ارزیابی عملکرد سیستم آبیاری بارانی عقیع‌های در کرچ

چکیده

طراحی و اجرای یک سیستم آبیاری مکان است به دوستی و با همکاری نامناسب انجام پذیرد. یکی از اهداف مطالعه و ارزیابی سیستم آبیاری برای مدیریت روسن مزارع که آنها به‌وسیله آب‌رسانی از سیستم آبیاری متوقف می‌شود، سیستم سیستم آبیاری بارانی از نوع عقیع‌های بودن معمولاً در سیستم‌های آبیاری موثر می‌باشد. سیستم سیستم آبیاری بارانی از نوع عقیع‌های بودن معمولاً در سیستم‌های آبیاری موثر می‌باشد. سیستم سیستم آبیاری بارانی از نوع عقیع‌های بودن معمولاً در سیستم‌های آبیاری موثر می‌باشد. سیستم سیستم آبیاری بارانی از نوع عقیع‌های بودن معمولاً در سیستم‌های آبیاری موثر می‌باشد. سیستم سیستم آبیاری بارانی از نوع عقیع‌های بودن معمولاً در سیستم‌های آبیاری موثر می‌باشد.

مقدمه

به طور کلی تحلیل هر سیستم آبیاری را به‌پایه‌ای اداره‌گیری در شرایط واقعی مزرعه و در حین کار طبیعی سیستم استوار باشد. ارزیابی از آن جهت مهم است که برای مدیریت روشن مزارع که آنها به‌وسیله آب‌رسانی از سیستم سیستم آبیاری بارانی استفاده می‌شود. در سال 1982 روشنی را به‌پایه‌ای اداره‌گیری در شرایط واقعی مزرعه و در حین کار طبیعی سیستم استوار باشد. ارزیابی از آن جهت مهم است که برای مدیریت روشن مزارع که آنها به‌وسیله آب‌رسانی از سیستم سیستم آبیاری بارانی استفاده می‌شود.

واژه‌های کلیدی - عملکرد، ارزیابی آبیاری، عقیع‌های، سنتوریپوت

در سال 1982 دیکل و همکاران (2) در سیستم آبیاری سنتوریپوت و شیاری را مقایسه و ارزیابی نموده و در مورد وکاله‌های سطحی تولید شده در سیستم تحقیق نموده‌اند. سازمان خوارجی‌های فیزیولوژی فاکسی‌زیاهان برای تحقیقات انجام گرفته روشی را به‌پایه‌ای اداره‌گیری در شرایط واقعی مزرعه و در حین کار طبیعی سیستم استوار باشد. ارزیابی از آن جهت مهم است که برای مدیریت روشن مزارع که آنها به‌وسیله آب‌رسانی از سیستم سیستم آبیاری بارانی استفاده می‌شود. در سال 1982 روشنی را به‌پایه‌ای اداره‌گیری در شرایط واقعی مزرعه و در حین کار طبیعی سیستم استوار باشد. ارزیابی از آن جهت مهم است که برای مدیریت روشن مزارع که آنها به‌وسیله آب‌رسانی از سیستم سیستم آبیاری بارانی استفاده می‌شود. در سال 1982 روشنی را به‌پایه‌ای اداره‌گیری در شرایط واقعی مزرعه و در حین کار طبیعی سیستم استوار باشد. ارزیابی از آن جهت مهم است که برای مدیریت روشن مزارع که آنها به‌وسیله آب‌رسانی از سیستم سیستم آبیاری بارانی استفاده می‌شود. در سال 1982 روشنی را به‌پایه‌ای اداره‌گیری در شرایط واقعی مزرعه و در حین کار طبیعی سیستم استوار باشد.
جهت ادامه‌گیری میزان ذخیره سطحی خاک، هنگامی که میزان
باشند آب از مصرف طبیعی نیروی ذبیحی خاک بوده
ابدا نموده و با توجه به تغییرات شبیه‌اشدای برابر این منظور
ارائه گردند. همچنین به پایین گرفتن (۶) گزارش نمودند که برای سیستم آبیاری
پیش‌تر در مقابل سطحی مورد که S (طول بالا) بزرگی از ۲۰۰ متر است
سبزیجات را به توجه خاص فرض نمود. از ارزیابی
سیستم‌های آبیاری چهار هدف زیر حاصل می‌گردد (۵):
۱- تعیین بازده واحده سیستم در زمان بهره‌برداری.
۲- پاسخ به این پرسش که سیستم مزبور با چه پایداری
می‌تواند مورد بهره‌برداری قرار گیرد.
۳- کسب اطلاعاتی که مهندسین و متخصصین این امور را در
طراحی سیستم‌های دیگر کن.
۴- گزارش آموری داده‌هایی که مقایسه روش‌ها، سیستم‌ها و شیوه‌های
مختلف مربوطی را برآور و ایجاد جمله‌ی ممکن می‌سازد.
تشخیص این که بهره‌برداری از یک سیستم آبیاری به چه
خوبی انجام می‌گیرد (باشد که عوامل واحده قابل
استفاده واقع گردد (باشد که عوامل واحده قابل
تسهیل و سیستم‌های دیگر بهتر باشد.
به هر حال، ممکن است از مشاهده‌ای عضی در محصولات
عمیکرده‌ی سیستم‌ها، تقریب‌های نسبتاً معقولی به دست آید و
راه‌حل‌هایی را برای تغییر به بهتر از راه‌حل‌هایی آورد.
AELQ، DU، CU، PELQ، SMD که عوامل این باید عوامل
سیستم‌های آبیاری بازی کنند از این انجام
بتون سیستم را را از نظر مدیریتی و طراحی مورد ارزیابی قرار داد.

مفاهیم مورد استفاده در ارزیابی سیستم‌های آبیاری
پرای تعیین بازدهی بالای سیستم و بازده راهی که تحت
مدیریت موجود قابل حصول می‌باشد، از این ارزیابی عوامل
از این سیستم‌های آبیاری و راه‌ارزی آنها مورد تیتر است. برای
انجام این ارزیابی به‌صورتی است که یادبودی صورت (۱) می‌گردد
MAD، SMD و آگاهی قرار دهنده است.

۱- Low - Quarter (LQ) ۲- USDA, SCS ۳- Soil Moisture Deficit (SMD)
۴- Management Allowed Deficit (MAD)
به عبارت دیگر میانگین یک چهارم کمترین عمل آپ ذخيره شده در مقطعه ریشه همان میانگین یک چهارم کمترین مقدار تخمین یا انتخاب گردیده است. موفقیت که به آموزش نیاز دارد بتواند عملکرد عمل آپ NTFQ مقدار SMD و عمل آپ آشپزی مورد نیاز می‌باشد. جایی که حداقل کنترل از واحد آب منطوق باشد به جای حداکثر تولید به ایجاد واحد سطح می‌شود. این کمترین عمل آپ NTFQ مقدار SMD کمتر از باشد. گرچه انتخاب یکنواختی نیز و با از AELQ هنگام تهیه است اما به این معنی نپذیرفت که‌هم‌حدها عمل آپ به طور کامل آب‌ای این می‌شود، بلکه ناشی این است که مقدار آب دریای آن منطقه پیشرفتی در صفر است. پایین بودن انتخاب ELOQ آشکارا هبر مدیری و طور کاربرد مسئول دارد (3). زمانی که به‌این ارزاس و یا تمایل آن معلم تحت پوشش آثارنی کمتر از نیاز قرارگیرد عوامل دیگر نیز پایدار مورد توجه قرار گیرد.

5- بازده پتاپسیل آپارنیک
این شاخص اظهار آن است که سیستم موجود در شرایط برنامه‌ریزی مناسب چگونه عمل می‌کند. بازده پتاپسیل در واقع حالت خاصی از بازده آپارنیک است و توسط عملکرد NTFQ یافته می‌شود. این عملکرد برای ELOQ پیشرفتی و یا کارایی ضعیف مسئول PELOQ می‌شود و در صورتی که طراحی صحیح انجام شود، آما مقدار PELOQ پایین باشد. نیاز این باشد تا افزایش آپارنیک را تغییر داد (1). ELOQ معمولاً مقدار اصلی از AELQ و PELOQ می‌باشد اما عملکرد سیستم از جمله این نشان دهنده ریشه می‌باشد. در صورتی که میانگین کمترین عملکرد گرفته آپارنیک در معادله به کار برده شود بازده پتاپسیل از فرمول زیر محاسبه می‌شود.

6- بازده واکنشی آپارنیک
این شاخص اظهار که ظنی می‌دهد یک چگونه یک سیستم مورد بهره برداری قرار می‌گیرد و مطابق تعیین برای است با (3):

ونوی قیمت و نخستین در منطقه ریشه = AU

AELQ = \frac{SMD}{100}

میانگین عملکرد ناخالص آپارنیک

1- Distribution Uniformity (DU)
2- Application Efficiency of Low Quarter (AELQ)
3- Potential Application Efficiency of Low Quarter (PELOQ)
جدول 1 - مشخصات خاک مزرعه ۵۰۰ هکتاری مؤسسه تحقیقات اصلاح و تهیه پذیر مشکین آب‌کریم

<table>
<thead>
<tr>
<th>وزن خاک</th>
<th>رطوبت در نقطه بهاری</th>
<th>تخلخل</th>
<th>پژمردی‌گی</th>
<th>زراعی</th>
<th>FC</th>
<th>PWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm)</td>
<td>(gr/cm³)</td>
<td>(٪)</td>
<td>(درصد وزنی)</td>
<td>(درصد وزنی)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۵ - ۵۰</td>
<td>۱/۳۶</td>
<td>۲۹</td>
<td>۱۲/۳</td>
<td>۱۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۰ - ۷۵</td>
<td>۱/۴۵</td>
<td>۴۷</td>
<td>۲۱/۱</td>
<td>۱۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷۵ - ۵</td>
<td>۱/۹۹</td>
<td>۶۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دماغ سیستم آبیاری بارانی عقاب‌های دارای ۶ برج و ۷ دهانه بوده که طول لوله جاتی آن ۳۰/۸ متر، فاصله از محوطه تا برج آخر ۱۲ متر، طول بال لوله ۱۶ متر، سطح ابیاری بهداشت ۲/۹ هکتار و حداکثر سرعت برج ۱/۳ متر در دقیقه بوده درجه زیر فرد تناسب ۱/۳ کPa

شیب زمین زیر پوشش این سیستم ۹/۸ درصد است. بافت خاک به سطح مطلق سیستم SCS و در عمق ۱/۵ تا ۰/۵ سانتی‌متر دارای شن و سنگ‌ریز زیاد و عملای غیرقابل زراعت بوده و لیک این نیاز به عضو یک زهکار طبیعی عمل می‌نماید. خصوصیات نیزیکی خاک مزرعه تحت پوشش آبیاری بارانی در جدول ۱ نشان داده شده است.

فوتدسیری خاک به روش استاندارد نمودن زمین‌گیری کرده و در دو گروه نفوتدسیری ۱ و ۱/۵ قرار می‌گیرد که معادلات آن‌ها به شرح زیر است:

\[D = \frac{1}{2g} \left[T_{v}^{1/2} + V_1^{1/2} \right] \]

\[D = \frac{1}{2g} \left[T_{v}^{1/2} + V_2^{1/2} \right] \]

در این معادلات D متغیر زمان نفوذ (دقیقه) و T متغیر نفوذ به دقت (سی.) است.

مواد و روش‌ها

سیستم تحت ارزیابی در مزرعه ۵۰۰ هکتاری مؤسسه تحقیقات اصلاح و تهیه نهال و پذیر در شمال شرقی مشکین‌آب‌کریم کرچ واقع است که زمینه به سمت غرب ۲۹/۷ هکتار را اشغال می‌کند. به‌مثابه از قبیل ۳۰ هکتار از این مساحت مورد ارزیابی شده و سایر اثرات نمونه‌برداری آب در زمان فشار (۳۸۱/۳ کPa) با لوله پیوند بارانی اندیشته گیر نفر در سر نازلها، دو عدد سیلندر مدرج به دقت به فیلم‌های ۱۵۰ و ۲۵۰ میلی‌لیتر (برای اندیشته‌گیر حجم آب جمع آوری شده در قطعه‌ها) که عدد متر نواری، یک عدد منه‌برداری خاک و سایر نوسان‌های خاک و سایر نوسان‌های برای تعیین زمین (این‌ها به بازار اندیشته‌گیر سرعت و جهت یافته) به درخواست جانبی برای ثبت آمار ماهیان با استفاده از روش پیش‌نهادی FAO شد و میسی پروتویی یافته (برای علامت‌گذاری محل فروش‌ها) مورد استفاده قرار گرفت.

1- Span
ضریب گیاهی در دریا ماهیه دوور کشت از روش برداشت شد. این ارقام میانه و برای آبیاری قرار گرفت.
برای تعبین عوامل ازایجی، چهار رده شمعی از محل محور تا انتهای بازوی سیستم به فاصله 6 متری میکروورکی و
کنار هر یک از میخهای چوپی یک عدد قوطی نمونه‌برداری آب
نصب شد. اختلاف ارتفاع مزرعه بین ابتدا و انتهای ریغه‌های
شمعی به ترتیب 15/16 و 1/13/12 متر اندازه گیری
گردید.
اندازه‌های (عمق و حجم) آب آگ آبی دوی شده در قوطی‌های
مستقر در تمامی قفصل در ریگه‌های چندی، در جداول 1 و 2
برای یک دوره شبانه روز داده شده است. با قراردادن دو قوطی نمونه
برابری آب در یک محل مشخص، مقدار تبخیر در طول
آزمایش اندازه‌گیری شد که برای پایدار ثابت تبیین مورد
استفاده قرار گرفت. ضمناً طریق خاک در هر آزمایش، قبل و
بعد از شروع آبیاری تعبین گردید.

تیمین عوامل ازایی با استفاده از داده‌های مزرعه‌ای
هر چه نمونه‌ها از نقطه محور قافله بیشتری نامبر داشت مبل
نمونه برداری شان دهد به مراجع کاری از اراضی می‌باشد.
نباوران اندوزه‌گیری آب جمع آوری شده در قوطی‌های را با یاد وزن
در زیر آبی‌سازی شده و 40 متری فاصله در میکروورکی
که مقادیر این نمونه‌ها در بیشتر اندازه‌گیری‌ها کمتر
از میانگین بوده و این نشان می‌دهد که اندوزه آبی‌سازی
در نقاط فوق قوطی‌های اندازه‌گیری شده، نباید بهرن‌است که
آبی‌سازی‌ها با روزهای بخش شماره یک بزرگتر چیزگونی شد.
نتایج یکی از آزمایش‌های ازایجی سیستم آبیاری بارانی
عطره‌ای از جدول 6 آمده و نتایج کل از جداول که در طول
فصل آبیاری هشته به شرح زیر است:
- میانگین یک‌نمونه بخش DU و CU به میزان 1 در
طول قفصل رعایی، بر ترتیب تکراری برای در 88 درصد بوده
و نمایانگر این است که سیستم مسترپیوس در شرایط نسبتاً
متوسط برخورد است. البته برای یکی از ریالی بیشتر
توصیه می‌شود که اندازه‌های DU و CU با ترتیب بزرگ‌تر
80 درصد (32) از طرفي مادیر DU به میزان 1 در
دیده به احتمال زیادی به کم بردن اختلاف ارتفاع (17/16)
در چهار DU دیگر ریغه‌ها بوده، مادیر متر در ریغه دیگر
همین‌طور که برای DU و ژورا در ریغه دیگر حداکثر
اختلاف ارتفاع بین ابتدا و انتهای بالا دسته 37/13 متر بوده که
حدود 22 درصد شاخص آخرین آبی‌سازی 127/5/175 kPa

5
جدول ۲ - حجم آب جمع آوری شده در توطئه‌های جمع کننده و نمونه‌های وزنی آنها

| شماره | قوطی | نمونه‌های وزنی = نمونه‌های شماره محل
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>قطعه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱</td>
<td>۲</td>
<td>۸۲</td>
</tr>
<tr>
<td>۱</td>
<td>۳</td>
<td>۱۲۲</td>
</tr>
<tr>
<td>۱</td>
<td>۴</td>
<td>۵۷/۵</td>
</tr>
<tr>
<td>۲</td>
<td>۵</td>
<td>۱۱۶</td>
</tr>
<tr>
<td>۲</td>
<td>۶</td>
<td>۴۷</td>
</tr>
<tr>
<td>۲</td>
<td>۷</td>
<td>۸۷</td>
</tr>
<tr>
<td>۲</td>
<td>۸</td>
<td>۳۸۸</td>
</tr>
<tr>
<td>۲</td>
<td>۹</td>
<td>۸۶/۵</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰</td>
<td>۸۷</td>
</tr>
<tr>
<td>۳</td>
<td>۱۱</td>
<td>۹۰</td>
</tr>
<tr>
<td>۳</td>
<td>۱۲</td>
<td>۸۰</td>
</tr>
<tr>
<td>۳</td>
<td>۱۳</td>
<td>۹۶</td>
</tr>
<tr>
<td>۴</td>
<td>۱۴</td>
<td>۹۳</td>
</tr>
<tr>
<td>۴</td>
<td>۱۵</td>
<td>۱۰۸</td>
</tr>
<tr>
<td>۴</td>
<td>۱۶</td>
<td>۳۱۹</td>
</tr>
<tr>
<td>۴</td>
<td>۱۷</td>
<td>۱۱۸</td>
</tr>
<tr>
<td>۴</td>
<td>۱۸</td>
<td>۱۴۲</td>
</tr>
<tr>
<td>۴</td>
<td>۱۹</td>
<td>۷۵/۵</td>
</tr>
<tr>
<td>۵</td>
<td>۲۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۵</td>
<td>۲۱</td>
<td>۱۶۱</td>
</tr>
<tr>
<td>۵</td>
<td>۲۲</td>
<td>۸۷</td>
</tr>
<tr>
<td>۵</td>
<td>۲۳</td>
<td>۱۹۱۴</td>
</tr>
<tr>
<td>۵</td>
<td>۲۴</td>
<td>۷۷</td>
</tr>
<tr>
<td>۶</td>
<td>۲۵</td>
<td>۲۰۷۵</td>
</tr>
<tr>
<td>۶</td>
<td>۲۶</td>
<td>۱۷۷۱</td>
</tr>
<tr>
<td>۶</td>
<td>۲۷</td>
<td>۱۸۸۴</td>
</tr>
<tr>
<td>۶</td>
<td>۲۸</td>
<td>۸۳</td>
</tr>
<tr>
<td>۷</td>
<td>۲۹</td>
<td>۲۰۷۵</td>
</tr>
<tr>
<td>۷</td>
<td>۳۰</td>
<td>۱۰۰۱</td>
</tr>
<tr>
<td>۷</td>
<td>۳۱</td>
<td>۱۰۰۱</td>
</tr>
</tbody>
</table>

مجموع تمامی اعداد محل نمونه‌ها: ۱۲۲۵ برای پایین‌ترین اعداد نمونه‌ها: ۹۱۲۴۱
مجموع پایین‌ترین اعداد نمونه‌ها: ۲۵۷۶۵
مجموع پایین‌ترین اعداد نمونه‌ها: ۷۸۵۶۵
جدول ۳ - حجم آب جمع آوری شده در چهار نقطه ی جمع کننده و نمونه‌های وزنی آنها

درجه تنظیم سرعت دستگاه (٪): ۸۰

<table>
<thead>
<tr>
<th>شماره قطعه</th>
<th>قطعه نمونه‌های وزنی × شماره محل</th>
<th>قطعه نمونه‌های وزنی × شماره محل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۸۸</td>
<td>۸۸</td>
</tr>
<tr>
<td>۱</td>
<td>۱۰۳</td>
<td>۲۰۶</td>
</tr>
<tr>
<td>۱</td>
<td>۱۱۶</td>
<td>۲۳۸</td>
</tr>
<tr>
<td>۱</td>
<td>۳۵۲</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۷۳</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>۲</td>
<td>۳۴</td>
<td>۲۰۴</td>
</tr>
<tr>
<td>۲</td>
<td>۷۸</td>
<td>۳۶۶</td>
</tr>
<tr>
<td>۲</td>
<td>۰۴</td>
<td>۳۲۰</td>
</tr>
<tr>
<td>۲</td>
<td>۷۳/۵</td>
<td>۶۶۱/۵</td>
</tr>
<tr>
<td>۲</td>
<td>۸۲</td>
<td>۲۱۴۸</td>
</tr>
<tr>
<td>۲</td>
<td>۷۲</td>
<td>۸۷۶</td>
</tr>
<tr>
<td>۲</td>
<td>۹۰</td>
<td>۱۴۴۰</td>
</tr>
<tr>
<td>۲</td>
<td>۸۶</td>
<td>۲۳۰۴</td>
</tr>
<tr>
<td>۲</td>
<td>۱۱۴۸</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۲۴۵</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۴۱۱</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۳۲۲</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۳۷۳</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۵۰۰</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲۵۹۶</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۵۹</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۲۶۰</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۶۶۰</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۷۲۸</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲۲۰۶</td>
<td></td>
</tr>
</tbody>
</table>

مجموع تمامی اعداد محل نمونه‌ها: ۱۲۷۵۰
مجموع ۳ پایین ترین اعداد نمونه‌ها: ۴۴۶
مجموع ۳ پایین ترین اعداد نمونه‌ها: ۲۵۷۵۰

۷۲۳۲۳/۵
جدول 4 - حجم آب جمع آوری شده در قوطی‌های جمع کننده و نمونه‌های وزنی آنها

<table>
<thead>
<tr>
<th>شماره</th>
<th>قوطی</th>
<th>نمونه‌های وزنی</th>
<th>نمونه‌های محل</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>79</td>
<td>79</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>143</td>
<td>286</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>98</td>
<td>294</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>102</td>
<td>408</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>98</td>
<td>490</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>99</td>
<td>594</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>89</td>
<td>623</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>88/5</td>
<td>708</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>74</td>
<td>666</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>72</td>
<td>720</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>72</td>
<td>792</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>51</td>
<td>812</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>65</td>
<td>830</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>68/5</td>
<td>1099</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>70</td>
<td>1115</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>74/5</td>
<td>1192</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>79</td>
<td>1323</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>74</td>
<td>1332</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>65</td>
<td>1355</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>68</td>
<td>1360</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>70</td>
<td>1470</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>63</td>
<td>1368</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>82</td>
<td>1886</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>70</td>
<td>1680</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>68</td>
<td>1700</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>68</td>
<td>1768</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>65</td>
<td>1755</td>
<td>13</td>
</tr>
</tbody>
</table>

مجموع تمامی اعداد محل نمونه‌ها: 1225
مجموع 1 پایین ترین اعداد نمونه‌ها: 34
مجموع تمامی اعداد محل نمونه‌ها: 86830
مجموع 1 پایین ترین اعداد نمونه‌ها: 22916
جدول 5 - حجم آب جمع آوری شده در قطعه‌های جمع‌کننده و نمونه‌های وزنی آنها

مجموع تمامی اعداد محل نمونه‌ها:
مجموع ۱/۳ باین ترتیب اعداد نمونه‌ها:
مجموع ۱/۳ باین ترتیب اعداد نمونه‌ها:

<table>
<thead>
<tr>
<th>شماره قطعه</th>
<th>شماره قطعه</th>
<th>قطعه 1</th>
<th>قطعه 2</th>
<th>قطعه 3</th>
<th>قطعه 4</th>
<th>قطعه 5</th>
<th>قطعه 6</th>
<th>قطعه 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه‌های وزنی</td>
<td>نمونه‌های محیط</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>شماره</td>
<td>شماره</td>
<td>71</td>
<td>78</td>
<td>110</td>
<td>330</td>
<td>85</td>
<td>55</td>
<td>62</td>
</tr>
<tr>
<td>قطعه</td>
<td>قطعه</td>
<td>71</td>
<td>156</td>
<td>88</td>
<td>88</td>
<td>330</td>
<td>55</td>
<td>62</td>
</tr>
<tr>
<td>نمونه‌های وزنی</td>
<td>نمونه‌های محیط</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>شماره</td>
<td>شماره</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>83</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>قطعه</td>
<td>قطعه</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>83</td>
<td>83</td>
<td>83</td>
</tr>
</tbody>
</table>

تاریخ: ۱۳۹۲/۱۴/۷
<table>
<thead>
<tr>
<th>جمعیت</th>
<th>نر درصد</th>
<th>زن درصد</th>
<th>توده</th>
<th>حجم</th>
<th>وزن</th>
<th>ضریب</th>
<th>معیار داده‌ها</th>
<th>تعداد</th>
<th>میانگین</th>
<th>میانه</th>
<th>ماترکس‌های</th>
<th>سه‌گوشه</th>
<th>تغییرات</th>
<th>(میزان)</th>
<th>(ناپایداری)</th>
<th>(ناپایداری)</th>
<th>(نامه)</th>
<th>(واحده)</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمعیت</td>
<td>4/6</td>
<td>6/6</td>
<td>4/6</td>
<td>8/6</td>
<td>6/6</td>
<td>1/6</td>
<td>6/6</td>
<td>11</td>
<td>6/6</td>
</tr>
</tbody>
</table>
ادنامگیری مقاّدیر AELQ و PELOQ برای بود و این نشان می‌دهد که محققین عمده عمق داده‌هایش به زمین و ذخیره شده در منطقه‌های کمتر از کم‌درصدی رطوبت خاک بوده است. بنابراین در بعضی از موارد آپ آپرای کاهش نسبتی بوده است. روندهای تغییری در طول فصل نسبتاً ثابت بوده است. تغییرات AELQ و PELOQ و شدت گرمای زیاد بوده این بزرگ بوده کاهش داشته است. بر این تغییرات مقداری AELQ و PELOQ در فصل آپرایی شکل 4 نشان داده است.

2-روابط سطحی: بستگی سیستم در سطح روابط یافت است که در منطقه‌های کمتر از حدود 80/1 % kPa و 18 % نیم برای کاهش آپرایی، این سیستم در فصول طولانی به طوری که در طول طولانیتر از مدت واقعی شده است. این بستگی AELQ و PELOQ در فصل آپرایی شکل 2 نشان داده است. در طول فصل آپرایی، مقدار PELOQ سطح کاهش دار همکاری با میانگین عمق بنا بر PELOQ و AELQ در طول فصل روابطی در طول این اتفاقات این بستگی به طوری که در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی دارد. بنابراین AELQ و PELOQ در طول این جهت کاهش نسبتی سیستم و افزایش عمق کاهشی ...
شماره محل قوطي جمع کننده

شکل 1- توزیع میانگین آب جمعآوری شده در توده‌های جمع کننده در سرعت چرخشی 80 درصد

DU%

شکل 2- روند تغییرات توزیع یکنواخت پخش در طول فصل آبیاری (DU)
شکل ۳ - روند تغییرات بازده پتانسیل در طول فصل آیلاری (PELOQ)

شکل ۴ - روند تنیبیات بازده واقعی در طول فصل آیلاری (AELQ)
شدو: همچنین جهت جلوگیری از ایجاد رواناب سطحی بهتر است که در جهت عمود بر شیب زمین شیار ایجاد شده و سعی گردد که کلیه عملیات زراعی در این جهت انجام گیرد. این عمل طرفین دیگر سطحی خاک را پیشرفت کرده و باعث می‌شود که آب فرست نشته‌ای برای نفوذ در خاک داشته باشد.

همچنین افزایش نشر و کاهش قطر فواره ها در نبیم سیستم، به منظور پاسخگویی به نگاه دانشمند ایجاد آب الزامی است، زیرا در این حالت می‌توان به طبقات آب کمتر شده و در نتیجه به دلیل برخورداری قطعات کوچکتر آب به سطح خاک موجب انسداد منافذ خاک، که از دلایل عمده کاهش نفوذ‌پذیری آب است، بی‌رغمگردد.

نتیجه‌گیری

1- برای دستیابی به عملیت پیکن مسیری، اندازه‌گیری بعضی از آپارتمان‌های تغییر داده شود.

2- میانگین پیکی‌خانه‌ای پیش‌گزاری (DU) در طول فصل زراعی تقریباً ۴۸ درصد بوده که این میزان برای سیستم بارانی

پاسگرایی کلیه هرندی ها و امکانات اجرای‌این طرح توسط مؤسسه تحقیقات فنی و مهندسی کشاورزی تا زمان شده است که بهینه وسیله صمیمانه تشکیل شده و قدرتافزایی می‌شود.