چکیده
برای بررسی اثر گایکزنی متعاقب پروتونین گوشه به چای پودر ماهی بر عملکرد ماهی قزل آلای رنگین کمان، 3 متع پروتونین گیاهی شامل تکنالوجی سویا، آفتابگردان و پنجه داران در 3 سطح گایکزنی 0، 20 و 40 درصد به چای پودر ماهی، در قالب طرح کاملاً تصادفی به روش تکنولوژی 3x3 به علاوه یک شاهد، در سه تکرار مورد استفاده قرار گرفت. کلیه چربیها محتوی و هم پروتئین بود. تعداد 780 تکه ماهی قزل آلای رنگین کمان انتخاب و در 34 نفس (هر نفس 20 قطعه ماهی) چای گردنده و پس از 24 هفته مازاداری، به مدت 44 روز با 13 چربی از آمپول تغذیه شدند. این گایکزنی سبب تغییر معنی داری در میزانهای مورد ارزیابی در مقایسه با چربی شاهد نشد. ماهیان تغذیه شده با چربیهای حاوی 30 و 40 درصد تکنالوجی پنجه داران، وزن بیشتر، عملکرد رشد بهتر و ضریب تبدیل کمتری نسبت به ماهیان تغذیه شده با سایر چربیها داشتند. نتیجه نشان داد که ماهیان تغذیه شده با چربی محیطی کنجاله آفتابگردان به طور معنی داری (p<0.05) معنی گزین وزن و نسبت بارده، پروتونین کمتر، عملکرد رشد بیشتری و ضریب تبدیل بالاتری نسبت به ماهیان تغذیه شده با چربیهای محیطی کنجاله سویا و پنجه دار شده بودند. نتیجه نشان داد که ماهیان تغذیه شده با چربیهای محیطی کنجاله سویا و پنجه داران به طور معنی داری (p<0.05) بهتر از ماهیان تغذیه شده با چربیهای پنجه داران و چربیهای بیشتری در حال گیاهی‌کردن کنجاله‌های سویا و پنجه داران داشتند. وزن نسبی کبد ماهیان تغذیه شده با چربیهای محیطی کنجاله سویا و پنجه داران به طور معنی داری (p<0.05) نسبت به ماهیان تغذیه شده با چربیهای محیطی کنجاله سویا و پنجه داران بیشتر بود.

واژه‌های کلیدی - تغذیه ماهی، پروتونین گیاهی، رشد، قزل آلای رنگین کمان

مقدمه
در تولید ماهیان پورشی، غذا عمدتاً مینی هزینه اجرایی است و در جیره ماهی، معمولاً مقدار زیادی پودر ماهی مصرف می‌شود. اصلی پروتونین جیره را تشکیل می‌دهد (13) و به خاطر استفاده روزانه، داشته‌اند، ممکن است نشان‌دهنده اکثریت این افزایش اهداف، به ترتیب دانشجوی کارشناسی ارشد و دانشیگر مهندسی زیست‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان ** می‌باشد.
علم کشاورزی و منابع طبیعی/جلد دوم/شماره اول/پاییز 1377

باشند، اما برای گرفتن نتایجی از کشورها کمیسیون‌های خبرنگاران در دریاچه خوزستان، باید به ارزیابی منابع لیزی و پروپتین‌های آب‌نیرویی بر اساس قابلیت کنترل شدن، می‌تواند به بخشی از کنترل و اجرای برنامه‌های حیاتی کشورها کمک کند. به همین دلیل، این سیستم با استفاده از این روش‌ها مناسب برای کنترل شده است. این فرآیند در دو مرحله انجام می‌شود. اولین مرحله در محیط غذاخورا و بعد از پایان مدار سیستم می‌تواند به روش‌ها کنترل پروپتین‌های آب‌نیرویی انجام شود. این روش در نهایت به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.

علاوه بر این، یکی از نقش‌های مهم در کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌تواند به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد. از این رو که این روش قابلیت جایگزینی جدیدی به بهره‌برداری از کنترل پروپتین‌های آب‌نیرویی در محیط غذاخورا می‌رسد.
جایگزینی منابع پروتئین گیاهی به جای پودر ماهی در تننیه قزل آلای رنگین کمان

روغنی سویا، آفتافگران، پنبه‌دانه و غیره عامل تولید قزل آلای رنگین کمان انجام پذیرفته.

مواد و روش‌ها

آزمایش در کارگاه پروتئین ماهی باغ رستم واقع در شهرستان اردل استان چهارمحال و بختیاری انجام گرفت. در این آزمایش از 780 قطعه ماهی قزل آلای رنگین کمان با وزن تقریبی 100±10 گرم که در محله پروازندی وودن، استفاده شد. آزمایش در قالب 36 کلم طرح کامل تصادفی و به روش فاکتوریل 3×2×2×2، 4 گهه به عنوان یک شاخص در 8 گروه آزمایش بهره‌برداری گردید.

آزمایشات 3 گروه مورد آزمایش قزل قرار داده شد. در هر یک از تغذیه‌های 20 ماهی، در فصول چهارماهه تغذیه‌گذاری می‌شدند. استفاده در مجموع 80 ماهی در این آزمایش دو استخرا 8×2 تا 1/2×1/2×1/2×1/2×1/2×1/2×1/2×1/2 بود. در 73 قسمت طول و عرض و ارتفاع 100 سانتی‌متر انجام گرفت. در 15 سانتی‌متر مایع کشی استخرا و قسمت‌های طاری و حجم گرفته شد. معمولاً گیاهان در هر یک از استخرا طویل تنظیم گردید که ارتفاع آپ در قسمت 60 سانتی‌متر بررسید.

طول دوره آزمایش 34 روز بود و 2 هفته نیز به جهت سازگاری ماهی به محیط قفس و جهیزه آزمایشی در نظر گرفته شد. ماهی با روزانه 2 بار، صحیح و بعد از غذایی، به صورت پلت تهیه شده بود و میزان 1/15 درصد وزن بدنش تغذیه شدند. جهیزه آزمایشی براساس نیازمندی‌های توصیه شده در طی آزمایش نیز تغذیه شد. میزان پروتئین در میانگین 21 درصد و میزان لیپید در میانگین 30 درصد بود.

نتایج و بحث

نتایج ارزش‌دهی در جدول 2 بانک می‌دهد که در انتباه آزمایش تفاوت معنی‌داری در میانگین وزن بین 3 گروه‌هی که از جهیزه‌های مختل کننده سویا، آفتافگران پنبه‌دانه استفاده می‌کردند وجود داشت. ولی در انتباه آزمایش که جهیزه‌های مختل به دست آمده بود باعث افزایش میانگین وزن بدن و درصد آفزایش وزن نسبت به
پیش‌بینی‌های بعدی:

<table>
<thead>
<tr>
<th>زیرگروه</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-0</td>
<td></td>
</tr>
</tbody>
</table>

توجه: اطلاعات به‌کارگرفته برای پیش‌بینی‌های بعدی، با توجه به اطلاعات موجود در عمق تحقیق کامل شده است.
توجه داشته باشید که قرار است مداخله نمایندگان مورد نظر را با جمهوری‌های متعاقب در مدت‌هایی کمتری بررسی نمایند. در این راستا، نیازمندی بیش از حدی است که مذاکرات بین‌المللی بیشتر به‌عنوان یک راهکار موثر مورد استفاده قرار گیرد. این نیازمندی برای جلوگیری از تغییرات واقعیت تاریخی و تاریکی بشریت می‌باشد.

در این باره، برخی از نظرات و نتیجه‌گیری‌های عمده‌تر مورد نظر قرار می‌گیرند. از این رو، به خصوص به‌عنوان یک ابزار موثر و قابل مبنایی برای کاهش ناآرامی‌های سیاسی و اجتماعی مطرح می‌شود.

در این جمله، به چشم می‌خورد که بایستی به‌طور موثرتری و بهتری به‌صورت اجتماعی و سیاسی به‌طور کلی بر این بهره‌وری‌ها و پیشرفت‌ها می‌پردازیم. به‌طوری‌که در مدت‌هایی کمتری این مبارزات می‌تواند موفقیت‌آمیز هرچه بیشتر شود.

در این راستا، نیازمندی بیش از حدی است که مذاکرات بین‌المللی بیشتر به‌عنوان یک راهکار موثر مورد استفاده قرار گیرد. این نیازمندی برای جلوگیری از تغییرات واقعیت تاریخی و تاریکی بشریت می‌باشد.

در این باره، برخی از نظرات و نتیجه‌گیری‌های عمده‌تر مورد نظر قرار می‌گیرند. از این رو، به خصوص به‌عنوان یک ابزار موثر و قابل مبنایی برای کاهش ناآرامی‌های سیاسی و اجتماعی مطرح می‌شود.

در این جمله، به چشم می‌خورد که بایستی به‌طور موثرتری و بهتری به‌صورت اجتماعی و سیاسی به‌طور کلی بر این بهره‌وری‌ها و پیشرفت‌ها می‌پردازیم. به‌طوری‌که در مدت‌هایی کمتری این مبارزات می‌تواند موفقیت‌آمیز هرچه بیشتر شود.
جدول ۲ - اثر چاپی‌گری سریع پروتئین‌های گیاهی بر برخی از میزان‌های انتخاب گیری شده در کل دوره‌های آزمایش

<table>
<thead>
<tr>
<th>ضریب تبدیل ضعیف</th>
<th>شاخص وضعت</th>
<th>افزایش وزن</th>
<th>وزن (گرم)</th>
<th>میزان رشد</th>
<th>افزایش وزن</th>
<th>وزن (گرم)</th>
<th>میزان رشد</th>
<th>افزایش وزن</th>
<th>وزن (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۲۷۸b</td>
<td>۱/۲۶۰</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
</tr>
<tr>
<td>۱/۲۲a</td>
<td>۱/۱۸۸</td>
<td>۱/۰a</td>
<td>۰/۸۷a</td>
<td>۱/۹aab</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
</tr>
<tr>
<td>۱/۲۷b</td>
<td>۱/۱۲۸</td>
<td>۱/۱a</td>
<td>۱/۱a</td>
<td>۱/۹aab</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
</tr>
</tbody>
</table>

شاید + اثرات متغیر مشابه پروتئین‌های گیاهی * سطح چاپی‌گری

<table>
<thead>
<tr>
<th>شاخص وضعت</th>
<th>افزایش وزن</th>
<th>وزن (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۲۷۸abc</td>
<td>۱/۱۲۸</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
<td></td>
</tr>
<tr>
<td>۱/۲۴abc</td>
<td>۱/۱۲۸</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
<td></td>
</tr>
<tr>
<td>۱/۲۴abc</td>
<td>۱/۱۲۸</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
<td></td>
</tr>
<tr>
<td>۱/۲۶abc</td>
<td>۱/۱۰b</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
<td></td>
</tr>
<tr>
<td>۱/۲۶abc</td>
<td>۱/۱۰b</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
<td></td>
</tr>
<tr>
<td>۱/۲۶abc</td>
<td>۱/۱۰b</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
<td></td>
</tr>
<tr>
<td>۱/۲۶abc</td>
<td>۱/۱۰b</td>
<td>۱/۹aab</td>
<td>۰/۸a</td>
<td>۰/۸۹a</td>
<td>۲۰۰/۸a</td>
<td>۳۲/۸a</td>
<td>۶/۸b</td>
<td>۱/۰۸b</td>
<td>۴۸۵/۸b</td>
<td></td>
</tr>
</tbody>
</table>

Specific Growth Rate = \(\frac{100 \times \text{وزن (گرم)}}{\text{دوره (روز)}} \)

Condition Factor = \(\frac{100 \times \text{وزن (گرم)}}{\text{فولاد (سانتیمتر)}} \)

اعضادی که دارای حرف مشابه هستند، نشان می‌دهد که اختلاف معنی‌دار میان دو میانگین به‌ترتیب (0.05) (در ستون‌های چهارم، پنجم و ششم) P < 0.05.
جایگزینی متان پروپانی گیاهی به جای پور ماهی در تغذیه تول آرای رگین کمان

وضعیت بر یک در این آزمایش، شناسایی تغذیه مناسب و همچنین وضعیت خوب ماهی در طول آزمایش می‌باشد. در واقع شاخص وضعیت تهیه‌ای با استفاده از برخی از متان پروپان مورد استفاده، حدود ۲/۳ بود که متابولیک شاخص وضعیت گزارش شد برابر آزاد ماهی‌های است که در شرایط پرورشی به خوری پورا شده‌اند (۱۶).

ضریب تبدیل غذا در ماهی‌های تغذیه شده با کنجاله آتافگرا که طور ممکن داری (۱۹۳۰) از ماهیان تغذیه شده به جیره محصول کنیاله پنچونه و پس‌روا نشان داد. تفاوت معنی‌داری از این حیث بین جیره شاد و ماهیان تغذیه شده با سایر ماهیان مشاهده شد. ولی ماهیان که از جیره ۲۷/۳۰ آتافگرا استفاده کردند پیش‌تر و ماهیان که از جیره ۲۶/۳۰ آتافگرا استفاده شده که سایر ماهیان سبب احتمال اختلاف معنی‌داری در ضریب تبدیل غذا نمی‌شود. در این آزمایش، نیز جیره شاد نسبت به سایر جیره‌ها از نظر ضریب تبدیل غذا تفاوت معنی‌داری نداشت. لیکن برخی نظرات سایر و همکاران (۱۸) که از آدم کردن جیره پور ماهی بازد خفاشی بهتر از ۲۶/۳۰ سوزا در این تحقیق ضریب تبدیل بهتری را نشان داده‌اند، گرچه این اختلاف معنی‌دار نبود. احتمالاً عدم عمل اوری مناسب پور ماهی سبب کاهش قابلیت است، یعنی عمل اوری مناسب پور ماهی، سبب کاهش قابلیت است، یعنی عمل اوری مناسب پور ماهی سبب کاهش قابلیت سوزا جیران گشته است. به هر حال در این آزمایش، جیره بهتر از جیره محصول کنیاله پنچونه آتافگرا داشتند. به‌این‌حال، حتی اگر ضریب محصول جیره محصول پروپانی گیاهی گاهی بالاتر باشد، ممکن است هزینه این خوراک پایه‌ریز کیلورام‌های مولود تشدته کمتر باشد و یا اینکه احتمال دارد، ضریب تبدیل جیره محصول پروپانی گیاهی و جیره شاد (پوست ماهی) مشابه باشد، ولی هزینه خوراک با منابع پروپانی گیاهی مناسب‌تر خواهد بود (۱۱).

طور ممکن‌داری (۱۹۳۰) بیش از ماهیان تغذیه شده با جیره‌های ۲۰ و ۲۵ آتافگرا بود. برخی از نظر دورس و همکاران (۲۷) که ادا کردن جیره‌های محصولی بیشتر از ۲۸/۲۴ درصد کنیاله پنچونه نسبت به پنچونه صورت گرفت و در این آزمایش، عملکرد شیر بالایی در این آزمایش نشان داد. همچنین جایگزینی سویا در جیره نشانه بود که به تغذیه تغییر وضعیت ۱۳ محقق (۲۸) سبب کاهش رشد نگردید و مطالعه این نظر ریزین (۲۹) در این آزمایش کنیاله سوسیا توانست به طور جزئی جایگزینی پور ماهی شود، بدون این که به میزان رشد می‌شود. جیره ۲۸/۳۰ رگین کمان را کاهش دهد. در این آزمایش عملکرد رشد در ماهیان تغذیه شده با ۲۵ سوزا نمایان نموده و جیره نشان داد. حداقل کیفیت پایین ماهی استفاده شده در تولید پور ماهی و یا شرایط فرایند کردن آن باشد. فراوانی غیر مکمل ممکن است منجر به کاهش قابلیت سیر ترسیمی، اسیدهای آمینه آبی می‌تشد. از این رو مخلوطی از پور ماهی با منابع پروپانی گیاهی، رشد و استفاده از غذا را در قزل آیی رگین کمان بهبود می‌بخشد (۳۰). ولی ظاهراً این بهبود تا سطح خاصی از منابع پروپانی گیاهی افزوده شده است، بعد از آن ممکن است یکی از عوامل اصلی استفاده از پروپانی گیاهی خوش‌خواهانی چیزی را کاشت و عملکرد رشد کم شد.

همان گونه که در جدول ۲ مشاهده می‌شود، شامل وضعیت کنیاله گریچی که نیازی ماهی است، در پایان دوره آزمایش، ماهیانی که از ۳ گروه جیره سویا، پنچونه دان و آتافگرا تغذیه کردنه پکسون بود. در این‌جا و انستیتو دوم آزمایش‌های یک نمونه غذا با منابع ماهیان گروهی که جیره شاد دریافت می‌گیره با سایر ماهیان وجود نداشت. در انتهای دوره آزمایش، مشخص و وضعیت بازنشسته یافته و از میزان معقول آن که یک می‌باشد بهتری قابلیت گرفته است. نتایج‌های شاخص
جدول ۳ - اثر چایگریزی متاب متفاوت گیاهی بر وزن نسبی لاشه ماهی، کبد و ترکیب شیمیایی لاشه

<table>
<thead>
<tr>
<th>ترکیب شیمیایی لاشه (درصد وزن مربوط)</th>
<th>وزن نسبی کبد خالی (درصد)</th>
<th>ماده خشک</th>
<th>چربی</th>
<th>پروتئین</th>
<th>خاکستر</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنجاله سویا ۰/۲/۰۹</td>
<td>۸۵/۲۹</td>
<td>۲/۵۰</td>
<td>۲۹/۶۴</td>
<td>۱/۹۳۲۱</td>
<td>۱/۹۳۲۱</td>
</tr>
<tr>
<td>کنجاله آفتابگردان ۰/۲/۰۶</td>
<td>۸۴/۲۹</td>
<td>۲/۳۶</td>
<td>۲۹/۶۵</td>
<td>۱/۶۴۱۸</td>
<td>۱/۶۴۱۸</td>
</tr>
<tr>
<td>کنجاله پهن‌دهنده ۰/۲/۰۴</td>
<td>۸۴/۲۲</td>
<td>۲/۳۳</td>
<td>۲۹/۶۶</td>
<td>۱/۶۸۰۴</td>
<td>۱/۶۸۰۴</td>
</tr>
</tbody>
</table>

شاهد + اثرات متفاوت متاب پروتئین گیاهی *سطح چایگریزی*

<table>
<thead>
<tr>
<th>ماده خشک</th>
<th>پروتئین</th>
<th>چربی</th>
<th>خاکستر</th>
<th>وزن نسبی کبد خالی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۰۸</td>
<td>۱/۶۴۱۸</td>
<td>۱/۶۸۰۴</td>
<td>۱/۶۹۸۷</td>
<td>۸۴/۲۹</td>
</tr>
<tr>
<td>۲/۰۶</td>
<td>۱/۵۸۱۴</td>
<td>۱/۶۸۰۴</td>
<td>۱/۶۹۸۷</td>
<td>۸۴/۲۹</td>
</tr>
<tr>
<td>۲/۰۴</td>
<td>۱/۵۸۱۴</td>
<td>۱/۶۸۰۴</td>
<td>۱/۶۹۸۷</td>
<td>۸۴/۲۹</td>
</tr>
<tr>
<td>۲/۰۲</td>
<td>۱/۵۸۱۴</td>
<td>۱/۶۸۰۴</td>
<td>۱/۶۹۸۷</td>
<td>۸۴/۲۹</td>
</tr>
<tr>
<td>۲/۰۰</td>
<td>۱/۵۸۱۴</td>
<td>۱/۶۸۰۴</td>
<td>۱/۶۹۸۷</td>
<td>۸۴/۲۹</td>
</tr>
</tbody>
</table>

۱- در هر سن‌زمینودی که دارای حروف مشابه هستند، فاقد اختلاف معنی‌دار می‌باشد (p>0.05).
چاپگری منابع پروپتی‌های به‌جای یوپر ماهی در تغذیه تولید گیاهان

کیفیت لاش‌هانه‌نادار. ولی در وزن نسبی کبد در ماهی‌هانه‌های از جیره‌های محیطی، پروپتی‌های گیاهی مختلف استفاده می‌کنند. تفاوت معنی‌داری (0.05) وجود داشت. به طوری که ماهی‌هانه‌های جیره‌های محیطی سویا تغذیه کرده بودند بیشترین وزن نسبی کبد و ماهی‌هانه‌های که از جیره‌های محیطی نپنه‌داته تغذیه کرده بودند کمترین وزن نسبی کبد را داشته‌اند.
نتایج حاصل از انرژی شناسی داده که در زمان و سلامت ماهی‌هانه تغذیه شده با جیره سهاد (پودر ماهی) و ماهیان تغذیه شده با جیره‌های محتوی منابع پروپتی‌های گیاهی کنجاله‌سنگ‌سیریا، آنتی‌بیوتیک‌های و پنیه دانه‌های تا سطح 20/0 پودر ماهی جیره باشد، تفاوت معنی‌داری ایجاد نمی‌شود. در بین ۲۳ منبع پروپتی‌های گیاهی استفاده شده، جیره‌های محیطی کنجاله پنی‌دانه به گل‌ریز بیشتر، بیشترین عملکرد و جیره‌های محیطی کنجاله آنتی‌بیوتیک‌ها به خاطر بالای خشکی، ممکن عملکرد را در نزدیک آن‌گونه کمیاب سبب شدند. جیره‌های محیطی کنجاله سویا حالتی در ماهی‌هانه داشت. انفجار سطح چاپگری منابع پنی‌دانه (تا ۴۰درصد) به چای پودر ماهی در این آزمایش، سبب عملکرد بهتر شد و ظاهراً مانگ کومپوست موجود در کنجاله پنی‌دانه مورد استفاده به حداکثر نبود که تأثیر سوی دارد و سلامت ماهی‌هانه‌ها

منابع مورد استفاده
1- ریزی، ا. ۱۳۷۶. راهنمای تکثیر و پروپتی‌های ماهی آلاین و ماهی آلاین (ترجمه حسین عمادی). چاب چهارم. انتشارات ماهنامه آزیستان. ۱۲۱ص. سخن‌های کلی.

