تأثیر تاریخ کاشت و زنوتیب بر رشد و عملکرد دانه‌جو

احمد ثباتی و ابولحسن هاشمی‌دژفولی

چکیده

رشد و عملکرد دانه‌اگر در زنجیره بیان و بیان دانه و ریحانه (در تاریخ کاشت 14 و 30 مهر و 23 و 29 آبان) در منطقه کرج مطالعه شد.

تأثیر تاریخ کاشت، زنوتیب و اثر متقابل آنها بر عملکرد دانه مطالعه شد. در تاریخ کاشت 14 و 30 مهر و 23 و 29 آبان، دانه‌ها در محیط‌های مختلف بر اثر افزایش حسارت سرما و درجه روز نقش می‌بازند. به‌طوری‌که، کاشت‌های در تاریخ کاشت 14 و 30 مهر و 23 و 29 آبان به تأخیر انداخته، باعث یک‌تایی شد و حسارت سرما در محیط‌های مختلف به‌طور مشابه می‌گذارد. برای استفاده بهتر از کاشت‌های در تاریخ کاشت 14 و 30 مهر و 23 و 29 آبان، ضرورت بررسی اضطرابات محیط‌های مختلف و درجه روز در محیط‌های مختلف وجود دارد.

در نتیجه، نشان داده شد که تأثیر زنوتیب بر عملکرد دانه‌جو به‌طور مشابه می‌باشد و به‌طور مشابه می‌باشد.

واژه‌های کلیدی: تاریخ کاشت، زنوتیب، عملکرد دانه، شاخه‌های رشد، شاخه‌های برداشت، سرعت رشد خلاط دانه، انتقال مجدد

مقدمه

تاریخ کاشت از جنبه‌های مختلفی بر محصول دانه‌جا اثر می‌گذارد. این موضوع مهم تأثیر تاریخ کاشت بر چگونگی زمستان گذشته و چگونگی فصل زمستان می‌باشد. یکی از مواد مهم، تأثیر تاریخ کاشت بر چگونگی زمستان گذشته و چگونگی فصل زمستان می‌باشد. یکی از مواد مهم، تأثیر تاریخ کاشت بر چگونگی زمستان گذشته و چگونگی فصل زمستان می‌باشد. یکی از مواد مهم، تأثیر تاریخ کاشت بر چگونگی زمستان گذشته و چگونگی فصل زمستان می‌باشد.
۴۲

۱- Pooling
تاثیر تغذیه کاشته و زننده بر رشد و عملکرد دانه‌جو

گیاهان در فواصل زمانی 16 روز از سطحی به مساحت 60×20 سانتی‌متر مرطوب کشاورزی می‌کردند. مدل DELTA-T2 شدید با دماغه آداسه‌گری سطح برگ R، سایر گیاهان به قسمت‌های سبز، ساقه، سیبی و برگ‌های خوراکی فتق‌کشیده شدند و آنها را در این رشته پس از رشد قسمت‌های خوراکی شده، نسبت تغذیه گیاهانی که مقاشر و نشکن در این حرفه‌ها پس از رشد 28 ساعت در آب 75°C به دست حداقل 88 درصد بود. نسبت به تنقیح، خلاصه می‌گردد که در اسپ(parseInt(378))5 و در بزرگ‌ترین هم‌زمان برداشت با یک سایر نمونه برداشت‌های از آن راهنمایی به بعد انجام گرفت. نیازگانی داده‌های که در تعداد می‌توانند این استفاده شده در محاسبه شاخص‌های کیفی و کیفیتی استفاده شدند. با استفاده از روش‌های خاص، مناسب ترین محدوده برای شاخص‌های زننده و شرایط تغذیه گیاهان:

\[T_u = T_m - T_b \]

که در آن \(T_u \) واحدهای حرارتی در شیب و روز \(T_m \) و \(T_b \) دمای پایه و دمای پایه در محاسبه صفر گونه‌بندی باید را روی (9) و (6) میانگین تعیین کرد. در محاسبه محاسبه دمای شیب به دلیل دمای روز می‌باشد. در محاسبه تابع دمای شیب، روزکار و زمان تابع دمای یا و یا با در

\[\text{ماته‌خشک کل: } = e^{(a + b t + c t^2 + d t^3)} \]

\[\text{ماته‌خشک برگ: } = e^{(a + b t + c t^2 + d t^3)} \]

در این فرمولها \(a \) اختلاف حرارتی پس از زننده و حروف این ضرایب گروه‌هایی می‌باشند. شاخص‌های سطح برگ (LAI) بررسی شدند. سطح برگ به مدت آن زمان که به کل یا (CGR). میزان رشد تطبیق RGR و میزان رشد محصول (BGR) با استفاده از روابط بین شاخص‌های مذکور محاسبه شد. به عنوان

\[\text{میزان سیب Sharon } = 50 \text{ در هر هکتار به میزان } 50 \]

\[\text{گیاه‌های سیب شده } = 10 \text{ در هر هکتار } \]

\[\text{روش مشخص گردد. در اواخر زمان‌سازی ساقه‌های اصلی } 5 \text{ گیاه } \]

\[\text{در هر هکتار با روش‌های رنگی علامت‌گذاری شد و در موقعیت 3.5 گیاه } \]

\[\text{روش به این گیاهان مراحل نشان‌پذیری این طبیعت روش زنجیره } 12 \text{ و } 12 \text{ در میکروسکوپی } \]

\[\text{گروه به این گروه تشخیص گرفته شد. در این تحقیق رشد گیاهان تطبیق } 4.4 \text{ و 4.5 در میکروسکوپی زنجیره } \]

\[\text{یکی و یکی شاهد } \]

\[\text{برای تشخیص شاخص‌های رشد در هر هکتار، اندماهی هواپیما } \]

\[\begin{array}{l}
1- \text{Total Dry Matter} \\
2- \text{Leaf Area Index} \\
3- \text{Leaf Area Ratio} \\
4- \text{Relative Growth Rate} \\
5- \text{Crop Growth Rate}
\end{array} \]
خسارت سرما، مقادیر بیشتر سبز قبل و بعد از زمستان پیوستگی مناسبی نداشتند. لذا داده‌های نمونه پاییز در محیط‌های مربوط به پره‌های بسیار منظر نشت دارند. دانه سطح برق (LAD) در هر دوره فنولوژیک زندگی گیاهی با ضرب کردن طول دوره آن زمستان مورد مطالعه گردید.

در زمستان گلدهی، داره کرد تعداد 200 سبیله به طور تصادفی با ورود زمین علت‌گذاری شد و در مرحله زنده خانه (حدود 150 روز پس از گلدهی)، به فاصله 6 روز یا 5 روز از بین سبیله‌ها نمونه برداری به عمل آمد. در هر بار تعداد 8 سبیله به طور تصادفی برداشت شد (حداقل 4 نمونه) و دانه‌های فوق به سبیله‌های با رور چهارنما نموده شد. به این ترتیب سرعت رشد خنثی دانه (شیب رگرسیون) به دست آمد و با تقسیم وزن نهایی دانه بر سرعت رشد خنثی، آن مدت می‌وازد شد.

برای تعیین رویت ذخیره سازی و انتقال مجدد مواد پرورده به دانه‌ها، از هر کرت تعداد 200 ساقه در حال گلدهی و 200 ساقه در زمستان برداشت شد. همچنین در اوایل رشته خاصی نمونه برداری می‌گردید. به این ترتیب سرعت رشد خنثی دانه (شیب رگرسیون) به دست آمد و با تقسیم وزن نهایی دانه بر سرعت رشد خنثی آن، مدت می‌وازد شد.

برای تعیین جوانان در دوره ذخیره سازی و انتقال مجدد مواد پرورده به دانه‌ها، از هر کرت تعداد 200 ساقه در حال گلدهی و 200 ساقه در زمستان برداشت شد. همچنین در اوایل رشته خاصی نمونه برداری می‌گردید. به این ترتیب سرعت رشد خنثی دانه (شیب رگرسیون) به دست آمد و با تقسیم وزن نهایی دانه بر سرعت رشد خنثی آن، مدت می‌وازد شد.
جدول 1- زمان سبز شدن و تراکم گیاهی قبل از یک‌خیرنده و بعد از فصل سرمایه (در متر مربع)

<table>
<thead>
<tr>
<th>گیاه‌گروهها</th>
<th>زمان سبز شدن قبل از یک‌خیرنده / ۵۰% گیاه‌گروهها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۲ مهر والفجر</td>
</tr>
<tr>
<td></td>
<td>۳۵۴</td>
</tr>
<tr>
<td></td>
<td>۹ آبان والفجر</td>
</tr>
<tr>
<td></td>
<td>۹ آبان ریحانه</td>
</tr>
<tr>
<td></td>
<td>۹۲</td>
</tr>
<tr>
<td></td>
<td>۳۲۳</td>
</tr>
<tr>
<td></td>
<td>۱۵۶</td>
</tr>
<tr>
<td></td>
<td>۱۳۹</td>
</tr>
<tr>
<td></td>
<td>۱۴۸</td>
</tr>
<tr>
<td></td>
<td>۹۷</td>
</tr>
</tbody>
</table>

۱- اعداد داخل پلتین زمان کاشت آورا در یک‌خیرنده را در حساب درجه روز شانه می‌دهند. در تاریخ کاشت ۲۹ آبان نیمین زمان و تراکم روش به دلیل مصادف شدن با یک‌خیرنده و در تاریخ کاشتهای ۱۴ و ۲۰ مهر شمارش در اواخر زمستان به دلیل ابعاد و پهنای محدود امکان پذیر نبود.

جدول 2- زمان وقوع برخی از مرحلات نمو از تاریخ کاشتهای ۱۴ و ۳۰ مهر

<table>
<thead>
<tr>
<th>مرحله نمو</th>
<th>۱۴ مهر والفجر</th>
<th>۱۴ مهر بیانم</th>
<th>۱۴ مهر ریحانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۹</td>
<td>۱۸۷</td>
<td>۱۸۵</td>
<td></td>
</tr>
<tr>
<td>۱۸۹۱</td>
<td>۱۸۹۲</td>
<td>۱۸۹۳</td>
<td>۱۸۹۴</td>
</tr>
<tr>
<td>۱۶۸۴</td>
<td>۱۶۸۵</td>
<td>۱۶۸۶</td>
<td>۱۶۸۷</td>
</tr>
<tr>
<td>۱۴۹۱</td>
<td>۱۴۹۲</td>
<td>۱۴۹۳</td>
<td>۱۴۹۴</td>
</tr>
<tr>
<td>۱۵۸۵</td>
<td>۱۵۸۶</td>
<td>۱۵۸۷</td>
<td>۱۵۸۸</td>
</tr>
<tr>
<td>۱۳۹۱</td>
<td>۱۳۹۲</td>
<td>۱۳۹۳</td>
<td>۱۳۹۴</td>
</tr>
<tr>
<td>۱۱۹۱</td>
<td>۱۱۹۲</td>
<td>۱۱۹۳</td>
<td>۱۱۹۴</td>
</tr>
</tbody>
</table>

۱- در مقیاس زیداکس: ۵۰% ظهور کامل برگ بیش از ۴۹% ظهور اولین ریشکه، ۵۰% گل‌دهی، ۴۶% اتمام گل‌دهی (در سایه‌های اصلی).
جدول ۲- میانگین مولکل‌های تیمارها و خطا آزمایش در عملکرد دانه، ماده خشک کل، شاخه، برداشت و اجزاء عملکرد

<table>
<thead>
<tr>
<th>درجه عملکرد دانه</th>
<th>عملکرد ماده خشک</th>
<th>شاخه</th>
<th>برداشت کل</th>
<th>وزن دانه</th>
<th>مساحت آزادي</th>
<th>تین‌برات (CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8268</td>
<td>1619/111</td>
<td>33</td>
<td>5</td>
<td>1/1/1/1</td>
<td>0/5</td>
</tr>
<tr>
<td>2</td>
<td>8411</td>
<td>1619/111</td>
<td>33</td>
<td>5</td>
<td>1/1/1/1</td>
<td>0/5</td>
</tr>
<tr>
<td>1</td>
<td>8411</td>
<td>1619/111</td>
<td>33</td>
<td>5</td>
<td>1/1/1/1</td>
<td>0/5</td>
</tr>
<tr>
<td>0</td>
<td>8411</td>
<td>1619/111</td>
<td>33</td>
<td>5</td>
<td>1/1/1/1</td>
<td>0/5</td>
</tr>
</tbody>
</table>

نمودار:

- تغییرات همبستگی بین تریال و عملکرد دانه
- تغییرات همبستگی بین تریال و عملکرد ماده خشک کل
- تغییرات همبستگی بین تریال و عملکرد ماده خشک کل
- تغییرات همبستگی بین تریال و عملکرد ماده خشک کل
- تغییرات همبستگی بین تریال و عملکرد ماده خشک کل

نتایج:

1. افت و افزایش میانگین مولکل‌های تیمارها و خطا آزمایش در عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
2. تغییرات همبستگی بین تریال و عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
3. افزایش میانگین مولکل‌های تیمارها و خطا آزمایش در عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
4. تغییرات همبستگی بین تریال و عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
5. افزایش میانگین مولکل‌های تیمارها و خطا آزمایش در عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.

پیشنهادهای مهاد که در اینجا آورده شده شود به ترتیب:

- افزایش میانگین مولکل‌های تیمارها و خطا آزمایش در عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
- تغییرات همبستگی بین تریال و عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
- افزایش میانگین مولکل‌های تیمارها و خطا آزمایش در عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
- تغییرات همبستگی بین تریال و عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.
- افزایش میانگین مولکل‌های تیمارها و خطا آزمایش در عملکرد دانه، ماده خشک کل، شاخه برداشت و اجزاء عملکرد در مراحل مختلف تیمار به وجود آمده است.

توجه بود.
جدول ۴: میانگینهای عملکرد دانه، شاخص برداشت و اجزای عملکرد دانه

<table>
<thead>
<tr>
<th>وزن دانه (mg)</th>
<th>تعداد دانه</th>
<th>تراکم سیب‌ی (mg/m³)</th>
<th>(٪)</th>
<th>(g/m³)</th>
<th>تاریخ کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>34/1cd</td>
<td>33/1cd</td>
<td>233cd</td>
<td>30/6c</td>
<td>59bc</td>
<td>14 مهر والفجر</td>
</tr>
<tr>
<td>32/1de</td>
<td>35/8a</td>
<td>270bc</td>
<td>24/4bc</td>
<td>636bc</td>
<td>بیانم</td>
</tr>
<tr>
<td>39/1ab</td>
<td>43/9ab</td>
<td>368de</td>
<td>49/1ab</td>
<td>575bc</td>
<td>ریحانه</td>
</tr>
<tr>
<td>34/1vd</td>
<td>34/1fd</td>
<td>5989bc</td>
<td>37/1f</td>
<td>556cd</td>
<td>والفجر</td>
</tr>
<tr>
<td>33/4e</td>
<td>38/4cd</td>
<td>444a</td>
<td>31/4cd</td>
<td>56ab</td>
<td>بیانم</td>
</tr>
<tr>
<td>39/9a</td>
<td>37/8vd</td>
<td>553v</td>
<td>38/1bc</td>
<td>793a</td>
<td>ریحانه</td>
</tr>
<tr>
<td>35/4dec</td>
<td>40/4a</td>
<td>293ef</td>
<td>32/4de</td>
<td>778af</td>
<td>والفجر</td>
</tr>
<tr>
<td>37/4abc</td>
<td>40/4abc</td>
<td>293ef</td>
<td>40/1ab</td>
<td>567de</td>
<td>بیانم</td>
</tr>
<tr>
<td>36/4dec</td>
<td>37/4bc</td>
<td>287ef</td>
<td>47/1bc</td>
<td>794f</td>
<td>ریحانه</td>
</tr>
<tr>
<td>36/5bcd</td>
<td>37/5bd</td>
<td>298ef</td>
<td>44/vcd</td>
<td>676de</td>
<td>والفجر</td>
</tr>
<tr>
<td>31/4abc</td>
<td>40/1bc</td>
<td>363de</td>
<td>51/9a</td>
<td>56vbcd</td>
<td>بیانم</td>
</tr>
<tr>
<td>37/5abc</td>
<td>37/2bc</td>
<td>323ef</td>
<td>47/2bc</td>
<td>771de</td>
<td>ریحانه</td>
</tr>
</tbody>
</table>

در هر سال، وجود حرف مشابه در بین میانگینهای بینانگر عدم تفاوت معنی دار در سطح 5٪ در آزمون دانک می‌باشد.

![Diagram](https://via.placeholder.com/150)

شکل ۱: واکنش عملکرد دانه ارتقا، نسبت به فاصلة زمانی (روز و حرفی) (دوجردی) زمان کاشت یا پیشیندان.

\[y = 11.08x + 3.70a + 0.15x^2 + 0.70a^2 \]
\[x = 1.426x + 2.12x^2 + 0.32x^3 \]
\[y = 0.178 + 0.57x + 0.12x^2 \]
\[y = 0.187 + 0.57x - 0.12x^2 \]

دیرینه تاریخ کاشتهای ۱۴ و ۲۰ مهر و ۲۹ آبان می‌باشد. معادلات بر حسب فاصلة زمانی ذکر شده است.
شکل ۲- بروز نحوه واکنش ارتقام نسبت به پناسیل عاملکره دانه در تاریخ‌های کاشت.

به منظور بررسی پایداری عاملکره ارتقام نسبت به تاریخ کاشت، جدایی عاملکره ارتقام در هر تاریخ کاشت به عنوان پناسیل عاملکره دانه در آن تاریخ کاشت در نظر گرفته شد و بین عاملکره هر رقم با اعداد پناسیل، رگرسیون محاسبه گردید (شکل ۲). وضعیت خط رگرسیون رقم ریحانه با شبب بیش از پنی نشان داده که این رقم پر محصول بوده ولی نسبت به تاریخ کاشت حساس است، به طوری که بیشترین و کمترین عاملکره دانه در این رقم به دست آمد. پنابیرین رقم ریحانه برای کشت در تاریخ کاشت مناسب و اقیم‌هایی که وضعیت آب و هوای متوسطی دارند مناسب تشخیص داده شد. رقم پنابیرین با عاملکره نزدیک به پناسیل و با شبب خط کمتر از یک
جدول 5- فشاره‌ها میبستگی‌های عملکرد دانه، ماده خشک کلی، شاخص برداشت و اجزای عملکرد، بالایی تقریب در جدول:

<table>
<thead>
<tr>
<th>عملکرد دانه</th>
<th>تعداد دانه</th>
<th>وزن دانه</th>
<th>تراکم شاخص</th>
<th>تعداد دانه در سیب‌لیه</th>
<th>تراکم برداشت</th>
<th>تعداد دانه در سیب‌لیه</th>
<th>وزن دانه در سیب‌لیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکرد دانه</td>
<td>0/794**</td>
<td>0/818**</td>
<td>0/746**</td>
<td>0/212</td>
<td>0/271</td>
<td>0/794**</td>
<td>0/818**</td>
</tr>
<tr>
<td>عملکرد ماده خشک</td>
<td>0/818**</td>
<td>0/746**</td>
<td>0/818**</td>
<td>0/212</td>
<td>0/271</td>
<td>0/794**</td>
<td>0/818**</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>0/932**</td>
<td>0/807**</td>
<td>0/909**</td>
<td>0/291</td>
<td>0/334</td>
<td>0/830**</td>
<td>0/909**</td>
</tr>
<tr>
<td>تراکم سیب‌لیه</td>
<td>0/862**</td>
<td>0/932**</td>
<td>0/862**</td>
<td>0/291</td>
<td>0/334</td>
<td>0/830**</td>
<td>0/909**</td>
</tr>
<tr>
<td>تعداد دانه در سیب‌لیه</td>
<td>0/794**</td>
<td>0/818**</td>
<td>0/746**</td>
<td>0/212</td>
<td>0/271</td>
<td>0/794**</td>
<td>0/818**</td>
</tr>
<tr>
<td>وزن دانه در سیب‌لیه</td>
<td>0/794**</td>
<td>0/818**</td>
<td>0/746**</td>
<td>0/212</td>
<td>0/271</td>
<td>0/794**</td>
<td>0/818**</td>
</tr>
</tbody>
</table>

1- حاصلضرب تراکم سیب‌لیه در تعداد دانه در سیب‌لیه

2- باشکده که تأثیر کاهش ماده خشک گیاهی در عملکرد دانه را تا حد زیادی جبران نمود. است. در بین کشت‌های تاریخ کشت (میانگین ارقام)، هم‌سنتگی شاخص برداشت با عملکرد دانه منفی گردید (جدول 5). اساساً هم‌سنتگی مثبت شاخص برداشت و عملکرد دانه هنگامی دیده می‌شود که رشد گیاهی رشد گیاهی در مقدار نسبتاً مشابهی فشار داشته باشد. بنابراین در حالی که رشد گیاهی در تاریخ‌های کاشت به درجه‌های مختلف از سراسر بهبود داشته‌اند، فشار خشک کل در تعداد عملکرد دانه و رابطه قوی و منفی آن با شاخص برداشت (جدول 5)، موجب هم‌سنتگی منفی بین شاخص برداشت و عملکرد دانه شد.

3- در بین اجرای عملکرد، تراکم سیب‌لیه بیشترین هم‌سنتگی را با عملکرد دانه داشت (جدول 5). در بررسی روابط بین عملکرد دانه و تراکم سیب‌لیه به تفکیک رقی، ضرایب هم‌سنتگی در رقی و الفبی 0/79, 0/54 و 0/49 بود و وجود این ضریب‌ها در حالت مستحکم ترین در عملکرد دانه و تراکم سیب‌لیه را در این تاریخ‌های کاشت تأثیر داشت. در نتیجه می‌توان به نتایج آن از این شرایط مربوط دانست. از آنجا که از دیگر بیانیه‌ها می‌توان به افزایش چشمگیری شاخص برداشت آن در تغییر فاصله کاشت از تاریخ کشت، مثالهای مساعد (۱۴ و ۳۰ مهر) به ناسازند (۲۳ و ۲۹ آبان)
جدول 7- میانگین قندگی های رشد دانه در تاریخ‌های کاشت (اول و دوم) و ارقام

<table>
<thead>
<tr>
<th>درجه زرخی دانه</th>
<th>سرعت رشد خطی دانه / mg/d</th>
<th>سرعت رشد خطی دانه / mg/C d</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز 7/17</td>
<td>33/3</td>
<td>0/639</td>
</tr>
<tr>
<td>روز 5/22</td>
<td>29/5</td>
<td>0/721</td>
</tr>
<tr>
<td>روز 5/5/30</td>
<td>29/6</td>
<td>0/674 ab</td>
</tr>
<tr>
<td>روز 6/5/5</td>
<td>33/5</td>
<td>0/566</td>
</tr>
<tr>
<td>روز 5/5/12</td>
<td>31/0</td>
<td>0/795a</td>
</tr>
</tbody>
</table>

در بین میانگین‌های سرعت رشد خطی دانه ارقام در هر ستون، وجود خوانش باعث عدم تفاوت معنی‌دار در سطح 0.05 در آزمون دانکن می‌باشد.

همسیستگی بالایی با عملکرد دانه نشان داد (جدول 6). وزن دانه در بین تاریخ‌های کاشت از نظر آماری مشابه بود ولی اثر رقم و اثر مقابل تاریخ کاشت و رقم بر روی آن بسیار معنی دار نبود (جدول 6). مقایسه میانگین‌های وزن دانه به روش دانکن (جدول 6) نشان داد که تفاوتها در ارقام و نیز علت معنی دار شدند اثر متغیر، مربوط به تاریخ کاشتن مساعد است، زیرا در کاشتن اول، وزن دانه ارقام مشابه بود ولی در دور تاریخ کاشت اول، وزن دانه ارقام بهبود وی یافته می‌کرد. در دور تاریخ کاشت دوم وزن دانه ارقام مشابه بود ولی رقم دیگر برتری نشان داد. لذا همسیستگی تعادل دانه در واحد سطح با عملکرد دانه در این دور تاریخ کاشت بود ارقام تنها با در ضریب همسیستگی در ارقام والی یک نیاز و رجوع به ترتیب
تاثیر تاریخ کاشت و زنگی‌برند بر رشد و عملکرد دانه‌جو

نگرش‌های کاشت

شکل ۳- سرعت رشد خلوت دانه‌ای ارتقاء در تاریخ کاشته‌های اول و دوم، در میقاس زمانی (فیلم‌گر در روز) و حرارتی (فیلم‌گر در درجه روز)

tیمیر تاریخ کاشت از ۱۶ به ۳۰ مهر انواعی نشان داد (جدول ۷). از آنجا که دوره پرورش دانه در تاریخ کاشت دوم با دماهای بالاتری متصاعد شد، بوده، ممکن است انواع سرعت رشد خلق دانه در اثر دما بوده باشد (۱۶ و ۲۰). لذا سرعت پرورش دانه برحسب فیلم‌گر در درجه روز نسبت محاسبه شد. در این حالت نیز برتری تاریخ کاشت دوم مشاهده گردید (جدول ۷). این امر ممکن است به افزایش تشکیل رونانه در دوره پرورش دانه ها از تاریخ کاشت اول به دوم، به‌آثار روند افزایشی آن در بیماری کاهش تعداد دانه در سنبله تاریخ کاشت دوم نسبت به اول بوده باشد (جدول ۴). این صفت هم‌سانی مشابه نسبتی بالایی با سرعت رشد خلق دانه نشان داد (جدول ۶). رقم ریحانه از پیش‌ترین سرعت رشد خلق دانه بخوردار بود. در دوره رشد دانه‌ها در رقم دیگرینالبر و چگالی با دماهای گرمی مقارن بود و لذا سرعت رشد خلق دانه آن که در میقاس زمانی تقریباً نزدیک به رقم ریحانه قرار داشت با تعیین اثر دما (در میقاس حرارتی) از رقم ریحانه فاصله گرفت (شکل ۳).
شکل 2- مقادیر پرآورد شده در صالحه مشترک با درمانات آبیاری با ترکیب حلول حداکثر وزن پرآورد شده سسته‌ها را نشان می‌دهند. علامت ه‌ها: || زمان اولین نمونه برداری بهره‌های 12/16 و 17/1 و شیپاها (أ، B) زمان تقریبی گلدهی را به ترتیب در ارقام و الفجر. بیتام و ریحانه نشان می‌دهند.

موجود گردید. در زمستان نسبتاً مزایا سال 1372 پس از برطرف شدن سرمایا أولیه ردش‌گیاهی به کننده آب‌داری پاک و سرمایه سرتی قبلاً از پایه‌ای به بار افزایش نشان داد. این حالت مشابه تابع ویژه و همکاران (12) می‌باشد که حداکثر سرعت رشد نسبی جو و در مرحله پنجه زنی سرویس یا ساقه رفتان مشاهده نمودند.

سرعت رشد محصول نیز در تاریخ کاشت دوم بالاتر از تاریخ کاشت اول بود (شکل 5). به طور کلی آهنگ تغییرات LAI و GCR پس از شروع سپر زولی شاخه سطح برق، سپس افزایشی سرعت رشد محصول تا مدتی دیگر همچنان وجود داشت (شکل 5). این حالت تا حدی بیانگر افزایش سطوح برق غیر برق (ماتریکسها، غلاف برق و سبله‌ها) و سهم آنها در تقویتی کیفایی می‌باشد (16).

تأثیر کاشت دوم بیشتر از تاریخ کاشت اول بود، به طوری که LAI کلیه ارقام در تاریخ کاشت دوم بالاتر از تاریخ کاشت اول گردید. این حالت ممکن است مربوط به اثر سرمایه‌گذاری و خسارات گیاهان در تاریخ کاشت اول و یا جوان تر بودن گیاهان. تاریخ کاشت دوم و در نتیجه واکنش بهتر آنها نسبت به عوامل نظر افزایش تشعشع در بار و یا کوک سرک به داشته. نسبت سطح برق هر رقم در تاریخ کاشت دوم نسبت به تاریخ کاشت اول، به خصوص تا اواستان بهار، بالاتر بود (شکل 5). این حالت به تعدادی مرتبه به وجود برگ‌های آسیب دیده و غير دول در تاریخ کاشت اول می‌باشد که وزن آنها در ماده خشک کل مانند بوده و ماده کسری LAR را پرگ کرده است.

به همین دلیل سرعت رشد سبز بیشتری نیز در تاریخ کاشت 30 مهر بیشتر از 14 مهر بود (شکل 5) و وجود نسبت برگ‌های سبز بیشتر موجب سرعت رشد بیشتر به ازای ماده خشک کیفایی
شکل 5- منحنی‌های شاخص سطح برگ، نسبت سطح برگ، سرعت رشد نسبی و سرعت رشد محصول در ناوه کاشته‌های اول و دوم.

علامت در شرح شکل 2 توضیح داده شده است.
شکل ۶- رابطه عملکرد دانه تیمارها با دوام سطح برگ، از مرحله ظهور رشکها تا انتهای فصل در تاریخ کاشت‌های اول و دوم.

خط پیشنهادی میانگین هزینه تیمار و خطبرد برگ و رگسیون با حدف تیمارهای مربوط به ره و الفجر را نشان می‌دهد.

در تاریخ کاشت دوم، همانند نتایج لیاسچی و مکران (۲) ترتیب ارقام از نظر فاصله زمان گل‌دهی تا وقوع حذفکر GRG با TDM، این رابطه به صورت قبیل بود (شکل ۱ و ۵). اما در تاریخ کاشت اول و مکران، دانه‌های اول در مقایسه با دوام سطح برگ، به دلیل مرحله فازی‌نشستن و تغییر ای cram پس از گل‌دهی با عملکرد دانه همبستگی مثبت نشان داد (R = ۷/۸). در این مورد نیز عملکرد رقم و الفجر در تاریخ کاشت دوم، در مقایسه با سایر تیمارها و اکثریت کمتری نسبت به رشد پس از گل‌دهی نشان داد. با حذف این تیمار همبستگی بین عملکرد دانه و رشد پس از گل‌دهی کامل همبستگی معنی‌دار داشت (R = ۹۶). این تیمار در اواخر فصل با بالاترین ماده خشکی در زمان گل‌دهی (شکل ۴) بیشترین خواص گفته را نشان داد (۱۸) و ارتقاء بیشتر این رقم معنی‌دار است نشانه‌ریزی بیشتر بین رشد
تأثیر تاريخ کاشت و زنوتب بر رشد و عملکرد دانه گلدهی

شکل 7- وزن واحده ساقه در مراحل گلدهی، اواکله رشد خطی دانه‌ها و رسیدگی کامل در تاریخ کاشتهای اول و دوم.

با لحاظ تفاوت‌های میانگر اندازه‌بینی، پایین: رشد میانگر اندازه‌بینی بأکثریت میانگر اندازه‌بینی آخر

ساختاری و رشد دانه در دوره پس از گلدهی باشد زیرا زنوتیب یا بلندتر ممکن است پس از گلدهی رشد طولی بیشتری انجام دهد (7). از طرف دیگر گلدهی دیرتر و در نتیجه در دمای بالاتر ممکن است این رقابت را در تاریخ کاشت دوم تشدید کرده باشد (3). در دوران تاریخ کاشت اول حساسیت درخت پس از گلدهی به حداکثر ماده خشک کل پیش بیشتری شده با شاخه برداشت همبستگی بالایی نشان داد (9/4 = R). شایان دکتر است که به علت تفاوت سطح (و نیز تفاوت زمان) برداشت نهایی با نمونه های رشد عملکرد ماده خشک کل با حداکثر ماده خشک کل پیش بینی شده تیمارها متفاوت بود.

تغییرات وزن ساقه‌ها پس از تکمیل رشد طولی نشان دهنده ذخیره سازی و با مصرف ذخیره‌های موجود در آنها

می‌باشد. البته نمی‌توان به کاشت در وزن ساقه را به انتقال مجدد مواد نسبت داد، بلکه تنش و فعلی‌های میکروگانیسم‌ها به خصوص در شرایط نش می‌تواند نقش داشته باشد. در واحده ساقه پس از گلدهی، در قسمت‌های مختلف متفاوت بود. پخش فتوانی میانگر اندازه‌بینی پس از گلدهی تغییر وزن ناحیه‌ی دانه داد. وزن واحده ساقه در بعضی میانگر اندازه‌بینی، از زمان گلدهی تا مرحله رشد خطی دانه، انرژی شدت بیشتری داشت (شکل 4)، ولی رشد طولی این قسمت ساقه در مرحله گلدهی به اتمام نرسیده بود. لذا فرضیات از نظر وزن این رشد ساختاری مربوط بود. به حال این پیش از ساقه کاملاً وزن چشمه‌های پیش نشان داد. بیشترین تغییرات وزن ناشی از ذخیره سازی و انتقال

55
جدول 8- ضرایب همبستگی دوزن دانه با تغییرات وزن واحد طول ساقه طی مراحل مختلف در تحقیقاتی کاشت اول و دوم (24=0)

<table>
<thead>
<tr>
<th>نوع تغییرات وزن</th>
<th>مرحله</th>
<th>میانگین همبستگی با قطرات</th>
<th>میانگین همبستگی با قطرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>انفیلدی</td>
<td>0/100</td>
<td>-</td>
<td>0/266</td>
</tr>
<tr>
<td>دوزن 0/100</td>
<td>0/325</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>کامپس</td>
<td>0/125</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

št - منند دار در سطح احتمال 1/0

۱- به دلیل وجود رشد ساختمانی پس از گلدهی در این بخش، همبستگی انفیلدی وزن آن زمان گلدهی، با وزن دانه تعیین نگردید.

مجید موسوی پور برو给别人在'Brien میانبرگ میانگین آخر مشاهده

شدر (شکل 7). متغیر دیگری نیز اهمیت به‌شمار می‌آید. میانگین میانبرگ میانگین آخر نسبت به میانگین انتی‌های یا در امر ذخیره‌سازی و استفاده از

ذخیره‌ها خاطر نشان کرده‌اند (7 و 6). اغلب تغییرات وزن ناشی

از ذخیره‌سازی پس از گلدهی، با ‘اتصال مجدد ذخیره‌ها’، با وزن

دانه همبستگی معمول دارد، نشان دادند (جدول 8). در هر دو

بخش میانگین انفیلدی و میانگین ژیرینان، رقم راهنما برترین

تغییرات وزن ناشی از ذخیره‌سازی و انتقال ذخیره‌ها را نشان داد

و رقم بالا در نظر ذخیره‌سازی در پایان ترنیم حد قرار داشت

(شکل 7).

در شکل 4 ملاحظه شد اندازه‌های رویشی رقم پالباند و الفجر

بخش زیرگری از ماده شیشه آن را تکشیل می‌کند. از سویی

دیگر، گلدهی در برخی آن باعث کاهش مهم بخش زایشی زندگی

گیاه و تیز موجب قرار گرفتن زمان رشد دانه‌ها در دماهای بالاتر

اواخر قابل شد. رقم بیشتر نیز با تولید تعداد زیاد دانه در واحد

سطح (وراکی بینه) تعداد دانه در میانه، جدول 2) میانگین

اقتصادی زیادی تولید نمود. در حالتی که در هر دو رقم

خواییگری شدید در رشد دانه‌ها اختلاف به وجود آورد که منجر

به تولید ذخیره‌های بیکس شد. اما در رقم راهنما با شکست

پالا، زایی‌گری گلدهی زودتر، نیز در بالاتر ذخیره‌سازی انتقال

مواد پروره و مقاومت بیشتر به‌بیانیگری منجر به تولید دانه‌های

سیاست‌گزی

توضیحات این مقاله از همکاری‌های بخش غلات مؤسسه

تحقیقات اصلاح و نهایی نهال و بذر، به ویژه آقای مهندس محمد

دولندر که در اجرای این تحقیق نهایی همکاری را می‌کرد

داشتمان، صمیمانه سیاست‌گزاری می‌نمایند.
منابع مورد استفاده
1- کومر، ک.ا. ا. گورد. ۱۳۶۹. طرح‌هایی امری برای تحکیم‌کردن کشاورزی. ترجمه ع. فرشادی، مرکز انتشارات علمی دانشگاه آزاد اسلامی، ۲۲۴ صفحه.
2- لیاسی، ج. م، ع. رضایی و م. کرمی. ۱۳۷۳. بررسی شاخص‌های فیزیولوژیکی رشد مؤثر بر عملکرد بلوط و جوی. پژوهش و سازندگی، شماره ۴۴ (پاییز) ص ۴۴ تا ۵۱.
3- نکی، پ. ج. ۱۳۷۲. تأثیر پررنگ‌های قلمی بر افزایش ماده خشک، عملکرد دانه و رشد پوستی هنگام گذراند ابتدا (رسم قدم). پایان نامه کارشناسی ارشد، دانشگاه کشاورزی دانشگاه تهران. ۱۲۴ صفحه.
4- چهارمی، م. و ام، ر. و. ۱۳۷۳. مقدمه بر فیزیولوژی عملکرد گیاهان زراعی. ترجمه ع. امام و م. نک، نژاد. دانشگاه شیراز.

