>۱۶</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۷</td>
<td>۸۸۹</td>
<td>۸۸</td>
<td>۱۷</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۸</td>
<td>۸۸۱</td>
<td>۸۸</td>
<td>۱۸</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱۹</td>
<td>۸۸۲</td>
<td>۸۸</td>
<td>۱۹</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۰</td>
<td>۸۸۳</td>
<td>۸۸</td>
<td>۲۰</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۱</td>
<td>۸۸۴</td>
<td>۸۸</td>
<td>۲۱</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۲</td>
<td>۸۸۵</td>
<td>۸۸</td>
<td>۲۲</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۳</td>
<td>۸۸۶</td>
<td>۸۸</td>
<td>۲۳</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۴</td>
<td>۸۸۷</td>
<td>۸۸</td>
<td>۲۴</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۵</td>
<td>۸۸۸</td>
<td>۸۸</td>
<td>۲۵</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۶</td>
<td>۸۸۹</td>
<td>۸۸</td>
<td>۲۶</td>
<td>۸۸</td>
</tr>
<tr>
<td>۲۷</td>
<td>۸۸۱</td>
<td>۸۸</td>
<td>۲۷</td>
<td>۸۸</td>
</tr>
</tbody>
</table>

مجموع تمامی اعداد محل نمونه‌ها: ۱۳۲۶
مجموع ۱/۳ بیانی ترین اعداد نمونه‌ها: ۲۶۳
مجموع ۱/۳ بیانی نمونه‌ها: ۱۰۷۳۱۴
مجموع تمامی اعداد محل نمونه‌ها: ۱۵۸۵۷
<table>
<thead>
<tr>
<th>گروه</th>
<th>دمای (°C)</th>
<th>رطوبت (%)</th>
<th>کمیت گاز (搓)</th>
<th>دما (°C)</th>
<th>رطوبت (%)</th>
<th>کمیت گاز (搓)</th>
<th>دما (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه ۱</td>
<td>۲۲</td>
<td>۹۱</td>
<td>۶/۱۹</td>
<td>۵/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
</tr>
<tr>
<td>گروه ۲</td>
<td>۲۲</td>
<td>۹۱</td>
<td>۶/۱۹</td>
<td>۵/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
</tr>
<tr>
<td>گروه ۳</td>
<td>۲۲</td>
<td>۹۱</td>
<td>۶/۱۹</td>
<td>۵/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
</tr>
<tr>
<td>گروه ۴</td>
<td>۲۲</td>
<td>۹۱</td>
<td>۶/۱۹</td>
<td>۵/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
<td>۶/۸۸</td>
</tr>
</tbody>
</table>

تعداد: ۳۱/۸/۱۹

میانگین: ۶/۱۹

انحراف معیار (standard deviation): ۰/۱ول
ارزیابی عملکرد سیستم آب‌پزشکی بارانی عقب‌های در کرج

اندازه‌گیری‌ها مقایسه AELQ و PELQ برای بود و این نشان می‌دهد که حداکثر عقاب داده‌شده به زمین و ذخیره‌شده در منطقه ریشه کمتر از کم‌مواد و طولی‌گیری خاک بوده است. بنابراین در بعضی از موارد آب آپاری‌های کمتر از نیاز داده شده است. یا به عنوان مقایسه AELQ و PELQ از نظر میزان یا حجم و شدت، گام زیاد بوده این باره که کاهش داشته است. بنابراین تغییرات مقایسه برای سیستم آپاری عقب‌های در طول فصل آپاری در شکل ۲ نشان داده شده است.

۱- روابط سطحی: چون سیستم در سطح‌های مقاومت از دستورالعمل دی و فشار طراحی یا تبریز تخریب یا تخریب یا بازیابی شده در نظر گرفته شد. در همان طولی که در جدول ۴ ملاحظه می‌کرد، تاثیر افتراق و سیرالاب بر پایه و نیروی زمین بر دو PELQ خیلی بیشتر از DU به نظر می‌رسد. اعداد جدول مذکور نشان می‌دهد که PELQ سرعت خشکی دستگاه به نظر هم PELQ تأثیر دارد. بنابراین سرعت دستگاه کاهش سود مقدار نیازهای پیدا می‌کند. چون اختلاف بین میانگین عقاید تاکیدی با میانگین معقیر بین دو PELQ و DU افزایش دارد، مقایسه ماکلرهای ملاحظه می‌کند که اختلاف کمی بین این دو وجود دارد. مقایسه اختلاف نشان دهنده مقدار کلی آب ناشی از دو‌گانه‌ Villese است و در مقایسه با پالاگ اهمیت بسیار چشم‌پوشی می‌باشد. تغییرات مقایسه برای دو؛ این سیستم آپاری عقب‌های در طول و با اندازه‌گیری AELQ (AELQ) در طول فصل آپاری، حدود ۲۴ درصد به دست آمده که مقدار قابل قبولی PELQ در سیستم آپاری عقب‌های در کرج PELQ نشان دهند این است که ماندی سیستم عقب عمل است. اختلاف‌ها این است که سیستم عملکرد خوبی داشته است. در پیش ۱- اختلاف افتراق بین ابتدا و انتهای بالا اگر از ۲۰٪ نشان آپاری‌های ابتدا باشد در مقایسه DU در چهتر کم شدند آن تأثیر زیادی می‌گذارد (۸).
شکل 1 - توزیع پراکنش آب جمع‌آوری شده در توطه‌های جمع‌کننده در سرعت چرخشی 80 درصد

DU%

شکل 2 - روند تغییرات توزیع یکنوانتی پخش در طول فصل آبیاری (DU)
شکل 3 - روند تغییرات پایه پتاسیم در طول فصل آبیاری (PELOQ)

شکل 4 - روند تنیبیات بازده واقعی در طول فصل آبیاری (AELQ)
شود، همچنین جهت جلوگیری از ایجاد روتان سطحی بهتر است که در جهت عدم بر شیب زمین شیار ایجاد شده و سعی گردد که عملیات زراعی در این جهت انجام گیرد. این عمل طرفین دیگر سطحی خاک را بیشتر کرد و باعث می‌شود که آب فرصت بهتری برای پذیرش در خاک داشته باشد.

همچنین افزایش نفوذ و کاهش قطر فواره ها در نمای سیستم، به منظور یکسان نگاه داشتن شدت پخش آب الزامی است. زیرا در این حالت میانگین قطر قطعات آب کمتر شده و در نتیجه به دلیل نخوردن قطرات کوچکتر آب با سطح خاک موجب اندمازدن خاک به دلایل عدم کاهش نحوه پذیرفته است، نمی‌گردد.

نتیجه‌گیری

1- برای کسب میزان معیار یک‌پشتی از آب روزانه باید تعیین چهار آبیاری باشد.

سپاسگزاری

کلیه هزینه‌ها و امکانات اجرایی این طرح توسط مؤسسه تحقیقات فنی و مهندسی کشاورزی نماینده است که به این وسیله صمیمانه تشکر و قدردانی می‌شود.

منابع مورد استفاده