ارزیابی تغییرات صفات مهم زراعی و معیارهای سنجش تحمیل به خشکی در ارقام آفت‌گردان

هومن راضی و محمد تقی آساد

چکیده
در آزمایش‌های جدایگانه در قالب طرح بلبوک های کامل تصادفی با چهار تکرار در سال 1375 در مرزه تحفظیات دانشگاه کشاورزی دانشگاه شیراز واقع در باغچه آجارا شد. در آن این تحقیق از چهار رون نام‌آفت‌گردان، شامل هشت رقم حیرتگر و شش رقم آژارگرده افراد استفاده گردید. در یک آزمایش آپاری مطابق و برآورده 655 میلی‌متر تبخیر از نشان‌های تبخیر کلاس A و در آزمایش دیگر آپاری مطابق و برآورده 15 میلی‌متر تبخیر از نشان‌های تبخیر کلاس A انجام شد. صفات تعداد روز تاگله، تعداد روز تا سیده، زیر پوش زیک، قطر تله، قطر ساقه، تمام شکر، تعداد برگ درگیا، ارتفاع گیاه، تعداد دانه‌های پر در طبقه وزن هزار دانه، درصد مفهوم دانه، درصد پوکی دانه، عملکرد دانه، درصد رنگ دانه و شاخص برداشت اندازه‌گیری گردید.

پیشینه‌های انتخاب، از جمله عملکرد دانه و عملکرد روفیه، کنترل زنونی و فنوتیبی قابل ملاحظه‌ای نشان داد. برای همه صفات تفاوت بسیار معنی‌داری میان ارقام مشاهده شد. پیشرفتی عملکرد دانه در شرایط آپاری مطابق و آپاری محدود به ترتیب از آن ارقام لوگ و آپارایبرسکی بود. تحقیق و تحقیقات در طول استانداردهای مورد نیاز در دوره‌های مختلف گیاه تحت تأثیر نشان‌های کاملاً پایان داد. در ضمن آپاری بهتر از آپاری محدود به شکلی شناخته شد که احتمالاً از طریق زیست‌پلیزی برآورده شد. می‌توان سطح بالایی از مقاومت به خشکی و پاتولاکسی عملکرد را در ارقام اصلی سه انگارگردان به دست آورد. همچنین مشخص شد که انتخاب براساس میانگین مقاومتی نیولین و ساختار هماهنگی معیارهای عملکرد زیاد و مقاوم به خشکی سوی می‌دهد. دانش‌آموخته‌های آپارایبرسکی در عین برتری نسبی عملکرد به خشکی مقاوم بود.

واژه‌های کلیدی - آفت‌گردان، تحمیل خشکی، حساسیت به خشکی، واریانس زنونی، واریانس فنوتیبی

مقدمه
در حال حاضر آفت‌گردان (Helianthus annuus L) از نظر تولید و تجارت جهانی محسوب شده‌اند. در این تحقیق از چهار باغچه کرت‌سوز از کشت‌های انتخابی غیر مبتنی، دانشگاه کشاورزی، دانشگاه شیراز به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار بخش زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه شیراز.
درباره کانال نشتن رطوبتی با کاهش عملکردی در حد قابل قبول، یک خصوصیت ارزشمند در مناطق خشک محسوب می‌شود (6). اگرچه به نظر می‌رسد که آفتانگردها در مقابل خشکی نسبت به تعدادی از گیاهان زراعی دیگر از جمله سریا مقاوم نیستند، اما ظرفیت عملکرد ارقام آفتانگردها در مواجهه با نشتن رطوبتی به سرعت کاهش می‌یابد. بحرانی ترین زمان کمبود رطوبتی برای آفتانگردها، گونهقبول و سه فئه بند از گلدهی است (2) (1) (20) (23) (19) (17) (16) تالیا و عثمان (25) گزارش کرده که نشتن در هر مرحله از رشد اکتاگون باعث یافتن آن آزمایش روش دانه می‌شود، اما آن نیروی میزان روانگی کم و معتاد است و سایر عوامل منابع تاریک کشاورزی، آب و هوا و ژنوتیپ گیاه، خاک و مقادیری که سطح می‌مقاومت‌کنند ارثی مهمی دارند. پورتی (19)، کاکس و جولیف (9) و جمیزی و فرز (14)، به طور جدیدا رابطه میزان آب آبیاری و عکس عمل گیاه را بررسی کرده‌اند. نشتن در مدت‌های زیاد شکست در تیمار آبیاری محدود، به طور مینی وارد کنترل شرایط مطلب بود و آب آبیاری محدود موجب کاهش شاخص برداشت شد. در مناطق نیمه خشکی که پرآکش پیلنگی مناسب نیست، پتانسیل عملکرد در شرایط نشتن بهترین می‌باشد به خشکی محسوب می‌شود، یکی از ابزارهای عملکرد (میزان عملکرد در شرایط تشنج و مطلب) به عنوان میزان حساسیت به خشکی (S) به کار گرفته شد. فیشر و ماوری (13) نشان دادند که ارقام مختلف در شرایط کم آبی با معیارهای عملکرد در ارقام مختلف در شرایط بدون خشکی (Xp) به صورت : \(X = \frac{Xp}{Xp - X} \) شکست (S) به کار گرفته می‌شود. این معیار که برای شبیه سازی طبقات موجود در سیستم به‌کار می‌رود، یکی از ابزارهای عملکرد با معیارهای مختلف در شرایط مختلف بود. خشکی (Xp) در ارتباط با شدت خشکی (Yp) در محیط مطلب با کمک اندوزی‌گری کردن، به‌طور پیش‌بینی کننده قابلیت عملکرد در انتظار خشکی (Yp) توزیع شده، مقادیر را برش و بررسی تمایل به است و در ترتیب مقادیر حساسیت به مانند ارقام آفتانگردها در محیطهای نشتن در داریز، قدرت مانند در محیط سیستم احتمال در محیط بدون نشتن (Y) و محیط تحت نشتن خشکی (Y) تعیین گردید. آنها میانگین قابلیت تولید 1. را برای یک ژنوتیپ، میانگین عملکرد در

1- Mean productivity 2- Stress susceptibility index 3- Stress tolerance index

1727
جدول 1 - داده‌های هوایی‌سنجی‌باینگاه از خرداد تا شهریور ماه 1376

<table>
<thead>
<tr>
<th>میانگین تبخیر (میلیمتر)</th>
<th>میانگین رطوبت</th>
<th>حداقل دما (°C)</th>
<th>حداقل دما (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/14</td>
<td>24</td>
<td>20/27</td>
<td>7</td>
</tr>
<tr>
<td>8/26</td>
<td>29</td>
<td>22/21</td>
<td>11</td>
</tr>
<tr>
<td>9/10</td>
<td>40</td>
<td>23/29</td>
<td>6</td>
</tr>
<tr>
<td>8/28</td>
<td>51</td>
<td>21/30</td>
<td>5</td>
</tr>
</tbody>
</table>

شناختی ارقام مقاوم به خشکی و همچنین میزان‌های مناسب گزارش برای این مناطق قطعی به نظر می‌رسد. اهداف این تحقیق بررسی تأثیر اطلاعات پایه ای لازم برای انجام یک برنامه گزارش موجود (چه در شرایط آبیاری مطلوب و چه در شرایط آبیاری محدود) در نظر گرفته شده است. این اهداف عبارتند از:

الف) تخمین ضایعات تغییرات تفتینی و زئوتیپی در شرایط مطلوب و محدود رطوبتی.
ب) بررسی اثر تنش رطوبتی بر خصوصیات گیاهی و مقایسه عملکرد ارقام مختلف در شرایط آبیاری مطلوب و کم آب و تبیین یادگیری عملکرد ارقام مورد آزمایش با اندامگاه گیری شاخص‌های مقاومت به خشکی.

مواد و روش‌ها

آزمایش در مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه شیراز واقع در باغچه (1950-2950 متر) شمالی و 37°46' شرقی، ارتفاع از سطح دریا 181 متر) انجام شد. داده‌های هوشمند موجود در جدول 1 یکتاگر و وضعیت آب و هوایی باغچه در زمان انجام آزمایش است. باتب خاک محل آزمایش از نوع لوم رسی می‌باشد.

دو آزمایش جداگانه در قالب طرح بلوک کامل تصادفی با جهانی کرار اجرای گردید. این دو آزمایش از چهارده ریم آفت‌گرداکن شامل هشت رقم هیری و شش رقم آزاد ریم افت‌گرداکن استفاده شد. ارقام مورد آزمایش از چند منطقه جغرافیایی

انجام می‌شد (6). مقادیر این شاخص بین صفر تا یک متغیر است و هر چه مقادیر آن بزرگ‌تر باشد نشان دهنده حمیل بیشتر زئوتیپ نسبت به خشکی است.

فرز و همکاران (11) یک تحقیق دیگری را بررسی کردند. آزمایش‌ها در سه منطقه مختلف بررسی شدند. در نظر گرفته شده است و هم زمان اجرای آزمایش به منظور بررسی میزان مصرف آبیاری مطلوب و تغییرات آن در شرایط آبیاری محدود، مشاهده نمودند. آنها بین دو ارقامی مطلوب و شاخص حساسیت به خشکی دسته‌گردی می‌کنند.

در ایران نیز پژوهش‌هایی در زمینه تأثیر میزان آب بر عملکرد و اجزای آن در آفت‌گرداکن صورت گرفته است. اثر میزان آب آبیاری بر عملکرد به وسیله کمی و سیستمیت (5) مورد آزمایش قرار گرفت و نتیجه نشان داد که آبیاری مطلوب باعث افزایش عملکرد و درصد روغن می‌شد. رضوی‌آباد و کرمی (4) نتیجه گرفتند که وزن خشک اندازهای هوایی و ارتفاع بوده.

با آزمایش میزان آب آبیاری آفت‌گرداکن می‌باشد. طبق این آزمایش

تشن رطوبتی موجب تسرع گلدهی و رسیدگی نورپذیری شد. محتوای و همکاران (6) با بررسی اثر خشکی بر صندلی آفت‌گرداکن به بیان کردن که بسیاری از خصوصیات گیاه تحت تأثیر سوء کم آب قرار می‌گیرد. همین‌طور، همکاران این نتیجه گیری شاخص‌های مقاومت به خشکی در نظر بودند که شاخص‌های حمیل خشکی و میانگین هندسی صفات در موی حیاتی، به‌ترتیب می‌باشد.

برای آزمایش میزان حمیل به خشکی زئوتیپ ها می‌باشد. با توجه به اینکه بچه وسیعی از زمین‌های زیر کشت در ایران در شرایط آب و هوایی نیمه خشک واقع شده‌اند ازوم
جدول ۳- اناسی و محل تولید هنرهای رقم

<table>
<thead>
<tr>
<th>نام رقم</th>
<th>محل تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارقم هیری</td>
<td>استرالیا</td>
</tr>
<tr>
<td>HYSUN 25</td>
<td>HYSUN 36</td>
</tr>
<tr>
<td>HYSUN 354</td>
<td>HYSUN 46CQ</td>
</tr>
</tbody>
</table>

واحد آزمایشی دارای پنج رنگ رنگ رنگ متغیر می‌باشد. فاصله مزمن رنگ متغیر از یکدیگر ۳۰ سانتی‌متر و فاصله گیاهان روی یک ردیف ۴۵ سانتی‌متر در نظر گرفته شد. هر کوته به وسیله یک ردیف کشت شده از کوت به دست چهارگویی.

کود مصرفی به میزان ۱۰۰ کیلوگرم در هكتار (N۰) کیلولیتم در هکتاور (P2O5) به صورت اوره و فسفات اتمی به عنوان داده شد. تمام فسفر و نیمی از این کمیت قبل از کاشت و نیمی در دوباره مورد نیاز۷ روز پس از کاشت و در مرحله ظهور جوانی که صورت کسر داده شد.

آیا می‌توان از این گونه از انجام گرفت و مقدار آب داده به‌ویژه در هر نوبت آبی به آب‌رسایی گردید. مقدار آب داده ۹۰۰۰ کیلوگرم در هکتاور (N۰)

برای انتخاب گرفت‌گرایی صحیح ترکیب کود مصرفی به طور تصادفی پنج گیاه به‌وسیله میانی هر کرت انتخاب شد. خشک کردن نمونه‌های با گشاش‌کار کم مدت و در حالت خشک با به‌وسیله میانی هر کرت انتخاب شد.

جدول ۱۳- بخشنویسی هنرهای رقم

<table>
<thead>
<tr>
<th>نام رقم</th>
<th>محل تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارقم هیری</td>
<td>استرالیا</td>
</tr>
<tr>
<td>HYSUN 25</td>
<td>HYSUN 36</td>
</tr>
<tr>
<td>HYSUN 354</td>
<td>HYSUN 46CQ</td>
</tr>
</tbody>
</table>

ارقام نمایشگر آنها به معنی این است که با گشاشکار کم مدت و در حالت خشک با از مجموع عامل‌ها یکسانی می‌باشد. این رفتارهای دستی آموزشی در کشت به دست آمده که با هایک لگری در هکتاور تبدیل شده. عامل‌های مربوط به بودی یک قطعه گری به‌وسیله میانی هر کرت انتخاب شد.
تعدادرز تا گاندی، هنگامی که پنجا درصد گیاهان یک
کر گل دادن، در نظر گرفته شد. وقتی که پشت طبق بیش از
60 درصد گیاهان یک کرت زرد گردید، به عنوان تعداد روز تا
رسیدن فیزیولوژیک بیشتر شد. تعداد روز در گیاه دمای گرده
افشانی شمارش گردید. قطر ساقه در چهارمین میانگیر اندازه
گیری و قطر طبق از روی طبقهانی شکل سه در آن در دمای
رسیدن تعیین گردید. ارتفاع نهایی گیاه نیز از سطح زمین تا نوک
طبق در هنگام رسیدن گیاهان اندازه گیری شد. در هنگام دانه
پر عباس میانگین سه تنویع هزار پن، محاسبه و برای اندازه
گیری درصد مغز دانه از سه تنویع پنج گرمی استفاده گردید.
درصد پوکی دانه از پنج تنویع صنایعی از دانه هایی که به طور
کامل مخلوط شده بودند محاسبه شد. این نتایج نشان داد
بردشت (نسبت عملکرد دانه به عملکرد بیلورزیک گیاه در
هنگام رشد)، پنج بوته کامل از هر کرت برداشت شد. تعداد
دانه های پر در دمای با استفاده از عملکرد دانه در گیاه و وزن مزار
دانه محسوب گردید.

نتایج و بحث

تغییرات ژنتیکی و فنوتیپی صفات
بندنة تغییرات و ضرایب تغییرات ژنتیکی و فنوتیپی
سندر مختلف آتشفشانیان در شرایط آماری مطلوب و آماری
محدود به ترتیب در جدولهای 2 و 3 آورده شده است ضریب
تغییرات ژنتیکی که از ارجاع ضریب تغییرات فنوتیپی است،
برای هر ماده که کمک کراکر از آن می‌پذیرشند. در این آماری، هم در
شرایط آماری مطلوب و هم در شرایط آماری محدود، اختلاف
بین این ضرایب نابجود بوده که نشان می‌دهد تأثیر محیطی بر روی
ضرایب تغییرات صفات کم بوده است. در نتیجه، در این تحقیق
بنهایتی بین ضرایب تغییرات در شرایط آماری مطلوب و نشین
خشکی مشاهده شد و فقط ضرایب تغییرات درصد بیشتر دانه
در شرایط کم آب کاهش قابل ملاحظه‌ای داشت که نشان می
دهد تغییرات این صفت از سایر صفات تحت تأثیر
عملکرد ژنتیکی کار می‌گردد.

عملکرد دانه و عملکرد روغن نسبت به غلبه صفات از
تغییرات ژنتیکی و فنوتیپی بیشتر در بخشی از فرود و همکاران
(11)، سیستم، (22)، طریق و همکاران (23)، فیک و
همکاران (12) و اهدایی (11) وجود این تغییر را گزارش
1- Nuclear magnetic resonance
2- Genotypic coefficient of variation (GCV)
3- Phenotypic coefficient of variation (PCV)
جدول 3- میانگین، دامنه تغییرات و ضرایب تغییرات زنوتیبی و فنوتیبی صفات مختلف در چهارده قوم آتاترک در شرایط ایلیمی ۱۳۷۷

<table>
<thead>
<tr>
<th>ردیف</th>
<th>صفات</th>
<th>میانگین</th>
<th>دامنه تغییرات</th>
<th>ضریب تغییرات</th>
<th>تغییرات طبقه‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>تعداد روز نگهداری</td>
<td>۶۷/۶۱</td>
<td>۶۴-۷۲</td>
<td>۰/۷۵</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۲</td>
<td>تعداد روز رستمی</td>
<td>۱۰۰/۳۰</td>
<td>۹۶-۱۱۲</td>
<td>۸/۷۵</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۳</td>
<td>قطع طبقه (ساتنیتیم)</td>
<td>۱۵/۹۱</td>
<td>۱۱-۱۵</td>
<td>۸/۲۸</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۴</td>
<td>قطع ساخته (ساتنیتیم)</td>
<td>۱۱/۴</td>
<td>۷-۱۴</td>
<td>۸/۳۵</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۵</td>
<td>تعداد برج درمان</td>
<td>۲۲/۶۴</td>
<td>۲۰-۲۴</td>
<td>۹/۸۱</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۶</td>
<td>ارتفاع نهایی گیاه (ساتنیتیم)</td>
<td>۱۸۸/۸۸</td>
<td>۱۷۹-۲۱۴</td>
<td>۱۴/۵۹</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۷</td>
<td>تعداد دانه بر طبقه</td>
<td>۹۶/۴۵</td>
<td>۹۲-۱۰۰</td>
<td>۱۱/۵۸</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۸</td>
<td>وزن هزار دانه (گرم)</td>
<td>۶۶/۲۰</td>
<td>۶۴-۷۰</td>
<td>۱۱/۸۲</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۹</td>
<td>درصد وزن مغز دانه</td>
<td>۷/۵</td>
<td>۷-۸</td>
<td>۷/۷۴</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۱۰</td>
<td>درصد پوکی دانه</td>
<td>۸/۲۵</td>
<td>۸-۱۰</td>
<td>۲۶/۹۹</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۱۱</td>
<td>عملکرد دانه درگیاه (گرم)</td>
<td>۶۳/۱۰</td>
<td>۶۰-۶۵</td>
<td>۹/۸</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۱۲</td>
<td>عملکرد دانه (کیلوگرم در هکتار)</td>
<td>۳۷۸/۷۰</td>
<td>۳۶۰-۴۰۰</td>
<td>۱/۸۴</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۱۳</td>
<td>عملکرد روظنده (کیلوگرم در هکتار)</td>
<td>۴۴/۲۹</td>
<td>۴۱-۴۷</td>
<td>۷/۸۸</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۱۴</td>
<td>عملکرد روظنده (کیلوگرم در هکتار)</td>
<td>۱۷۶/۶</td>
<td>۱۷۰-۱۸۰</td>
<td>۱۲/۷۷</td>
<td>فنوتیبی</td>
</tr>
<tr>
<td>۱۵</td>
<td>شاخاص پرداشت (٪)</td>
<td>۲/۷۳</td>
<td>۲-۳</td>
<td>۲/۶۷</td>
<td>فنوتیبی</td>
</tr>
</tbody>
</table>

کرده‌اند. این نکته وجود تغییرات میانه زنوتیبی و فنوتیبی می‌باشد. تغییرات زنوتیبی و فنوتیبی شامل موارد زیر می‌باشند: افزایش تعداد دانه بر طبقه و وزن هزار دانه، افزایش درصد پوکی دانه، افزایش درصد وزن مغز دانه، افزایش عملکرد دانه درگیاه، کاهش عملکرد دانه، کاهش عملکرد روظنده، کاهش عملکرد روظنده و کاهش سطح ناهیدگی گیاهان. در نهایت، می‌توان گفت که این تغییرات می‌تواند باعث افزایش عملکرد محصولات و کاهش هزینه‌های تولید در گیاهان و کاهش هزینه‌های درمان در گیاهان مشابه شود. همچنین، این تغییرات می‌تواند باعث افزایش ارزش و قیمت محصولات و کاهش هزینه‌های تولید در گیاهان مشابه شود.

یازدهمین مقاله، ایجاد تغییرات میانه زنوتیبی و فنوتیبی، ایجاد تغییرات میانه زنوتیبی و فنوتیبی.
جدول 5- میانگین، دامنه تغییرات و ضریب تغییرات و فرآیند و فنوتیپ صفات مختلف در چهارده رنگ آنتیاگران در شرایط آبیاری محدود

<table>
<thead>
<tr>
<th>ردیف</th>
<th>صفات</th>
<th>میانگین</th>
<th>دامنه تغییرات</th>
<th>ضریب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>تعداد روز تاگلجه</td>
<td>7/66</td>
<td>62-76</td>
<td>64/80</td>
</tr>
<tr>
<td>2</td>
<td>تعداد روز رسیدن</td>
<td>7/18</td>
<td>88-110</td>
<td>95/77</td>
</tr>
<tr>
<td>3</td>
<td>قطر طبق (سانتیمتر)</td>
<td>7/31</td>
<td>13-17/1-20</td>
<td>15/75</td>
</tr>
<tr>
<td>4</td>
<td>قطر بوبین (سانتیمتر)</td>
<td>7/48</td>
<td>14-20/40</td>
<td>18/03</td>
</tr>
<tr>
<td>5</td>
<td>تعداد بروگ دریا</td>
<td>7/105</td>
<td>12-24</td>
<td>19/28</td>
</tr>
<tr>
<td>6</td>
<td>ارتفاع نهایی گیاه (سانتیمتر)</td>
<td>15/61</td>
<td>94/70-210/6</td>
<td>158/37</td>
</tr>
<tr>
<td>7</td>
<td>تعداد دانه پر در طبق</td>
<td>11/88</td>
<td>79/57-1112</td>
<td>87/50</td>
</tr>
<tr>
<td>8</td>
<td>وزن هزار دانه (گرم)</td>
<td>12/75</td>
<td>30/2-30/47</td>
<td>30/55</td>
</tr>
<tr>
<td>9</td>
<td>درصد مغز دانه</td>
<td>13/29</td>
<td>12-19</td>
<td>54/79</td>
</tr>
<tr>
<td>10</td>
<td>درصد پوکی دانه</td>
<td>15/09</td>
<td>20/1-30/8</td>
<td>26/14</td>
</tr>
<tr>
<td>11</td>
<td>عملکرد گیاه دریا (گرم)</td>
<td>9/88</td>
<td>23/2-56/57</td>
<td>46/07</td>
</tr>
<tr>
<td>12</td>
<td>عملکرد دانه (کیلوگرم در هکتار)</td>
<td>10/09</td>
<td>127/39-528/7</td>
<td>278/69</td>
</tr>
<tr>
<td>13</td>
<td>عملکرد روزن (کیلوگرم در هکتار)</td>
<td>3/67</td>
<td>30/2-21/16</td>
<td>158/76</td>
</tr>
<tr>
<td>14</td>
<td>عملکرد روزن (کیلوگرم در هکتار)</td>
<td>11/98</td>
<td>30/2-16/89</td>
<td>158/76</td>
</tr>
<tr>
<td>15</td>
<td>شاخص پرداشت (٪)</td>
<td>5/55</td>
<td>30/3-37/3</td>
<td>52/3</td>
</tr>
</tbody>
</table>

تأثیر خشکی بر صفات مختلف آنتیاگران

تجزیه و تحلیل آنتیاگر (جدول 6) نشان می‌دهد که آب‌یاری بر تمام صفات، به جز درصد روان دانه، اثر معنی‌داری نداشت. در نتیجه، با توجه به میانگین ارزیابی صفات در صدر آب‌یاری مطلوب و آب‌یاری محدود (جدول 5)، روش شرکت کننده آب‌یاری موجب افزایش صفات نداد. از جمله فیزیولوژی، قطر طبق، قطر طبیعی، تعداد بروگ دریا، ارتفاع نهایی گیاه، وزن هزار دانه، عملکرد دانه و شاخص پرداشت در سطح احتمال 1/0 گردیده است. عملکرد دانه، عملکرد روزن و وزن هزار دانه...
ارزیابی تغییرات صفات مهم زراعی و میزانهای سنجشی تحقیق به خشکی ...

dانه بوده که میانگین آن در اثر تنش رطوبتی بیشترین تغییر را داشت و به پیش از دو برابر افزایش یافت. اثر ایبایر بر صفات تعداد روگان دهه تعداد دانه در طبق و درصد میزان دانه در سطح احتمال 5% معنی دار شد. بین ایبایر تنش رطوبتی اثر کمتری را بر این صفات اعمال کرد. آبآوری اثر معنی داری بر روی درصد روغن دانه نداشت. یاپاره‌ی درصد روغن دانه تنش خشکی را می‌توان خصوصی ارزیابی داشته بدهد.

نوازدندان. تونالا و عثمان (1975) خواهچ پور (1973) لوساونی و

همکاران (1967) مظهری و همکاران (1987) اثر تنش رطوبتی بر روی میزان روغن دانه آفت‌پرداز را کم گزارش کرده‌اند. در حاضر که میزان از درصد روغن دانه آلس و همکاران (1987) و پوراهی (1979) کاهش معنی دار درصد روغن را پدید آورده‌اند. و همکاران (1987) و پوراهی (1979) که میزان اثر روغن را بی‌اخلاقی گزارش نموده‌اند. اختلافات موجود در نتایج را می‌توان به تفاوت در گروه‌های عامل تنش خشکی در آزمایشات مذكور نسبت داد. اثر متقابل زننده‌ی و آپایه‌ی برای صفات قطر ساقه، ارتفاع نهیپی گیاه، عمیکرد دانه، درصد پوکی دانه، درصد روغن دانه و شاخص برداشت معنی دار شد (جدول 4) بنا برای می‌توان در این‌که ارقام مورد آزمایش در اثر تغییر محیط برای

امنیت‌های تغییرات ناهمگنی داشته‌اند.

عمیکرد دانه در شرایط آبیاری محدود کاهش قابل

توهیه داشت (جدول 4 و 5). کلیه پژوهشگران نیز در

تحقیقات خود به این نتیجه رسیده‌اند (1975) و (1987). با توجه به این که دارای آزمایش، تنش رطوبتی در مرحله‌گذاری و بعد از آن نیز

آمیختی در فشار خشکی برای عمیکرد دانه قابل پیش بینی بود.

تفاوت ارقام از نظر میزان کاهش عمیکرد با در اثر خشکی را می‌توان به پایه استفاده از آب آنها نیز نسبت داد. عمیکرد روغن نیز در شرایط کم آبی کاهش یافته که به علت کم

گزارش کرده‌اند.

روابط رگرسیونی در شرایط آبیاری مطلوب و آبیاری

محدود

معدلات رگرسیون نهایی با در نظر گرفتن عمیکرد دانه در دیگر

به عنوان مفهومی و استفاهه در شرایط آبیاری مطلوب به صورت

39
جدول 7- مقایسه ارقام مورد مطالعه از نظر معیارهای سنجش مقاومت به خشکی.

<table>
<thead>
<tr>
<th></th>
<th>عامل/دانه عملکرد/دهانه/مانگی/تحمل شاخ/شاخ</th>
<th>عامل/دانه عملکرد/دهانه/مانگی/تحمل شاخ/شاخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>رکورد</td>
<td>18/37</td>
</tr>
<tr>
<td>2</td>
<td>لریج</td>
<td>13/43</td>
</tr>
<tr>
<td>3</td>
<td>آنزاورسکی</td>
<td>12/59</td>
</tr>
<tr>
<td>4</td>
<td>زیبا</td>
<td>11/73</td>
</tr>
<tr>
<td>5</td>
<td>چوتبانکا</td>
<td>10/89</td>
</tr>
<tr>
<td>6</td>
<td>پرودیکی</td>
<td>10/99</td>
</tr>
<tr>
<td>7</td>
<td>Hysun 25</td>
<td>10/99</td>
</tr>
<tr>
<td>8</td>
<td>Hysun 36</td>
<td>10/99</td>
</tr>
<tr>
<td>9</td>
<td>Hysun 354</td>
<td>10/99</td>
</tr>
<tr>
<td>10</td>
<td>Hysun 46CQ</td>
<td>10/99</td>
</tr>
<tr>
<td>11</td>
<td>گلدیس</td>
<td>10/99</td>
</tr>
<tr>
<td>12</td>
<td>آذرگل</td>
<td>10/99</td>
</tr>
</tbody>
</table>

هزار دانه FS تعداد دانه پر در طبق می‌باشد.

با توجه به بالا بودن ضرب تشخیص در هر دو تیمار، معادله رگرسیونی به خوبی تغییرات عملکرد دانه در گیاه را توجیه کرده است. در شرایط تنش خشکی چهار صفت وزن هزار دانه، تعداد روز تا رسیدن و تعداد دانه پر در طبق جمعاً 88% کل تغییرات عملکرد دانه را توجیه کرده. در حالی که در شرایط آبیاری مطلوب علیه پر این چهار صفت قطع طبق نیز در معادله بهبودی رگرسیون بانک ماند و بدین ترتیب پنجم صفت جمعاً 79% کل تغییرات عملکرد دانه در گیاه را توجیه نمود. بنابراین اهمیت و ارزش قطع طبق به عنوان یکی از گلدیس، تعداد روز تا رسیدن KW در این فرمول‌ها عملکرد دانه در گیاه، قطع طبق HD، تعداد روز تا رسیدن DM.
جدول 8- ضرایب همبستگی ساده میان شاخص‌های مقاومت به همبستگی و عملکرد دانه در شرایط مطلوب و تنش خشکی

<table>
<thead>
<tr>
<th>شاخص حساسیت به خشکی</th>
<th>عملکرد دانه در شرایط آبیاری مطلوب</th>
<th>عملکرد دانه در شرایط تنش خشکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>خشکی</td>
<td>0.781</td>
<td>0.820</td>
</tr>
<tr>
<td>خشکی</td>
<td>0.792</td>
<td>0.820</td>
</tr>
</tbody>
</table>

انجام مهم عملکرد دانه در شرایط مطلوب و تنش یکسان بود. این تفاوت، تأثیر شرایط رطوبی معیط را بر روی الگوهای انگشتری آشکار می‌سازد. از مطالعات تناهی رگرسیون مشخص می‌گردد که سری صفات انگشتری یک عملکرد دانه داشته اند و در برنامه‌هایی که تعدادی می‌توان صفات باقی مانده در مطالعه را به عنوان می‌توان انتخاب می‌باشد نظر قرار داد.

می‌توان 11 علاوه بر میانگین عملکرد دانه ارتقام در شرایط آبیاری مطلوب و آبیاری محدود، چهار شاخص برای انتخاب گیری مقاومت ارتقام نسبت به شکست آرزویی گذشته است. از مقایسه میانگین قابلیت تولید ارتقام مشخص می‌گردد که انتخاب براساس این معیار ممکن عملکرد دانه را به محدود شرایط مطلوب و هم در شرایط تنش انگشتری می‌دهد. روزیل و همکاران (21) نیز همین خصوصیات را برای میانگین قابلیت تولید ذکر کرده‌اند. میانگین قابلیت تولید ارتقام زردکه، آرمان‌پرورسکی، لوج و ارتقام خشکی از سایری‌های گوناگونی ممکن از عملکرد بالایی در شرایط آبیاری مطلوب و آبیاری محدود برخوردند.

از مطالعه معیار تحمیل خشکی، چنین بررسی‌های که ممکن است ارتقام‌های بالایی داشته تحمیل مطلوبی به تنش رطوبی نشان داده‌اند. هم‌بهرمان 25 كه بیشترین تحمیل را نسبت به خشکی داشت از عملکرد مناسب (چه در شرایط مطلوب و چه در شرایط تنش رطوبی) برخوردار بود. این رقم
شکری و ویانگین فابلیت تولید در رنگی دروم و از نظر مقدار تحمل به شکری در مقام سوم قرار گرفته است.

در میان ارقام مورد آزمایش آزمایشگری در عین برتری نسبت از نظر پانزیل عملکرد دانه، مقاوم به شکری است. این رقم از لحاظ شاخص حساسیت به شکری، شاخص تحمل

مراجع

1. اهداهی، ب. 1353. ارزیابی و مقایسه چهارد عازه آنتاگونیست (Helianthus annuus L.) کنگره بین المللی آنتاگونیست، رومانی (بخارست).

2. اهداهی، ب. 1373. انتخاب برای مقاومت به شکری، مقالات کلیدی اولین کنگره زراعت و اصلاح نیازهای ایران. انتشارات دانشگاه کشاورزی تهران، کرمان، صفحات 26-34.

3. خواجه پور، م. 1375. تولید نیمه شکری، انتشارات جهاد دانشگاهی دانشگاه صنعتی اصفهان. صفحه 251.

4. رضایی، س. و م. کرمی. 1376. ارزیابی امکانات زراعتی راکرد بریش و شاخص‌های رشد آنتاگونیست. مقالات چهاردین کنگره علوم زراعت و اصلاح نیازهای ایران. دانشگاه صنعتی اصفهان. صفحه 191.

5- کرمی، ع. و. و. سبزی. 1375. ارتقای آبیاری و تراکم پوست در عملکرد و بروز دانه آنتاگونیست. نشریه تحقیقاتی شماره 1 دانشگاه کشاورزی دانشگاه شیراز. صفحه 15.

6- مظفری، ک. و. ع. و. زناتی. 1375. بررسی اثر تنش شکری در برخی از صفات مورفوفیزیولوژیکی و اجزای عملکرد آنتاگونیست (Helianthus annuus L.) نهال و پذیر، جلد دوازدهم، شماره 3، صفحات 33-34.

