لزوم توجه به مفروضات مدل زنتیکی تجزیه دای آلل

عبدالمجید رضائی و ندا امیری

چکیده

به منظور بررسی صحبت فرضیات تجزیه دای آلل از تلاهی‌های ۶ زنتیکی پولاف زراعی و وحشی استفاده گردید. سه سؤال به تعداد زئیجی از تفاوت اندازه‌ها و نسبت‌ها و درصد بردنیتی و دانه بررسی شد. در تجزیه دای آلل به روش گریفینگ، میانگین مربوطات تلاهی‌های معموس برای کلیه صفات معنی دار بود. اما بیندازه‌های تجزیه واریانس هیمن، اثر پایه‌ای برای هر یک از صفات علنی دار گردید. ولی برای دستیابی صحبت مدلهای آللی آنتی پزشکی، عدم وجود پوزیتیوی نمایندگان و تفاوت‌های ممکن بر روی تلاهی‌های دوتئی و درصد تغییر می‌شود. برای ارجاع به روشهای اولیه و بررسی تفاوت‌های آللی و دانه، روش گریفینگ و تفاوت‌های اختلال معنی‌داری و شبکه ارتباطی و بایان فرضیات به ترتیب بررسی شد. در حالیکه کاربرد بهتر نبود. روش گریفینگ که از روشهای گریفینگ استفاده کرده‌است بهبود صحت نتایج شده است.

واژه‌های کلیدی: - اثر زئیجی، اجزای واریانس، پارامترهای زنتیکی، تلاهی‌های معموس، قابلیت ترکیب پذیری، قابلیت تورث، پولاف.

مقدمه

روش تجزیه دای آلل نیز که کاربردهای رواانی در زنتیکی کمی و اصلاح نیازهای داده شده در زنتیکی نیست. به طوری که تجزیه و حفظ صحبت و ارائه نتایج عمیق می‌باشد. مستلزم برقرار بودن فرضیات آن است (۱۲ و). در کلیه مطالعات زنتیکی که یک این که بتوان روابط زنتیکی موجود در جامعه را با فرمول‌های ریاضی نشان داد و به این اتکایی از مدل‌های زنتیکی استفاده می‌گردد. مطالعه ایمن مدل‌ها برای فرضیات استوار و حاصل می‌شود. به ترتیب استاد و دانشجوی سایپ کارشناسی ارشد، گروه زراعت، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
علم کشاورزی و منابع طبیعی/جلد دوم / شماره اول / پاییز ۱۳۷۷

۱- والدین دیپلوئید باشند و یا از تناوت دیپلورید پیروی کنند، ۲- والدین هموزیگوت باشند، ۳- اختلافی بین تلاشگران معلوم وجود نداشته باشد، یا به علت دیگر اثرات پایه مادی مشاهده شود، ۴- آللهایی کننده وجود نداشته باشد.

پژوهش‌ها

به منظور انجام این مطالعه از ۶ تا ۱۰ پژوهش دیپلوریدی با شماره‌های P16137841, P161437841, P161437841, P161437841, P161437841, P161437841 با عملکرد و دین تلاشگران دای آللهای P161437841 و P161437841 استفاده شد. کلیه سالانه میانگین بین ۴ و ۶ والد انجام گردید و حاصل (۳۵ تا ۴۰ تا) از F۱ و والد دیپلوریدهای کاملاً تصادفی نهایی دربدرک در مرحله تحقیقاتی دانشگاه آیا تقوم، مورد بررسی قرار گرفت.

مورد بررسی قرار گرفت. به منظور ۶ متری به فاصله دیش‌های ۵۲ سانتی‌متر بود. کلیه مشترک‌ها به مرحله تراشه نزدیک ۶۰۵ و ۵۵۵ کیلوگرم در هر کیلوگرم خرد مصرف شد.

در صرف تعداد زود ناکام‌ها گردیده و سیستمی (سالینیت) درصد پروتئین ساقه و دانه مورد بررسی قرار گرفت. به منظور بررسی وجود اثرات تلاشگران معمولی، داده‌های حاصل براساس روش گروهی-ای-میانگین (۱۰) تجزیه شدند. همچنین برای محاسبه و رای اثرات ترکیب پذیری عضوی و خصوصی و اجزاء واریانس زنیکی مدل فرضیات (HBS) و (۱۰) برای محاسبه قابلیت توانایی عمومی و نیز از روابط زیر استفاده شد که در آنها:

\[
H_{BS} = \frac{\sigma^2} {\sigma^2 + \sigma^2 + \sigma^2} \\
H_{NS} = \frac{\sigma^2} {\sigma^2 + \sigma^2 + \sigma^2}
\]

جهت بررسی وجود اثرات مادی، از تجزیه واریانس دای آلله به روش همین (۱۴) که متویجینکر (۱۹) آن را به تصمیم گرفته هدف از این مطالعه بررسی روش‌های ارزیابی فرضیات دای آلله به روش همین (۱۴) که متویجینکر (۱۹) آن را به تصمیم گرفته
جدول 1 - تجزیه واریانس دای آلله روی روشن‌های ۱۶

<table>
<thead>
<tr>
<th>جنگل و هیمن (۱۶)</th>
<th>گرینگ (۱۰)</th>
<th>درجه آزادی</th>
<th>متغیر تغییر</th>
<th>ζ (تیپ) ها (۱)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p\left(\hat{D} + \hat{F} + H_1 + H_2 + E\right)$</td>
<td>GCA</td>
<td>p_{-1}</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{p_{-1}} H_2 + E$</td>
<td>SCA</td>
<td>$p\left(p_{-1}/2\right)$</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{p_{-1}} \hat{H}^2 + E$</td>
<td>SCA</td>
<td>p_{-1}</td>
<td>b_1</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{p_{-1}} \hat{V} + E$</td>
<td>SCA</td>
<td>$p\left(p_{-1}/2\right)$</td>
<td>b_2</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{p_{-1}} \hat{V} + E$</td>
<td>SCA</td>
<td>$p\left(p_{-1}/2\right)$</td>
<td>b_3</td>
<td></td>
</tr>
<tr>
<td>طراحی معمول</td>
<td>طراحی معمول</td>
<td>p</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>طراحی معمول</td>
<td>$\left(p_{-1}/2\right)$</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نکاراد (r)</td>
<td>$\left(p_{-1}/2\right)$</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نکاراد (r)</td>
<td>$\left(p_{-1}/2\right)$</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نکاراد (r)</td>
<td>$\left(p_{-1}/2\right)$</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نکاراد (r)</td>
<td>$\left(p_{-1}/2\right)$</td>
<td>h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

این روشها، در صورت ارتباط مدل و عدم صحت فرضیات، با حذف و تغییرات و انجام مجدد محاسبات، صحت فرضیات کنترل گردید. سپس با محاسبه میانگین واریانس رضایت از (\(V_r\)) واریانس میانگین رضایت از (\(V_r\))، میانگین کوواریانس رضایت از (\(m_{11}\)) و میانگین نتایج (\(m_{01}\)) پارامترهای \(F, H_1, H_2, D\) برای شدت همکاری (۲۴)، مبتی برای که به‌روندهای دای آلله کوچک اریک می‌باشند، برآورد های تابع آنها با استفاده از روابط زیر محاسبه گردید.

\[
E(F) = F - \frac{\hat{V}}{p}
\]

\[
E(H_1) = H_1 + \frac{\hat{h}^2}{p} - H_2
\]

\[
E(H_2) = H_2 + \frac{\hat{h}^2 + \hat{v} - \hat{h}^2}{p} + \frac{\hat{v}^2}{p}
\]

1- Joint (pooled) estimate
جدول ۲ - تجزیه واریانس دای آلله به روش ۱ گریفینگ برای ارتفاع‌گیاه درگیرده‌افشانی و درصد پروتئین ساکته در ۲۴ نمونه (۶ و ۲۰ تنها) یولف

<table>
<thead>
<tr>
<th>امید رضایی (مدل ثابت)</th>
<th>میانگین مربوط به درصد پروتئین</th>
<th>مجموع مربوط به درصد پروتئین</th>
<th>درصد پروتئین</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین مربوط به درصد پروتئین</td>
<td>۰/۰۸</td>
<td>۰/۷۰</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
</tr>
<tr>
<td>تکرار</td>
<td>۳</td>
<td>۴</td>
<td>۳</td>
<td>۴</td>
<td>۳</td>
<td>۴</td>
<td>۳</td>
<td>۴</td>
<td>۳</td>
<td>۴</td>
<td>۳</td>
</tr>
<tr>
<td>نتیجه‌گیری</td>
<td>زئوتیپ‌ها</td>
<td>۴</td>
</tr>
<tr>
<td>هر یک</td>
<td>۴</td>
</tr>
</tbody>
</table>

در این روابط: H^0 پایداری از هم می‌بیند. برای H^1, H^2, H^3, H^4, H^5, H^6, H^7, H^8, H^9, H^{10}، H^{11} به ساده‌ترین روابط فوق، از دو معادله و یا مهجول ژیر استفاده شد.

$pH^0 = pH^1 + h^0 - H^0$

$pH^0 = p^0H^1 + ph^0 + 2pH^1 - 6pH^0 + 6H^1$

نتایج بین زئوتیپ‌ها باید کلیه صفات در سطح احتمال یک درصد معنی‌دار باشند (جدول ۲ تا ۴). بهترین و بانوان از اولین معادله حاصل از آنها از نظر زئوتیپ مصرف‌های و اندازه، پایداری کامل‌ها و شناسایی جزئیات برای این زئوتیپ‌ها وجود داشت. نتایج بنیادی تا زئوتیپ به روش گریفینگ، برای ارتفاع‌گیاه درگیرده‌افشانی و درصد پروتئین ساکته در جدول ۲ و تناوب تجزیه واریانس دای آلله به روش میانگین میانگین (متوسط مجموعه)، برای این صفات در جدول ۲ و ۴ آورده شده.
جدول 3 - تجزیه واریانس داده آلل بر مبنای روش هایمن (بایرش متروجینکی) برای ارتباط گیاه دردگردانشی در زنوتیپ (6 والد و 30 تلاقی) یولاف

<table>
<thead>
<tr>
<th>مجموع مربوطات منابع تغییر درجات آزادی</th>
<th>تکرار 1</th>
<th>تکرار 2</th>
<th>تکرار 3</th>
<th>تکرار 4</th>
<th>داده‌ها (ξ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>1328/83</td>
<td>2550/83</td>
<td>177/10/24</td>
<td>11976/94</td>
<td>13183/91</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>2005/95</td>
<td>255/99</td>
<td>1745/92</td>
<td>298/92</td>
<td>823/85</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>78/69</td>
<td>110/28</td>
<td>252/23</td>
<td>132/55</td>
<td>136/56</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>168/56</td>
<td>244/25</td>
<td>257/25</td>
<td>339/87</td>
<td>339/83</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>996/99</td>
<td>230/57</td>
<td>259/57</td>
<td>239/92</td>
<td>239/89</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>158/98</td>
<td>248/82</td>
<td>259/82</td>
<td>239/92</td>
<td>239/89</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>24/53</td>
<td>20/82</td>
<td>259/82</td>
<td>239/92</td>
<td>239/89</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>198/95</td>
<td>169/95</td>
<td>131/93</td>
<td>131/93</td>
<td>131/93</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>91/83</td>
<td>95/92</td>
<td>169/95</td>
<td>131/93</td>
<td>131/93</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>169/95</td>
<td>131/93</td>
<td>131/93</td>
<td>131/93</td>
<td>131/93</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>83/33</td>
<td>78/69</td>
<td>78/69</td>
<td>78/69</td>
<td>78/69</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>81/51</td>
<td>78/69</td>
<td>78/69</td>
<td>78/69</td>
<td>78/69</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>44/22</td>
<td>44/22</td>
<td>44/22</td>
<td>44/22</td>
<td>44/22</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>41/91</td>
<td>41/91</td>
<td>41/91</td>
<td>41/91</td>
<td>41/91</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>75/15</td>
<td>75/15</td>
<td>75/15</td>
<td>75/15</td>
<td>75/15</td>
</tr>
<tr>
<td>میانگین میلی‌مگاهریک</td>
<td>57/24</td>
<td>57/24</td>
<td>57/24</td>
<td>57/24</td>
<td>57/24</td>
</tr>
<tr>
<td>مجموع کل</td>
<td>58346/55</td>
<td>58346/55</td>
<td>58346/55</td>
<td>58346/55</td>
<td>58346/55</td>
</tr>
</tbody>
</table>

درصد معنی‌دار در سطح احتمال 0.01

درصد معنی‌دار می‌باشد. همین توجه برای درصد پوست‌دانه نیز مشاهده شد (جدول تجزیه واریانس گزارشی نشده است). نظر به این که معنی‌دار بودن تلاش‌های محکوم در روش‌های گیاه در سطح احتمال 0.115 و 385/52 حاصل می‌گردد که در سطح احتمال یک

پژوهش: به تجزیه واریانس مدل مانی گیاهی تجزیه دای آلل

از لحاظ توجه به منفعت مدل مانی گیاهی تجزیه دای آلل
جدول 4 - تجزیه و بررسی دای آلک برمنیای روش همین (با روش متروجینکی) برای درصد پروتئین سایه در
ژنوتیپ (6 و 30 تلاشی) یولاف

<table>
<thead>
<tr>
<th>مجموع مربوطات</th>
<th>منابع تشکیل</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>تکرار 1</td>
<td>تکرار 2</td>
</tr>
<tr>
<td>داده‌های تکرار 1</td>
<td>13/8/8*</td>
<td>51/9/29</td>
</tr>
<tr>
<td></td>
<td>67/19**</td>
<td>33/5/15</td>
</tr>
<tr>
<td></td>
<td>5/88</td>
<td>88/2/2</td>
</tr>
<tr>
<td></td>
<td>0/28</td>
<td>0/28</td>
</tr>
<tr>
<td></td>
<td>2/72</td>
<td>12/6/0</td>
</tr>
<tr>
<td></td>
<td>8/26*</td>
<td>71/43</td>
</tr>
<tr>
<td></td>
<td>6/10</td>
<td>50/19</td>
</tr>
<tr>
<td></td>
<td>0/80</td>
<td>2/21</td>
</tr>
<tr>
<td></td>
<td>0/20</td>
<td>33/5/6</td>
</tr>
<tr>
<td></td>
<td>2/29</td>
<td>32/3</td>
</tr>
<tr>
<td></td>
<td>3/09</td>
<td>12/9/8</td>
</tr>
<tr>
<td></td>
<td>9/36</td>
<td>12/9/8</td>
</tr>
<tr>
<td></td>
<td>0/93</td>
<td>2/29</td>
</tr>
<tr>
<td></td>
<td>9/11</td>
<td>28/9</td>
</tr>
<tr>
<td></td>
<td>3/09</td>
<td>96/8</td>
</tr>
<tr>
<td></td>
<td>5/14</td>
<td>77/16</td>
</tr>
<tr>
<td></td>
<td>2/84</td>
<td>85/11</td>
</tr>
<tr>
<td></td>
<td>857/95</td>
<td>143</td>
</tr>
</tbody>
</table>
جدول 5 - تجزیه و تحلیل داده‌ها بر اساس نتایج مربوط به روش‌های پیشنهادی برای ارتفاع گیاه در سه گروه زنوتیپی

<table>
<thead>
<tr>
<th>مجموع مربوطات</th>
<th>درجه تغییر</th>
<th>زنوتیپ ها (f)</th>
<th>گروه (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بای اجماع داده‌های ۲ تکرار ۴</td>
<td>۱۲۲/۱/۳۵</td>
<td>۱۰۰/۱۱۹/۵۱</td>
<td>a</td>
</tr>
<tr>
<td>میانگین مربوطات</td>
<td>۱۳۷/۳/۲۰</td>
<td>۱۳۳/۲/۸۹</td>
<td>b</td>
</tr>
<tr>
<td>تکرار</td>
<td>۱۵۳/۱/۳۵</td>
<td>۱۳۳/۲/۹۵</td>
<td>c</td>
</tr>
<tr>
<td>۹/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>۱۰۶/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>۱۰۹/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>۱۱۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>۱۱۹/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>۱۲۳/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>۱۲۷/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>۱۳۱/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>۱۳۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>۱۳۹/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>۱۴۳/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>۱۴۷/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>۱۵۱/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>۱۵۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>۱۵۹/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>۱۶۳/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>۱۶۷/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>۱۷۱/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>۱۷۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>۱۷۹/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>۱۸۳/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>۱۸۷/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>۱۹۱/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>۱۹۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>۱۰۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>۱۰۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>۱۱۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>DD</td>
<td></td>
</tr>
<tr>
<td>۱۱۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>EE</td>
<td></td>
</tr>
<tr>
<td>۱۲۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>FF</td>
<td></td>
</tr>
<tr>
<td>۱۲۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>GG</td>
<td></td>
</tr>
<tr>
<td>۱۳۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>HH</td>
<td></td>
</tr>
<tr>
<td>۱۳۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>۱۴۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>JJ</td>
<td></td>
</tr>
<tr>
<td>۱۴۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>KK</td>
<td></td>
</tr>
<tr>
<td>۱۵۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>LL</td>
<td></td>
</tr>
<tr>
<td>۱۵۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>MM</td>
<td></td>
</tr>
<tr>
<td>۱۶۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>NN</td>
<td></td>
</tr>
<tr>
<td>۱۶۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>OO</td>
<td></td>
</tr>
<tr>
<td>۱۷۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>PP</td>
<td></td>
</tr>
<tr>
<td>۱۷۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>QQ</td>
<td></td>
</tr>
<tr>
<td>۱۸۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>RR</td>
<td></td>
</tr>
<tr>
<td>۱۸۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>SS</td>
<td></td>
</tr>
<tr>
<td>۱۹۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>TT</td>
<td></td>
</tr>
<tr>
<td>۱۹۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>UU</td>
<td></td>
</tr>
<tr>
<td>۲۰۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>۲۰۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>WW</td>
<td></td>
</tr>
<tr>
<td>۲۱۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>۲۱۵/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>YY</td>
<td></td>
</tr>
<tr>
<td>۲۲۰/۱/۹۵</td>
<td>۱۹۳/۲/۸۸</td>
<td>ZZ</td>
<td></td>
</tr>
</tbody>
</table>

صلح سه فرست دای آلل (فکنان آلللی جدا چندتایی، عدم وجود پیوسنتیگی زنی و اثرات متقابل بین مکانیات زنی) امکان تجزیه

دای آلل به روش هیمین و جینکنز (۱۳، ۱۵ و ۱۶) از طریق استفاده از میانگین نتایج مکمکس فاکتور آماده. هیمین (۱۳)
جدول 6 - تجزیه و ارزیابی دای آلی بر مبنای روش هیمن (با روش متروجینکوز) برای تعداد روز ناگووه افشانی در
ژنوتیپ (6 و 30 تکلیف) پولاف

<table>
<thead>
<tr>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
<th>درجه آزادی</th>
<th>عنوان تغییر</th>
<th>درجه آزادی</th>
<th>عنوان تغییر</th>
<th>درجه آزادی</th>
<th>عنوان تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>3073**</td>
<td>4/1755</td>
<td>0/179</td>
<td>2/205</td>
<td>1/176</td>
<td>375</td>
<td>زنوتیپ (h)</td>
<td>a</td>
</tr>
<tr>
<td>697**</td>
<td>5/2436</td>
<td>0/179</td>
<td>2/27</td>
<td>1/52</td>
<td>1/27</td>
<td>5</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>383**</td>
<td>1/321</td>
<td>0/42</td>
<td>0/42</td>
<td>1/41</td>
<td>15</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8837**</td>
<td>0/18</td>
<td>0/17</td>
<td>0/19</td>
<td>0/19</td>
<td>1</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188**</td>
<td>0/938</td>
<td>0/20</td>
<td>0/20</td>
<td>0/20</td>
<td>5</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>955**</td>
<td>0/29</td>
<td>0/19</td>
<td>0/19</td>
<td>0/19</td>
<td>3</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350**</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>5</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155**</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>10</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>درجه آزادی (r)</td>
<td>3</td>
<td>خطای کل (rt)</td>
<td>105</td>
</tr>
<tr>
<td>1904</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>rxa</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>rxb</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>808</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>rxc</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>rxd</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>کل</td>
<td>133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ به جزئیتی ها که با خطای کل آزمون شدهاند، بقیه منابع تغییر با ارتباط خود با تكرار آزمون گردیدهاند.

c b d a -

- معنی دار در سطح احتمال 1 درصد.

** گزارش نموده هنگامی که اثرات پایه مادی معمولی در مسئله، ممکن است بروآورد و ارزیابی ها بیشتر از حد واقعی خود باشد. برای احترام از این امر می‌توان با پرشور دادن در صورتی که فقط یک یا دو واحد مستری وجود این اثرات باشند، آنها را

52
نهایت انتشار غلیبیت در بین افرادی که این موضوع از بخشی از انحراف غلیبیت که در بین F_1 مشترک و منحصرا به فردست ناشی می‌گردد ($معنی دار نیست$).

در رابطه با h_2، ویژگی اثرات غلیبیت یک چجه (b) در میانگین سه‌گانه را در میان افراد اثرات غلیبیت (b) باین این صفت تدارد. با این وجود، معنی دار نیست ($b=0$ باین درصد پرۆتێئین ساقه G)، معنادار از انحرافات غلیبیت مشترک و $پرۆتێئین$ در بین h_2 مشترک و منحصرا به فردست ناشی می‌گردد (b). اما معنی دار $b=1$ باین ارتفاع $بیرێک$ در سیسک (جدول 4)، علاوه بر انحرافات غلیبیت مشترک در بین h_2 مشترک و منحصرا به فردست ناشی می‌گردد (b). میانگین ارتفاع به طور منطقه ارتفاع گیاه در که لیکن هر 7 به سرعت h_2 مشترک و منحصرا به فردست ناشی می‌گردد (b).
جدول 7 - تجزیه واریانس $W_r - V_r$ و $W_r + V_r$
پرداختن سایه در تلاش‌های دای آلل 6 والد بولاف

<table>
<thead>
<tr>
<th>میانگین مرعوبات</th>
<th>درصد پروتئین</th>
<th>منابع تفییر درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارتفاع گیاه در گردید افشانی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/07</td>
<td>3</td>
<td>تکرار 1079/63</td>
</tr>
<tr>
<td>2/64</td>
<td>5</td>
<td>$W_r + V_r$ 29646/21</td>
</tr>
<tr>
<td>1/64</td>
<td>15</td>
<td>خطا 3707/20</td>
</tr>
<tr>
<td>27/24**</td>
<td>3</td>
<td>تکرار 2111/92</td>
</tr>
<tr>
<td>6/55</td>
<td>5</td>
<td>$W_r - V_r$ 2593/10</td>
</tr>
<tr>
<td>2/81</td>
<td>15</td>
<td>خطا 580/16</td>
</tr>
</tbody>
</table>

** - معنی‌دار در سطح احتمال 1 درصد

جدول 8 - پرآور德 ضربی رگرسیون V_r روزه W_r برای صفت ارتفاع گیاه در گردید افشانی و درصد
پرداختن سایه در تلاش‌های دای آلل 6 والد بولاف

<table>
<thead>
<tr>
<th>درصد پروتئین ساچه</th>
<th>ارتفاع گیاه در گردید افشانی</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرآورده 2 تکرار</td>
<td>β</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>درصد پروتئین ساچه</th>
<th>ارتفاع گیاه در گردید افشانی</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرآورده 2 تکرار</td>
<td>β</td>
<td></td>
</tr>
</tbody>
</table>

خطای استاندارد زیاد، این ضربی فاقد اختلاف معنی‌دار با صفر است. اما در پرآورده مشترک 2 تکرار، جمع جبری مجموع حاصل ضربی‌های تکرارهای مختلف، پرآورده کوچک به دست داده است. این موضوع اهمیت استفاده از پرآورده مشترک تکرارهای مختلف و مقایسه آن با ضربی رگرسیون حاصل از میانگین داده‌ها را نشان می‌دهد. به‌هر حال پرآورده پروتئین ساچه نیز با توجه به آزمون ضریب رگرسیون، نتیجه‌گیری
جدول ۹ - تجزیه واریانس برای صفت ارتفاع گیاه در گردیده افشانی و درصد $W_{r} + V_{r}$ و $W_{r} + V_{r}$
پرتوتن سانتی در تلاقی‌های دای آلل ۵ و ال (حفاظ یک و والد) پولاف

<table>
<thead>
<tr>
<th>میانگین مرجع</th>
<th>درصد پرتوتن</th>
<th>درجات آزادی</th>
<th>منحنی تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع گیاه در گردیده افشانی</td>
<td>۲۳۲۳/۸۸/۳۳</td>
<td>۲</td>
<td>تکرار</td>
</tr>
<tr>
<td></td>
<td>۲۵۰۲/۱۲/۱۲</td>
<td>۴</td>
<td>$W_{r} + V_{r}$</td>
</tr>
<tr>
<td></td>
<td>۲۱۹۵/۳۳/۶۳</td>
<td>۱۲</td>
<td>خطأ</td>
</tr>
<tr>
<td></td>
<td>۱۰۵۷/۶۷/۶</td>
<td>۳</td>
<td>تکرار</td>
</tr>
<tr>
<td></td>
<td>۵۵۵۲/۱۷/۶</td>
<td>۴</td>
<td>V_{r}</td>
</tr>
<tr>
<td></td>
<td>۲۰۷۶/۸۷/۸</td>
<td>۱۲</td>
<td>خطأ</td>
</tr>
</tbody>
</table>

* و ** - به ترتیب معنی دار در سطوح احتمال ۰.۰۵ و ۰.۰۱ درصد

جدول ۱۰ - برآورد ضریب رگرسیون روی V_{r} برای صفت ارتفاع گیاه در گردیده افشانی و درصد W_{r}
پرتوتن سانتی در تلاقی‌های دای آلل ۵ و ال (حفاظ یک و والد) پولاف

<table>
<thead>
<tr>
<th>درصد پرتوتن سانتی</th>
<th>ارتفاع گیاه در گردیده افشانی</th>
<th>پارامتر β</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرآورد از میانگین ۴ تکرار</td>
<td>پرآورد مشترک ۴ تکرار</td>
<td>پرآورد مشترک ۴ تکرار</td>
</tr>
<tr>
<td>۱/۹۶۸</td>
<td>۱/۸۷۲</td>
<td>۱/۹۶۸</td>
</tr>
<tr>
<td>۳/۵۵۸</td>
<td>۳/۹۱۳</td>
<td>۳/۵۵۸</td>
</tr>
<tr>
<td>۴/۱۶۴</td>
<td>۴/۱۶۴</td>
<td>۴/۱۶۴</td>
</tr>
</tbody>
</table>

** - معنی دار در سطح احتمال ۰.۰۱ درصد

برای ارتفاع گیاه در گردیده افشانی، بیانگر غیر یکنواختی از آن جایی که برای هر دو صفت ارتفاع گیاه در گردیده افشانی و درصد پرتوتن سانتی، ضرایب رگرسیون کوچکتر از یک بوده اما به حذف یک والد با V_{r} و W_{r} قابل معمول (نمی‌توان به همین یک والد بود) چنین و نسبتاً V_{r} و W_{r} و مجدد محاسبات فوق پروری ۵ والد انجام شد (جدول ۹ و ۱۰). نتایج تجزیه بر روی ۵ والد

شکل فرضیات صادق نمی‌باشد.
علم کششی و منابع طبیعی/جلد دوم/شماره اول/تیر 1377

و یک در سطح احتمال یک درصد بود (جدول 10). ضرایب رگرسیون روي V 3 برای توانهای آمریکا تا چهارم به ترتیب
برابر 91/87, 99/23 و 93/46 بود. که با حدف تکرار چهارم، برآوردهای مشترک ضریب رگرسیون نیز فاقد اختلاف معنی
دار با یک گردید (1/2 = 1). بنابراین نتیجه گیری شده که
اختلاف معنی دار ضریب رگرسیون مشترک با یک، ناشی از
تکرار چهارم بوده و به عنوان زنینی مربوط نمی شود. بنابراین
با تجزیه بروری 5 والد، فضایی مدل زنینی هیپ و جینگر
برقرار می شود. با تجزیه بروری 5 والد برای ترتیب رشد در
سطح احتمال 5 درصد معنی دارد و
(جدول 9، (لم: V 3 + V 6) می‌باشد.)، و در این حالت
زنینی ریس از مدل نهادن (جدول 10)، دار می‌باشد
در سطح احتمال 5 درصد) با معنی
ور V 3 + V 6 دار B (در جدول 3) می‌باشد در
تیزی و V 6 دار B (در جدول 3) می‌باشد در
واروند (جدول 7) به ترتیب برای این صفت نیز فضایی
صداق بود و تجزیه بروری 5 والد انجام شد. با این وجود برای
بدرس این عدم صحت فضایی بروری نتایج تجزیه هیپ و
و جینگر، محاسبات مربوط به دو صفت ارتفاع گیاه در گردبه
افشانی و درصد پروتروکس بیش از صورت مجزا بروری 5 والد
(بین برقراری فضایی) و V 5 والد (سطح فضایی) انجام
گردید (جدول 7). برای درصد پروتروکس دانه نیز ضرایب رگرسیون
روی W 3 از یک انحراف ثابت و با توجه به این
که جهت صحت مدل نیاز به حدف حداقتی در والد بود، به
محاسبه پاپرامرهای زنینی صرف نظر شد.

پارامترهای زنینی و شاخص‌های آماری برای ارتفاع‌گیاه در
رسیدگی و تعادل روز تاگرده افسانه، در جدول 11 نشان داده
شدند. مقدار H / D برابر و ه 3/5 نسبت به مقادیر اولیه X 3 H / D برابر و ه 3/5 نسبت به مقادیر اولیه X 3
و یک در سطح احتمال یک درصد بود (جدول 10). ضرایب

جدول 11 - برآورد پارامترهای زنیکی و شاخصهای آماری در روش همین و جینکز برای ارتفاع گیاه در سه دستگاه و تعداد روز تا گذرا از اکتشاف

در ۶۰ نمونه (۶ والد و ۳۰ نسلیه) پیوند

<table>
<thead>
<tr>
<th>مقدار برآورد شده</th>
<th>پارامترهای زنیکی و شاخصهای آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع گیاه در رشدگی</td>
<td>تعداد روز تا گذرا از اکتشاف</td>
</tr>
<tr>
<td>۱۸۹۱</td>
<td>۵۸/۰۶۹</td>
</tr>
<tr>
<td>۱۸۱۹</td>
<td>۷۷/۲۲</td>
</tr>
<tr>
<td>۱۸۸۶</td>
<td>۷۷/۸۴</td>
</tr>
<tr>
<td>۱۸۱۵</td>
<td>۸۴/۲۳</td>
</tr>
<tr>
<td>۱۸۱</td>
<td>۱۸/۸۸</td>
</tr>
<tr>
<td>۱۸۸۹</td>
<td>۲۷/۹۸</td>
</tr>
<tr>
<td>۱۸۰۰</td>
<td>۱۷۶/۱۲</td>
</tr>
<tr>
<td>۵۷۷۲</td>
<td>۱۰۲/۶۴</td>
</tr>
<tr>
<td>۶۹۰۹</td>
<td>۲۲۴/۱۰</td>
</tr>
<tr>
<td>۱۹۰۳</td>
<td>-</td>
</tr>
<tr>
<td>۹۴۷۷</td>
<td>۱/۲۹</td>
</tr>
<tr>
<td>۲۵۴۰</td>
<td>۱/۹۳</td>
</tr>
<tr>
<td>۲۰۶۰</td>
<td>۱/۴۷</td>
</tr>
<tr>
<td>۸۲۶۰</td>
<td>۱/۱۱</td>
</tr>
<tr>
<td>۸۲۰۱</td>
<td>۱/۸۸</td>
</tr>
<tr>
<td>۸۳۰۰</td>
<td>۱/۷۹</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دانشجویان و درصد پرورشی ساقه با توجه به حاصل ۶ والد مشاهده شد (که در این حالت فرضیات مدل زنیکی همین و جینکز خصوصیات زنیکی رشد گندم و رشد قیاسی (۲) در مطالعه شاخص پرداخت بروز و از گندم پایه نیز استدلال می‌کنند.) به پاساژی که در این مطالعه
جدول ۱۲ - برآورد پارامترهای زنیکی و شاخصهای آماری در روش هیمن و چینهکر برای ارتفاع گیاه در گروه افزایش و درصد پروتئین ساکه در حالت تجزیه بر روی ۶ و ۵ والد (حذف یک والد)

<table>
<thead>
<tr>
<th>درصد پروتئین ساکه</th>
<th>ارتفاع گیاه در گروه افزایش</th>
<th>پارامتر های زنیکی و شاخصهای آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶ والد</td>
<td>۵ والد</td>
<td></td>
</tr>
<tr>
<td>۴/۰۸</td>
<td>۴/۰۹</td>
<td>۹۸/۲۲</td>
</tr>
<tr>
<td>۳/۰۹</td>
<td>۳/۱۷</td>
<td>۴۲۷/۲۲</td>
</tr>
<tr>
<td>۲/۸۵</td>
<td>۲/۸۱</td>
<td>۴۰۴/۱۵</td>
</tr>
<tr>
<td>۱/۲۵</td>
<td>۱/۰۹</td>
<td>۱۴۴/۱۱</td>
</tr>
<tr>
<td>۱/۶۷</td>
<td>۱/۶۳</td>
<td>۲۸/۹۸</td>
</tr>
<tr>
<td>۳/۳۲</td>
<td>۳/۹۹</td>
<td>۴۹۳/۶۴</td>
</tr>
<tr>
<td>۷/۵۰</td>
<td>۷/۵۱</td>
<td>۴۳۰/۹۳</td>
</tr>
<tr>
<td>۴/۲۴</td>
<td>۴/۲۱</td>
<td>۱۸۶/۲۶</td>
</tr>
<tr>
<td>۲/۰۸</td>
<td>۲/۸۵</td>
<td>۶۲/۸۱</td>
</tr>
<tr>
<td>۱/۰۲</td>
<td>۱/۵۰</td>
<td>۱/۴۲</td>
</tr>
<tr>
<td>۱/۸۶</td>
<td>۱/۸۷</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>۱/۱۱</td>
<td>۱/۳۷</td>
<td>۷/۴۵</td>
</tr>
<tr>
<td>۱/۰۲</td>
<td>۱/۳۸</td>
<td>۰/۸۲</td>
</tr>
<tr>
<td>۰/۷ ۲</td>
<td>۰/۱۱۵</td>
<td>۰/۶۳</td>
</tr>
<tr>
<td>۰/۶۷</td>
<td>۰/۹۱</td>
<td>۰/۸۹</td>
</tr>
<tr>
<td>۰/۰۷</td>
<td>۰/۶۸</td>
<td>قابلیت توآور خصوصی</td>
</tr>
</tbody>
</table>

به این که در تاثیر F۱ و یا ۲ به حالت اعتیاد زنیکهای هموزیگوت، احتمال وجود آلیهای فیلی را تایی پایین است (۵).

styled: صادق نیلوفر، ولی پس از حذف یک والد و احراز صحت فرضیات غلبه نسبی حاکم بودن، با احتمال قوی این نتیجه از فوق غالبیت کاذب نا اثبات شد. همچنین با توجه
لزوم توجه به مفروضات مدل زنتیکی تجزیه دای آلل

ازفاینات. در مجموع، درجه غلیط در روش گرفتگی در هر دو حالت 6 و 5 ولادی کمتر از روش هیمن و جینکز بود. از آن جایی که در روش 1 گرفتگی برای محاسبه مجموع مربوطات اطلاعات مربوط به والدین نیز استفاده می‌شود SCA ابزاری ممکن است واریانس SCA را در این روش 2 گرفتگی افزایش بخشد. اما واریانس SCA در روش‌های 3 و 4 گرفتگی تحت تأثیر این امر قرار نمی‌گیرد (17). لذا احتمالاً یکی از دلایل یکسان کمتر درجه غلیط در روش گرفتگی (جدول 13) در مقایسه با این روش هیمن و جینکز SCA (جدول 12) در هر دو حالت 6 و 5 ولادی، برآورد ارتباط SCA مدل SCA روش 2 گرفتگی می‌باشد. به علت ترتیب، در صورتی که جهت محاسبه SCA جدول 3 و 4 به جای 146 (معدل SCA درجدها افغانی و حاصل سedar، مقادیر 1 برای ارتفاع گیاه 19/6) 96/9 به دست آمده. به همین ترتیب اگر در حالت 5 ولادی نیز از 12 یا WA سedar گرفتگی استفاده شود (جدول 12) و درصد پروتین ساقه به ترتیب 81/9 و 22/1 می‌شود. محاسبات اختلاف بین روش گرفتگی و هیمن و جینکز را کمتر می‌نماید، پس از امکان، بررسی زمانی که از 5 ولاد استفاده شده و فرضیات صادق می‌باشد. اما برای مقایسه جدول 12 و 13 مشاهده می‌شود که روش هیمن و جینکز بیشتر از روش گرفتگی

جهت تأثیر ارتباط مدل زنتیکی قرارگیرنده است، به طوری که در حالات 6 و 1/5 والدی برای هر دو صفت ارتفاع گیاه در گرده افغانی و حاصل سedar، مقادیر 1 برای ارتفاع گیاه 19/6) 96/9 به دست آمده. به همین ترتیب اگر در حالت 5 ولادی نیز از 12 یا WA سedar گرفتگی استفاده شود (جدول 12) و درصد پروتین ساقه به ترتیب 81/9 و 22/1 می‌شود. محاسبات اختلاف بین روش گرفتگی و هیمن و جینکز را کمتر می‌نماید، پس از امکان، بررسی زمانی که از 5 ولاد استفاده شده و فرضیات صادق می‌باشد. اما برای مقایسه جدول 12 و 13 مشاهده می‌شود که روش هیمن و جینکز بیشتر از روش گرفتگی

شهبازی در کل واریانس زنتیکی نشان‌گذاره است (11)، به نظر می‌رسد که پوستگی بین مکانهای دوی (بخش‌های زیر دفع) مهم‌ترین عامل در ظهور نقش مقاومت کننده را به کبد. می‌باشد. پس از حذف یک والد، علاوه بر تغییر مقاومت واریانس انفاینات و غلیط، تغییرات دیگری نیز در ترتیب جهت‌ها مشاهده شد که یا اثر نگار مقدار واریانس انفاینات یا اثر حذف دیده شده بود. برای مثال از آن جایی که پس از حذف یک والد مقدار D انفاینات یافته، قابلیت توارث خصوصی نیز افزایش نشان داد (جدول 13، اما تغییرات دیگری نیز در ترتیب مشاهده می‌شود.

نتیجه

که یک نگار است آللهای غالب به مغلوب است، برای درصد پروتین ساقه به ترتیب 81/9 و 22/1 می‌شود. محاسبات اختلاف بین روش گرفتگی و هیمن و جینکز را کمتر می‌نماید، پس از امکان، بررسی زمانی که از 5 ولاد استفاده شده و فرضیات صادق می‌باشد. اما برای مقایسه جدول 12 و 13 مشاهده می‌شود که روش هیمن و جینکز بیشتر از روش گرفتگی

جهت مقایسه روش‌های گرفتگی و هیمن و جینکز و بررسی

اثر فرضیات 4 و 5 و 6 دای آلله بروی نتایج با استفاده از روش گرفتگی نیز برای دو صفت ارتفاع گیاه در گرده افغانی و حاصل سedar، مقادیر 1 برای ارتفاع گیاه 19/6) 96/9 به دست آمده. به همین ترتیب اگر در حالت 5 ولادی نیز از 12 یا WA سedar گرفتگی استفاده شود (جدول 12) و درصد پروتین ساقه به ترتیب 81/9 و 22/1 می‌شود. محاسبات اختلاف بین روش گرفتگی و هیمن و جینکز را کمتر می‌نماید، پس از امکان، بررسی زمانی که از 5 ولاد استفاده شده و فرضیات صادق می‌باشد. اما برای مقایسه جدول 12 و 13 مشاهده می‌شود که روش هیمن و جینکز بیشتر از روش گرفتگی است.
جدول 13 - پراورد پارامترها و اجزای واریانس زنگی توسط استفاده از روش گرفتگی (روش 11، مدل ثابت) برای ارتفاع گیاه در گروه‌های افغانی و درصد پروتئین ساچه در دو حالت: آلی - تجزیه بر روی 6 والد (جدول 2) ب - تجزیه بر روی 5 والد.

<table>
<thead>
<tr>
<th>درصد پروتئین ساچه</th>
<th>ارتفاع گیاه در گروه‌های افغانی</th>
<th>پارامترها و اجزای واریانس زنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 والد</td>
<td>5 والد</td>
</tr>
<tr>
<td></td>
<td>1/255</td>
<td>122/270</td>
</tr>
<tr>
<td></td>
<td>1/181</td>
<td>65/257</td>
</tr>
<tr>
<td></td>
<td>1/521</td>
<td>15/238</td>
</tr>
<tr>
<td></td>
<td>1/510</td>
<td>2/666</td>
</tr>
<tr>
<td></td>
<td>1/181</td>
<td>2/426</td>
</tr>
<tr>
<td></td>
<td>1/38</td>
<td>0/67</td>
</tr>
<tr>
<td></td>
<td>1/50</td>
<td>0/76</td>
</tr>
<tr>
<td></td>
<td>1/84</td>
<td>0/95</td>
</tr>
<tr>
<td></td>
<td>1/78</td>
<td>0/98</td>
</tr>
</tbody>
</table>

- تجزیه واریانس دای آلی به روش گرفتگی بر روی 5 والد گزارش نشد است.

می‌آید نه در مقایسه با تجزیه‌های واریانس و $W_r + V_r$ شاخص مناسب تری جهت بررسی فرضهای چهارم، پنجم و ششم دای آل (فقط دای آل‌های چند تایی، معمولاً وجود پیوستگی در ارتباط متقابل بین مکانهای زنی می‌باشد.) به علاوه، تابع نمایی دای آل به روش هیمن و چینکرزی Zimmer متغیر W_r از استنباط درست برخورد ندارد که ضریب گرگسیون V_r به ترتیب واحد و یافته اختلاف معنی‌دار با صفر و یک باشد. در این مرجع برآورده مشترک ضریب گرگسیون W_r به روش گرفتگی زنگی والدن را بهتر از برآورده حاصل از میانگین داده‌های دای آل نشان می‌دهد. این موضوع از آن جا ناشی می‌شود که ممکن است اثرات بی‌کارانه مختلط در میانگین داده‌های دای آل متغیر نگردید. در این زمینه، توجه به چیزی طیف غیر ضریب گرگسیون W_r و روش گرفتگی زنگی والدن در تجزیه‌های مختلف و مقایسه آن با برآورده مشترک و برآورده حاصل از میانگین داده‌ها به پاساوت از طرف دیگر، شباهت برآورده‌ها قابلیت توزیع چهارم و خصوصی در دو روش اخیر بیشتر از برآورده‌های درجه بالاتر بود (جدول 12 و 13). اما برای هر دو صفت برآورده‌های روش SCA گرفتگی پوزنگر بود. در این مورد تا چشم استفاده از روش گرفتگی اخیر به روش قابلیت توزیع در دو روش گرفتگی پوزنگر، تجربه گرفتگی پوزنگر است که برخورد با ویژگی‌های زنگی والدن را بهتر از برآورده حاصل از میانگین داده‌های دای آل نشان می‌دهد. این موضوع از آن جا ناشی می‌شود که ممکن است اثرات بی‌کارانه مختلط در میانگین داده‌های دای آل متغیر نگردید. در این زمینه، توجه به چیزی طیف غیر ضریب گرگسیون W_r و روش گرفتگی زنگی والدن در تجزیه‌های مختلف و مقایسه آن با برآورده مشترک و برآورده حاصل از میانگین داده‌ها به پاساوت

نتیجه‌گیری

نتایج این مطالعه نشان داد که تجزیه واریانس هیمن (12) شبیه کاملتر تجزیه دای آل به روش گرفتگی (10) می‌باشد که اطلاعات بیشتری در رابطه با ماهیت هوروسی به دست داده و امکان آزمون اثرات پایه‌ای را فراهم می‌سازد. از طرف دیگر ضریب گرگسیون W_r که به صورت برآورده مشترک V_r روش گرفتگی زنگی والدن را بهتر از برآورده حاصل از میانگین داده‌های دای آل نشان می‌دهد.
لاطم توجه به مفروضات مدل ژنتیکی تجزیه دای آلل

صحيح كمک شماپا خواهد نمود. نتایج تجزیه هیمن و جینکر در دو حالت صحت و عدم صحت فرضیات مدل ژنتیکی نمایش داده که در صحت فرضیات مدل ژنتیکی قرار گرفته و نتایج کمال متقابلی به دست می‌آمد. این پارامترهای ژنتیکی، مقادیر واریانس افرازی و غلابیت و مجموعه هرژورنای بیشری به همراه واریاپس غیر افرازی و غلابیت و لذا در جامعه، بیشری از سایر پارامترها تحت تأثیر خیلی مهم قرار گرفتند. بنابراین به نظر ما رسم که آزمون‌ها اولیه برای بررسی سایر فرضیات تجزیه دای آلل از طریق روشهای ارائه شده امری ضروری هستند و عدم توجه به این نکات، به‌خصوص زمانی که هدف از تجزیه محاسبه پارامترهای ژنتیکی و تعیین نتایج بی جامعه بودگر باشد، استنادی نادرستی را در پی

متابع ورد استفاده

1- رضائی، ع.م. 1389. بررسی ژنتیکی خصوصیات ریشه در مد نمایش کشت در قم، دانشگاه علوم کشاورزی ایران، جلد 10، شماره 91 و 92، ص 3-7.
2- رضائی، ع.م. و.ب. منزوی، ر. 1372. پژوهش کنترل شاخص برداشت و عملکرد بیولوژیک در 8 واریته گندم کفه‌ی به روش جینکر و تحلیل تجربه‌های دای آلل. مجله علم کشاورزی ایران، جلد 10، شماره 17، ص 17-20.