رابطه بین زیر واحدهای گلوتیئین با وزن مولکولی بالا با خصوصیات کیفی آرد
در لایه‌های نوترکیب گندم

عبدالمجید رضائی

چکیده
رابطه بین زیر واحدهای گلوتیئین با وزن مولکولی بالا و خواص کیفی آرد، با استفاده از 117 لاین نوترکیب و تک ترکیبی ف (1) حاصل از روش تک بدر در تلاش انتزاعی ارتباط حاصل از در مطالعه قرار گرفت و بالاتر در هر سه مکان زنی 1-15 دارای آللهای متوازن بودند. لایه‌های نوترکیب، برای 8 تک ترکیبی آلیت میکن، با استفاده از الکترورز نوترکیب بالا اکلرایمی طبیعی بندی شدند.

ذ. لایه‌های نوترکیبی اثرات افزایشی دارای زنی 15 اثرات افزایشی اثرات افزایشی دارای 15 رسم دارو و مقاومت GLU-D1 زیر این‌ادامه 55123 بروز نشان دادند. هر سه مکان زنی اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مکانی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت GLU-D1 خمیر داشتند. اثرات افزایشی مسایلی زنی 15 اثرات افزایشی مسایلی در برابر ارتفاع رسوپ و مقاومت

واژه‌های کلیدی - اثرات ایزوستازی، ارتفاع رسوپ، GLU-D1، ژل پلی آکرلایمی، میکروگراف

مقدمه
قائیمی در خواص نانوایی ارتفاع مختلف گندم، به ترتیب گلوتیئین آنها نسبت داده شده است (3, 4, 6, 12, 17, 18, 19, 31, 37, 38, 39, 40, 41, 42, 43, 44, 45). از جمله این اثرات متفاوتی در ارتفاع نانوایی دارند. به طوری که گلیکیدها چنین چنین یک کشت خمیر را باعث می‌شود. این خصوصیات برای محرومیت شدن گازهای حاصل در طی فرآیند خمیر و پخت ضروری می‌باشد (13).

نتایج گزارش‌های متعدد حاکی از ارتباط زیر واحدهای گلوتیئین با وزن مولکولی بالا با خواص مطلع تانوایی آرد است (14, 15). این زیر واحدهای گلوتیئین با وزن مولکولی بالا با ارزو اثراتی نانوایی آرد. آرد که تا این زیر واحدهایی است. می‌تواند گزارش شده است.

فاقد می‌باشد. به طوری که در مورد خواص نانوایی ارجاع متعددی گلوتیئین آنها نسبت داده شده است (3, 4, 6, 12, 17, 18, 19, 31, 37, 38, 39, 40, 41, 42, 43, 44, 45). از جمله این اثرات متفاوتی در ارتفاع نانوایی دارند. به طوری که گلیکیدها چنین یک کشت خمیر را باعث می‌شود. این خصوصیات برای محرومیت شدن گازهای حاصل در طی فرآیند خمیر و پخت ضروری می‌باشد (13).

نتایج گزارش‌های متعدد حاکی از ارتباط زیر واحدهای گلوتیئین با وزن مولکولی بالا با خواص مطلع تانوایی آرد است (14, 15). این زیر واحدهای گلوتیئین با وزن مولکولی بالا با ارزو اثراتی نانوایی آرد. آرد که تا این زیر واحدهایی است. می‌تواند گزارش شده است.

1- Polycrystalline
2- Sodium dodecyl sulphate
3- Diarthroposter
4- Zeleny
علم کشاورزی و منابع طبیعی/جلد اول/شماره اول

کلستر و همکاران (11) گزارش کردن که حدود ۳۰ تا ۷۹ درصد از نوع در خواص نانوایی گندم، با نوع زننیکی در مکان‌های زنی۱ توجه می‌شود. ارتباط بین و وجود یک آل و خواص نانوایی گندم، به ترکیبات آلی زیر واحدهای با وزن مولکولی بالا و اثر متقابل آنها نیز است. درک ترکیب زیر واحدهای زیر۲۰، ۲۱ و ۲۲ که یکدیگر، در مقایسه با زیر واحدهای زیر۲۰، ۲۱ و ۲۲، همکاران (۲۹) گزارش کردن که زیر واحدهای جزء Y نشان هستند در خواص نانوایی دارند. اما ۶۰ درصد نشان دهنده کردن که یکدیگر، از دو جزء X و Y در خواص کمیتی مهمتری می‌باشند. همین مطالعه شناس داده که به صورت آگهی با دو جزء ۱تسیب کردن نمی‌توان مشخص کرد که گاهی یک دیگر می‌شود.

(۱۵، ۱۷) همکاران (۱۰) گزارش کرده و در خواص نانوایی داخلی خاصیت مطلق از نظر اخلاق آل و آور، ارتباط زیر واحدهای با واحدهای زیر۲۰، ۲۱ و ۲۲ نشان داده و حجم نان وجود دارد و وزن آل و آور وارد زیر واحدهای دارند. راجرز و همکاران (۲۹) گزارش کردن که زیر واحدهای جزء Y نشان هستند در خواص نانوایی دارند. اما ۶۰ درصد نشان دهنده کردن که یکدیگر، از دو جزء X و Y در خواص کمیتی مهمتری می‌باشند. همین مطالعه شناس داده که به صورت آگهی با دو جزء ۱تسیب کردن نمی‌توان مشخص کرد که گاهی یک دیگر می‌شود.

(۱۵، ۱۷) همکاران (۱۰) گزارش کرده و در خواص نانوایی داخلی خاصیت مطلق از نظر اخلاق آل و آور، ارتباط زیر واحدهای با واحدهای زیر۲۰، ۲۱ و ۲۲ نشان داده و حجم نان وجود دارد و وزن آل و آور وارد زیر واحدهای دارند. راجرز و همکاران (۲۹) گزارش کردن که زیر واحدهای جزء Y نشان هستند در خواص نانوایی دارند. اما ۶۰ درصد نشان دهنده کردن که یکدیگر، از دو جزء X و Y در خواص کمیتی مهمتری می‌باشند. همین مطالعه شناس داده که به صورت آگهی با دو جزء ۱تسیب کردن نمی‌توان مشخص کرد که گاهی یک دیگر می‌شود.

(۱۵، ۱۷) همکاران (۱۰) گزارش کرده و در خواص نانوایی داخلی خاصیت مطلق از نظر اخلاق آل و آور، ارتباط زیر واحدهای با واحدهای زیر۲۰، ۲۱ و ۲۲ نشان داده و حجم نان وجود دارد و وزن آل و آور وارد زیر واحدهای دارند. راجرز و همکاران (۲۹) گزارش کردن که زیر واحدهای جزء Y نشان هستند در خواص نانوایی دارند. اما ۶۰ درصد نشان دهنده کردن که یکدیگر، از دو جزء X و Y در خواص کمیتی مهمتری می‌باشند. همین مطالعه شناس داده که به صورت آگهی با دو جزء ۱تسیب کردن نمی‌توان مشخص کرد که گاهی یک دیگر می‌شود.
رابطه بین زیر واحدهای گلزنانی با وزن

از سایر رفیقها، تعداد روز، تعداد سال و وزن گلزنانی با وزن مولکولی بالا که توسط محتملی متعدد از آنها شده، به عوازل پسماندی نظر زنیتهای سایتیک متفاوت اثرات ایستاژی و اثرات متغیر و توزیع محيط بستگی دارد (37).

پاین و آلورس (37) بر اساس اهمیت زیر واحدها در خواص کیفی، امتیازهای را به برخی از آنها اختصاص دادهند تا میزان آنها به عنوان شاخص در ارزیابی افزایش نانوایی ارقام گندم استفاده نمود. بر اساس این بررسی، واحدها به ارقام کننده اختیاری بین 3 تا 10 داده می‌شود.

با توجه به آنچه در این مقدمه بیان شد، این مطالعه به اهداف زیر طرح بررسی و انجام گردید:

1. بررسی تابع آلفا داری واحدهای گلزنانی با وزن مولکولی بالا در این زیر واحدها

2. تعيين رابطه بین خواص کیفی آرد و وزن واحدهای گلزنانی.

3. تخمین اثرات انواعی و ایستاژی آلکه بر خواص کیفی آرد.

مواد و روش‌ها

زنیتهای آرد و گندم مورد بررسی 117 لاین توزیع حاصل از تلاقی ارقام انزا و اینا در نسل RV بودند. تابع حاصل از تلاقی بین انزا و اینا که به ترتیب ارقامی که کیفیت نانوایی و مطلوب بودند، 2 نسل RR و روش کننده بیشتر بودند. در این نسل به صورت بیکجا برای انجام ارزیابی زراعی و کیفی پرداخت شدند.

آزمایش مزرعه ولالدا و 117 لاین توزیع به صورت طرح بلورکهای کامل تصادفی در 3 تکرار در پاییز 1372 در مزرعه تحقیقاتی دانشگاه کالیفرنیا در دیسکو، تحت شرایط محیط زراعی منطقه کشت شدند. والدا و الاروک در هر پرویز 3 مرتبه تکرار گردیدند. هر کریک شماری 4 تکه کشت به طول 38 متراً و فاصله 30 سانتیمتر.
آزمون میکروسکوپی به روش فیئنی و شوگر (8 بر روی دو نمونه 10 گرمی آرآ زیر هر کار این در هند انجام شد. بدین منظور، به‌دوز به روش یکیمخت 15 درصد حجمی رساله شدند و سپس آزمون‌گیری شدند. درصد استخراج آرد همه نمونه‌ها تا 77 درصد بود. فاصله زمانی شروع اختلاف با نطفه اوج نمودار میکروسکوپی (دقیقه) به عنوان میزان اختلاف زمان تحت حفظ (دنیای) 2 دقیقه پس از نطفه اوج، به عنوان محیطی از مقاومت خمیر تعیین شدند.

تجزیه و تحلیل

صفات اندازه‌گیری شده برمبای کرت و میانگین صفات اندازه‌گیری شده روی چند نمونه مورد تجزیه و ارتباط قرار گرفتند. ترکیب زئیتی بین لاک‌های نوترکیب در هر زیر واحد گلتنی با وزن مولکولی بالا، برای هر صفر تعیین شد و با استفاده از حالت تجزیه واریانس مورد آماری قرار گرفت. ترکیب زئیتی بین بالدها در تجزیه جدایی تعیین گردید.

واریانس بین لاک‌های نوترکیب به مقایسه‌های مستقل با یک درجه آزادی برای 3 مکان زئیتی تکثیر شد (5 و 30) از اینت اینتیک زئیتی افزایشی (A), افزایشی × افزایشی (A × A), افزایشی × افزایشی × افزایشی (A × A × A), و افزایشی × افزایشی × افزایشی × افزایشی (A × A × A × A) برای هر

میکروسکوپی به روش فیئنی و شوگر (8 بر روی دو نمونه 10 گرامی آرآ زیر هر کار این در هند انجام شد. بدین منظور، به‌دوز به روش یکیمخت 15 درصد حجمی رساله شدند و سپس آزمون‌گیری شدند. درصد استخراج آرد همه نمونه‌ها تا 77 درصد بود. فاصله زمانی شروع اختلاف با نطفه اوج نمودار میکروسکوپی (دقیقه) به عنوان میزان اختلاف زمان تحت حفظ (دنیای) 2 دقیقه پس از نطفه اوج، به عنوان محیطی از مقاومت خمیر تعیین شدند.

تجزیه و تحلیل

صفات اندازه‌گیری شده برمبای کرت و میانگین صفات اندازه‌گیری شده روی چند نمونه مورد تجزیه و ارتباط قرار گرفتند. ترکیب زئیتی بین لاک‌های نوترکیب در هر زیر واحد گلتنی با وزن مولکولی بالا، برای هر صفر تعیین شد و با استفاده از حالت تجزیه واریانس مورد آماری قرار گرفت. ترکیب زئیتی بین بالدها در تجزیه جدایی تعیین گردید.

واریانس بین لاک‌های نوترکیب به مقایسه‌های مستقل با یک درجه آزادی برای 3 مکان زئیتی تکثیر شد (5 و 30) از اینت اینتیک زئیتی افزایشی (A), افزایشی × افزایشی (A × A), افزایشی × افزایشی × افزایشی (A × A × A), و افزایشی × افزایشی × افزایشی × افزایشی (A × A × A × A) برای هر

میکروسکوپی به روش فیئنی و شوگر (8 بر روی دو نمونه 10 گرامی آرآ زیر هر کار این در هند انجام شد. بدین منظور، به‌دوز به روش یکیمخت 15 درصد حجمی رساله شدند و سپس آزمون‌گیری شدند. درصد استخراج آرد همه نمونه‌ها تا 77 درصد بود. فاصله زمانی شروع اختلاف با نطفه اوج نمودار میکروسکوپی (دقیقه) به عنوان میزان اختلاف زمان تحت حفظ (دنیای) 2 دقیقه پس از نطفه اوج، به عنوان محیطی از مقاومت خمیر تعیین شدند.
جدول ۱- مقایسه مايگينهاي صفات زراعي و كييي برای هر یک از زیر واحدهای گلتنين با وزن مولکولی بالا، والدها و لاينهای نوترکيب

<table>
<thead>
<tr>
<th>وزن</th>
<th>ارتفاع گیاه</th>
<th>تاريخ به وزن</th>
<th>زمان مقاومت مقدار</th>
<th>خوشه دانه (گرم)</th>
<th>وزن سنجاق</th>
<th>لاین نوترکيبي</th>
<th>اسپيدین (هكتولتر)</th>
<th>(دقيقه)</th>
<th>(سانتيمتر)</th>
<th>(درصد)</th>
<th>(فري)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/60</td>
<td>33/81</td>
<td>69/27</td>
<td>41/6</td>
<td>1/15a</td>
<td>3/6a</td>
<td>93/88ab</td>
<td>222</td>
<td>122</td>
<td>14+16</td>
<td>10+12</td>
<td>1</td>
</tr>
<tr>
<td>6/60</td>
<td>33/44</td>
<td>70/10</td>
<td>42/5</td>
<td>1/51a</td>
<td>3/6v6b</td>
<td>78/99c</td>
<td>221</td>
<td>112</td>
<td>13+16</td>
<td>12+16</td>
<td>1</td>
</tr>
<tr>
<td>6/60</td>
<td>31/22</td>
<td>69/61</td>
<td>41/7</td>
<td>1/44a</td>
<td>3/41ab</td>
<td>99/41a</td>
<td>212</td>
<td>7+8</td>
<td>11+16</td>
<td>12+16</td>
<td>1</td>
</tr>
<tr>
<td>4/60</td>
<td>68/22</td>
<td>41/1</td>
<td>1/40c</td>
<td>1/6v1ab</td>
<td>3/48bc</td>
<td>87/13c</td>
<td>211</td>
<td>142</td>
<td>7+8</td>
<td>2+12</td>
<td>1</td>
</tr>
<tr>
<td>6/82</td>
<td>32/44</td>
<td>70/17</td>
<td>42/4</td>
<td>1/6v6b</td>
<td>3/41a</td>
<td>87/13c</td>
<td>211</td>
<td>142</td>
<td>7+8</td>
<td>2+12</td>
<td>1</td>
</tr>
<tr>
<td>6/60</td>
<td>30/82</td>
<td>50/53</td>
<td>22/2</td>
<td>1/32f</td>
<td>3/79d</td>
<td>119</td>
<td>142</td>
<td>7+8</td>
<td>2+12</td>
<td>7+8</td>
<td>0</td>
</tr>
<tr>
<td>6/92</td>
<td>34/46</td>
<td>70/17</td>
<td>41/16</td>
<td>1/6v1ab</td>
<td>3/38bc</td>
<td>83/41</td>
<td>211</td>
<td>7+8</td>
<td>2+12</td>
<td>7+8</td>
<td>0</td>
</tr>
<tr>
<td>5/65</td>
<td>34/18</td>
<td>69/75</td>
<td>41/7</td>
<td>1/44e</td>
<td>3/32c</td>
<td>34/8d</td>
<td>111</td>
<td>111</td>
<td>2+12</td>
<td>7+8</td>
<td>0</td>
</tr>
<tr>
<td>6/68</td>
<td>34/8</td>
<td>19/66</td>
<td>41/7</td>
<td>1/44e</td>
<td>3/32c</td>
<td>34/8d</td>
<td>111</td>
<td>111</td>
<td>2+12</td>
<td>7+8</td>
<td>0</td>
</tr>
</tbody>
</table>

خطای استاندارد

- در هر ستون ميگينهاي كه حداقل داري یک حرف مشترک مي باشند از نظر آزمون دانکن در سطح احتمال ۰.۰۵ درصد فاقد اختلاف معنی دار هستند.
- با فرض ۱۵ لاين برای هر زير واحده گلتنين

- ۱- از‌ازا
- ۲- از‌ازا
جدول ۲ - میانگین مربوط‌های زیر و یادگیرنده‌ها

| متغیر | فرمول | داده‌های | دما | مقادیر | پیوند | Zمان اختلاف | ارتفاع رسوپ | منابع
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GLU-A</td>
<td>1/82</td>
<td>1/99</td>
<td>0/08</td>
<td>894/5**</td>
<td>GLU-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-B</td>
<td>0/17</td>
<td>0/21</td>
<td>0/05</td>
<td>160/2</td>
<td>GLU-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-D</td>
<td>1/28</td>
<td>1/38</td>
<td>0/22</td>
<td>37235/2**</td>
<td>GLU-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-A×GLU-B</td>
<td>0/06</td>
<td>0/09</td>
<td>0/08</td>
<td>787/0</td>
<td>GLU-A×GLU-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-A×GLU-D</td>
<td>0/22</td>
<td>0/25</td>
<td>0/27</td>
<td>35/3</td>
<td>GLU-A×GLU-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-B×GLU-D</td>
<td>0/78</td>
<td>0/80</td>
<td>0/78</td>
<td>444/2*</td>
<td>GLU-B×GLU-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>داخل (دزنتاپیا)</td>
<td>117/17</td>
<td>117/17</td>
<td>117/17</td>
<td>117/17</td>
<td>GLU-A×GLU-B×GLU-D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **: به ترتیب معنی‌دار در سطح احتمال ۵ و ۱ درصد

داشت: با تغییر معنی‌داری که ارتفاع رسوپ را داشته‌اند، به نظر می‌رسد که ارتفاع رسوپ با معیار مناسبی برای بیمار خاص و آزمایش‌های دور از گذشته راست و همکاران (۳۰) و نیز برخی از محققان دیگر (۸۰) و (۷۹) برای بیمارانی که نوترکیب کنند با دادههای پروتئین

نابودی با تغییر مشابه دست یافته‌اند. اثرات اصلی آلل‌های مختلف در مکان Zئی، بر GLU-D، تراکم مورب مرسی معنی‌دار بود (جدول ۲). همچنین اثرات متقابل آنها با آلل‌های همکاران Zئی، بر GLU-D، تراکم مورب معنی‌دار بود (جدول ۲). اثرات اصلی آلل‌های در مکان Zئی بر GLU-D، تراکم همراه با ارتفاع رسوپ، به بیان است، ارتفاع رسوپ، ارتفاع معنی‌دار بود (جدول ۲). اثرات اصلی آلل‌های در مکان Zئی بر GLU-D، تراکم همراه با ارتفاع رسوپ، به بیان است، ارتفاع Rوسپ، ارتفاع معنی‌دار بود (جدول ۲). اثرات اصلی آلل‌های در مکان Zئی بر GLU-D، تراکم همراه با ارتفاع Rوسپ، ارتفاع معنی‌دار بود (جدول ۲). اثرات اصلی آلل‌های در مکان Zئی بر GLU-D، تراکم همراه با ارتفاع Rوسپ، ارتفاع معنی‌دار بود (جدول ۲). اثرات اصلی آلل‌های در مکان Zئی بر GLU-D، تراکم معنی‌داری داشت. میانگین‌هایی داده GLU-B، Zئی، ارتفاع رسوپ، برای لاین های که زیر و اها Zئی و ۱۰

۲۴
جدول ۲- اثرات افزایشی (CA) و مقاومت (CD) بر رشد و وزن گل‌تنین با وزن...

<table>
<thead>
<tr>
<th>متغیر</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>آرتع افزایشی</td>
</tr>
<tr>
<td>CAAD</td>
<td>میانگین خصوصیات لاپیهیر نوترکیب حاصل از تلاش انتاگنیتی</td>
</tr>
<tr>
<td>ABD</td>
<td>کمیت</td>
</tr>
<tr>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SDS</td>
</tr>
<tr>
<td>A</td>
<td>زمان اکستراوتاسی</td>
</tr>
<tr>
<td>مقاومت خمیر</td>
<td></td>
</tr>
<tr>
<td>درصد بوتوتیسی</td>
<td></td>
</tr>
</tbody>
</table>

در این مطالعه، اثرات افزایشی معنی دار آل‌های GLU-D و GLU-A1، برای تمام صفات کیفی مشهود بود. GLU-D با (جدول ۲) اثرات افزایشی آل‌های در میانه زنی GLU-A1 تای نیز بود. اثرات افزایشی آل‌های در میانه زنی GLU-B و GLU-C (جدول ۲) معنی دار بود. دیر بروز کلی، میانگین خصوصیات لاپیهیر نوترکیب حاصل از تلاش انتاگنیتی. به طور مشابه GLU-B و GLU-C معنی دار است. در گروه GLU-A1، میانگین لاپیهیر واحد زیر واحدهای و GLU-D با میانگین لاپیهیر واحد زیر واحدهای و اثرات GLU-D و GLU-C با زمان اکستراوتاسی اثرات GLU-A1 و GLU-B رابطه معنی دار داشتند. اگر چه برجسته از آنها نسبتاً بالا و پایین آنها معنی داشتند. این نتایج نشان داد می‌توان در بین نتایج حاصل از تلاش انتاگنیتی لاپیهیر نوترکیب با خواص ناننکین، بالا یافته شد و مورد انتخاب قرار داشت. طبق نتایج حاصل، خواص کیفی لاپیهیر نوترکیب در زمان نوترکیب D (جدول ۲) برای افزایش کلی، برتر از لاپیهیر و GLU-C (جدول ۲) در نظر گرفته گل‌تنین بود. اثرات ایستاژی بین آل‌های کنترل کننده زیر واحدهای گل‌تنین با وزن مولکولی بالا، بیشتر نوترکیب شد است. پایین و همکاران (۱) نشان دادند که کاهش ارتع افزایشی بر اثر خدف آل‌های مرغوب بر زیر واحدهای گل‌تنین، به ترتیب زیر واحدهای بقیماده، بسیار دار. کلسترول و همکاران (۱۱) و جدول اثرات ایستاژی بین زیر واحدهای و۶۸ و۷۹ در
ارتفاع رسمه هم‌ستگی بالاتر را با خصوصیات گلوتن‌های
مربوط به یکی از موارد داد. زیر واحدهای GLU-D۱، GLU-D۲، و GLU-D۳
از گزارش نموده شده. طبق نتایج حاصل، در این بررسی تنها زیر
اول‌واحدهای ۲۷ در میان گلوتن‌های GLU-D۱، نسبت به زیر
اواحدهای ۱۲ در ترتیب با زیر واحد ۱ در میان گلوتن
GLU-D۱، برای ارتفاع رسمه برتری داشتند (جدول ۱).

به طور خلاصه، نتایج این بررسی باعث می‌شود به وجود
رابطه مستقیم بین خواص کیفی آرد و برخی از زیر واحدهای
گلوتن‌های GLU-D۱ و GLU-D۲ باعث شود. بنابراین، هاکی از تأثیر بیشتر
ت نوع آلی در میان گلوتن GLU-D۱، بر ارزش تناوایی بودند.

مطالب ورد استفاده

Milling Feed Fert. 16:18-20.
4- Branlard, G. and M. Dardevet. 1985. Diversity of grain protein and bread wheat quality. II. Correlation
between high molecular weight subunits of glutenin and flour quality characteristics. J. Cereal Sci. 3:
345-354.
5- Carrillo, J.M., M. Rousset, C.O. Qualset, and D.D. Kasarda. 1990. Use of recombinant inbred lines of
wheat for study of associations of high-molecular-weight glutenin subunit alleles to quantitative traits. I.
gel electrophoresis of total proteins extracted from different wheat varieties: Effects of protein content.
Cereal Chem. 50 : 35-43.
grown under New Zealand conditions. I. Relationship between protein composition and quality

