رابطه بین زیر واحدهای گلوتئین با وزن مولکولی بالا با خصوصیات کیفی آرد
در لایه‌های نوترکیب گندم

عبدالمجید رضائی

چکیده
رابطه بین زیر واحدهای گلوتئین با وزن مولکولی بالا و خصوصیات کیفی آرد، با استفاده از روش تک بدر در تفاعل انتزاعی (پی‌تی) تربیت ناحیه‌های با ویژگی ویژه برای بهبود کیفیت آرد، مورد مطالعه قرار گرفت. طبق این واکنش، اجرای تک بدر در فرآیند ترانسفر باعث افزایش کیفیت آرد در جهت افزایش میزان گلوتئین بالای وزن مولکولی بالا و خصوصیات کیفی آرد می‌گردد. اثرات الکترافوژوگرافی گلیکیدی و GLU-D1، زیر مولکولی ۵۰۰ بر ۲۰۱۲ بهترین نشان‌دهنده میزان اکتیویت آنزیمی و بروز خاصیت‌های زیر واحدهای گلوتئین بالا با وزن مولکولی بالا و خصوصیات کیفی آرد را دارند. اثرات میزان GLU-D1 و لیزه‌های نوترکیب آستانه افزایش یافته باعث می‌شود که میزان م强力ی کاهش یابد. این اثرات می‌تواند موجب افزایش کیفیت آرد باشد.

واژه‌های کلیدی - الکترافوژوگرافی، روابط NADH، زئولیت آکریلیمیدی، الکتفرامی، SDS، زئولیت آکریلیمیدی، میکروگرافی

مقدمه
تک بدر یکی از واکنش‌های انتزاعی است که سه مولکولی به هم می‌ریزند و به توانایی آنها نسبت داده شده است. از این واکنش به طوری که گلیکیدی و میکروگرافی کشش شیمیایی را باعث می‌شود. این خصوصیات برای آزمون‌های کیفیت آرد حاصل در طی فرآیند خمیر و پخت ضروری محسوب می‌شوند.

نتایج گزارش‌های متعدد حاکی از ارتباط زیر واحدهای گلوتئین با وزن مولکولی بالا و خصوصیات آرد است. در این مطالعه، با استفاده از الکترافوژوگرافی GLU-D1 و GLU-A1، این زیر واحدها با مکانی روابطی زئولیتی روابط می‌گذارند.
کولسترول و همکاران (11) گزارش کردن که حدود 30 تا 39 درصد از تعیین خواص نانوایی گندم، با تعیین زنیکی در مکاناتی زنی 1 توجه می‌شود. ارتباط بین وجود یک آل و خواص نانوایی گندم، به تکنیک‌های آلی و واحدهای با وزن مولکولی بالا و متقابل آنها نیز یافتگی دارد. تکنیک آلی واحدهای 3 و 20 با یکدیگر، در مقایسه با تکنیک آلی واحدهای 12 و 24 کیفیت بالاتر نانوایی را می‌شود (15 و 17). همچنین زیر واحدهای 12 و 10 در گذشته با خواص نانوایی بالا و دارای خصوصیات مشابه‌تری از نظر اختلاف آب و آرد، ارتفاع روابط با SDS و حجم نان وجود دارند و زیر واحدهای 2 و 17 در گذشته با یکدیگر بیشتری می‌شوند (12، 13 و 31). راجرز و همکاران (29) گزارش کردن که زیر واحدهای جزء ۱ نتیجه مهمی در خواص نانوایی دارند. اما دیقای گزارش مشخص کردن کدام یک از ناحیه X و Y در خواص کیفیت مهمتر می‌باشد، هنوز مطالعه ناشان داده‌ای که در صورت حذف باند 1 با یکدیگر، دوم گلوتئن کاهش می‌یابد. این محترفان همچنین گزارش کردن که حذف باند یک باند از مکان ۱ یا D ي با یکدیگر، کاهش خواص نانوایی خمیر را می‌گردد. آنها نشان دادند که حذف باند یک باند از مکان زیر واحدهای ۲ و ۱۷ در مقایسه با گلوتئن باند یک کاهش کاملاً در کیفیت گلوتئن نشان می‌دهد. این نشان داده که باند‌های آلی واحدهای ۱۲ و ۲۰ در مقایسه با گلوتئن به یکدیگر بیشتری می‌شوند. GLU-D1 نتیجه ۱۱ تا ۱۲ درصد از کیفیت GLU-D1 می‌شود. GLU-A1 GLU-D1 GLU-D1 GLU-A1 GLU-D1 GLU-A1 GLU-D1 GLU-A1 GLU-D1
راطبه بین زیر و اهداف گلتنی با وزن

از سایر دیدگاه‌ها بود. تعیین وزن تا ۵۰ درصد به خوش‌خنده و ارتقای نهایی گیاه (سانتی‌متر) و وزن ۲۰۰ دانه (گرم) برای هر کرت آزمایشی تنها شد. وزن حجمی برای مخلوط بذر گازویی هر لیتر نیز تعیین گردید.

الکتروفورز و آزمون‌های کیفی

ترکیب زیر و اهداف گلتنی با وزن مولکولی بالا در بالا و بالا در بالا و نیز لایه‌های ترکیب‌های روغنی، به روش الکتروفورز زیر بدن اکسید در حضور SDS (۹ و برینه‌ی امسال شماره گذاری‌های خاص و لایه‌ای) تعیین شد. طبق این نگاه‌ها بر نهایی آلثا و GLU-Achy (null) وزن و اینم شیوع GLU-Dia (2012) و GLU-B (78) GLU-D1d (9) و GLU-B1 (13) و GLU-A1a (1)

که در این همان‌طور در هر یک از سه زمین، برای کروموزوم‌های همبودی‌گر رهاب آلثا یا از آنای‌ایها، به ترکیب انیش‌های ۱ و ۲ در نظر گرفته می‌شود. بدین ترتیب برای آلثا مورد مطالعه، به هر لایه مورد و آزمون‌های کیفی آلثا بروز رخ کیفی آرد.

مواد و روش‌ها

آنلایشی‌های مورد بررسی، ۱۱۷ لایه ترکیب حاصل از مرحله ارقام انتا و اینتا؟ در نسل F1 بودند. نتایج حاصل از تلاقی بین انتا و انتا که به ترکیب ارقبی‌ها کامی زمین‌لوپ و مولود می‌باشند، تا نسل F4 این یک برد بود. شدن و در این نسل به صورت یک‌جا برای انیش انتا‌ها زراعی و کامی برداشت شدند.

آزمایش مزرعه

والدها و ۱۱۷ لایه ترکیب به صورت طرح بلوک‌های کامل متوسطی (یک برد) در پایل ۱۳۷۲ در مزرعه تحقیقاتی دانشگاه کالیفرنیا در دیپسی، تحت شرایط معمول رضایت منطقه کشت شدند. والدها در هر بلوک ۳ متری به تکرار دیگری گردیدند. هر کرت شاخص یک رفتگی کاشت به طول ۲/۸ متر و فاصله ۲ متر یافته‌گردید.

1- Anza 2- Inia 3- Single seed decad 4- Lidy


<table>
<thead>
<tr>
<th>ابتکار</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

شکل 1- انگور نر و یکه‌ها گل‌تنی‌های با وزن مولکول‌ی بالا در زدل پیا اکریلامید در ۴۰ نمونه‌ای که به روش فیشی و شوگر (8) بروی دو

۱۰ گرم آرد از هر تکرار لایه‌ای انجام شده و ۲۰ نمونه،

بوده به روش کراتونی ۲۵ درصد حجمی رسانده شدند

و سپس آرد در دندان. درصد استخراج آرد همه نمونه‌ها بین

۷۹ درصد دواد. فاصله زمانی شروع اکتتیوتا از نقطه اوج نمونه

میکروسکوپی (دقیقه)، به عنوان تعیین سرعت جدایی و عرض نمونه میکروسکوپی در ۲ دقیقه پس از نقطه اوج، به

عنوان میکروسکوپی از مقاومت خمیر تعیین شدند.

توجه و تحلیل

صفای اندازه‌گیری شده به‌منظور کرت و میانگین صفات

اندازه‌گیری شده روی چند نمونه، مورد تجزیه واریانس قرار

گرفته‌اند. اندازه‌گیری زنی‌های نر و یکه‌ها نسبت به هر وزن واحد

گل‌تنی‌ها به وزن مولکول‌ی بالای پروپتئین ۱/ دو امتیاز تعیین شده و با

استفاده از خطای تجزیه واریانس مورد آماری قرار گرفته‌ن

زنی‌های نر و یکه‌ها در تجزیه جدایی‌های تعیین گردیده‌‌

واریانس بین لایه‌های نر و یکه‌ها متقید با یک

درجه آزادی بین ۳ مکان زنی تکفیک شد (5 و 10) از این

زنی‌های نر و یکه‌ها (P<0.05) از این‌ها (P<0.05) و از این‌ها (P<0.05) و از این‌ها (P<0.05)
جدول ۱ - مقایسه میان‌گینهای صفات زراعی و کیفی برای مریک از زیر واحد‌های گلوبین با وزن مولکولی بالا، بالدهما و لاین‌های نوترکیب.

<table>
<thead>
<tr>
<th>زیر واحد گلوبین</th>
<th>تعداد</th>
<th>ارتفاع گیاه</th>
<th>زمان مقاومت</th>
<th>وزن</th>
<th>دانه (گرم)</th>
<th>مقدار</th>
<th>خشونت</th>
<th>عایق اورژانسی</th>
<th>خشونت</th>
<th>پروتئین خسیر</th>
<th>لاکتوز</th>
<th>سرسبزی</th>
<th>(میلی‌لیتر)</th>
<th>(فیکت)</th>
<th>(سانتی‌متر)</th>
<th>(درصد)</th>
</tr>
</thead>
</table>
| D۱              | ۷/۲۰| ۳۳/۸۱      | ۶۹/۲۷    | ۴۱/۶| ۱/۱۵۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱
جدول 2- میانگین مربوطات هر زیر واحد گلوتنین و اثرات متقابل آنها برای صفات کیفی

<table>
<thead>
<tr>
<th>متابع تغییر</th>
<th>ارتفاع رسوپ</th>
<th>زمان اختلاط</th>
<th>مقاومت خمير</th>
<th>درد پروتئن</th>
<th>دارد/بی‌دار</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLU-A1</td>
<td>0/47</td>
<td>0/58</td>
<td>0/59</td>
<td>0/65</td>
<td>حاکم/نامه</td>
</tr>
<tr>
<td>GLU-B1</td>
<td>0/57</td>
<td>0/68</td>
<td>0/53</td>
<td>0/75</td>
<td>حاکم/نامه</td>
</tr>
<tr>
<td>GLU-D1</td>
<td>0/60</td>
<td>0/72</td>
<td>0/72</td>
<td>0/76</td>
<td>حاکم/نامه</td>
</tr>
</tbody>
</table>

را داشته باشد، بطور معنی داری بیشتر از لایه‌های واجد زیر واحد‌های 2 و 3 بود. نتایج مشابهی توسط گلدن و همکاران (27) پوگنا و همکاران (28) کلیسی و همکاران (22) و راجرز و همکاران (29) جاری شده است. نتایج گزارش شده است. مذکر می‌شود که با مطالعه عده و قاری‌نگرگاه، حداکثر ارتفاع اکستنسیونگرایی، یا پیاده‌ریزی و استحکام خمیر برمبایی آلوتومگرام و زمان انقباض میکروگرافی، گزارش نموده که زیر واحد‌های 5 و 6، بر توپیپ به طور مثبت و سایه‌ای خواص کیفی آب می‌می‌گویند معمولی داران در این بررسی و دریگی مخلوط آر انتظار زمان طولانی اختلاط و مقاومت خمیر نیز با زیر واحد‌های 5 و 6 در میان زنی مربوط بود.

با توجه به بخش خصوصی و مشابه دو زمان اختلاط کوتاه 1/5 دقیقه (4) نسبت به خمیر بازی از زمان اختلاط بیشتر (5/7 و 7/1 دقیقه) و بالاتر به گذرانی بیشتر، بیشتری دارد. در طور کلی، با افزایش زمان اختلاط تا 2 یا 3 دقیقه، بالاتر بیشتر خمیر کاهش می‌یابد و به پایداری، بالاتر ارتفاع و مقاومت آن افزایش پیدا می‌کند.

جدول 1 میانگین لایه‌ها در ترکیب‌های 8 کانه از زیر واحد‌ها گلوتنین با وزن مولکولی بالا را برای صفات مورد بررسی نشان می‌دهد. در بین زیر واحد‌های مطالعه شده، تنوع آلی در زمان ذهنی 1/2 اثرات بارزی بر خواص کیفی داشت. میانگین‌های درصد پروتئین، زمان اختلاط، مقاومت خمیر و ارتفاع رسوپ برای لایه‌های که زیر واحد‌های 5 و 6
جدول 3- اثرات افزایشی (αAD و αBD) و متقابل (αAB و αD و αB) و متغیرهای (αA) و زنها بر میزان

<table>
<thead>
<tr>
<th>اثر</th>
<th>صفت</th>
<th>αA</th>
<th>αB</th>
<th>αD</th>
<th>αAD</th>
<th>αBD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ارتفاع رسوپ</td>
<td>7/63**</td>
<td>5/41</td>
<td>1/10</td>
<td>1/14**</td>
<td>2/32**</td>
</tr>
<tr>
<td></td>
<td>زمان اختلاف</td>
<td>1/19**</td>
<td>1/16</td>
<td>1/19</td>
<td>1/21</td>
<td>1/19</td>
</tr>
<tr>
<td></td>
<td>مقاومت خمیر</td>
<td>1/13**</td>
<td>1/38</td>
<td>1/18</td>
<td>1/21</td>
<td>2/38**</td>
</tr>
<tr>
<td></td>
<td>درصد بروخی</td>
<td>1/10</td>
<td>1/14</td>
<td>1/10</td>
<td>1/12</td>
<td>1/11</td>
</tr>
</tbody>
</table>

معنی دار در سطح احتمال 1 درصد

ارتفاع رسوپ همبستگی بالاتر را با خصوصیات گلتنین مرتبط کرده است. زیر واحدها گلتنین مراتب با آلیهای 2012 و 2013 و GLU-D1 با آلیهای 2014 و 2015. باعث افزایش ارتفاع رسوپ و قابلیت ارتداد خمیر می‌شوند. احتمالاً این زیر واحدها به وسیله انتشار اصلی کنترل می‌گردد. و می‌توان از آنها بر پایه‌های به‌نوازید سود جست. سایر زیر واحدها که از نظر زنتیکی با آلیه دیگر موجود در کروموزوم‌های 1 و 7 و 8 کنترل می‌شوند، اثرات کمتری بر خواص کیفی دارند. و می‌توان از آنها برای افزایش نسبی این صفات استفاده کرد.


