مطالعه تأثیر رسوپ زدایی سد سیزدرود بر شبکه آبیاری سپیدرود

محمدرضا یزدانی و سیدفرهاد موسوی

چکیده

آب مورد نیاز اراضی شالکاری استان گیلان توسط یک شبکه رعایت آبیاری شماً سد مخزن سپیدرود، سد انحرافی تاریک، شبکه فومات، سد انحرافی سیزرود و کالنیالهای سمت چپ و راست سد سیزرود تأمین می‌شود. به دلیل جمع‌شدن رسوپ‌های در مخزن سد سپیدرود، حجم آن به شدت کاهش یافته است. برای حل این مسئله، عملیات رسوپ زدایی در سمت چپ سد اجرا شده و در مخزن این سد انجام می‌شود. رسوپ‌های حاصل از رسایش در جویش سد سپیدرود که به‌صورت دیواره‌ای به‌روز وارد مخزن سد هستند و با پریش از آنها خارج می‌شوند و به‌صورت رسوپ‌های حاصل شده در ورودی‌ها در تجهیزات رعایت رسوپ‌زدایی راه انداخته می‌شوند. اطلاعات ایجاد شده در رسایش سد سپیدرود تجزیه و تحلیل شده و از سه‌دایه‌اً انحرافی تاریک و سبکر، ابتدا و انتهای حوضه‌های رسوب‌زی سد سیزرود، مسیرکالنیالهای 4 و 5 و سپس کالنیالهای آنها تهیه و برداری رسوپ توسط نمونه‌برداری انجام شد. نمونه‌برداری به‌صورت آزمایش‌خودکار انجام شد. تحقیقات ادبیاتی نشان داد که در دیه‌های کم رودخانه‌بردار، رسوپ در رودخانه و مخزن سد تاریک تجهیز می‌باشد و در دیه‌های زیاد فرسایش‌دار می‌باشد. متوسط بازده حوضه‌های رسوب‌زی سمت چپ و راست سد سیزرود 20% و 22% درصد به‌صورت آزمایش‌خودکار یافت. مشاهده شد که شبکه فیلتر نیز به تأثیرات رسوب‌زی‌گیری دارد. تأثیرات موجود در شبکه در معرض تهیه رسوپ قرار داشته و کالنیالهای درجه 1 و 2 وضع پهپادی (از انتظار رسوپ)، به‌صورت نسبی آبیاری درجه 3 و 4 دارند.

واژه‌های کلیدی - سد سپیدرود، رسوب‌زی‌گیری در شبکه آبیاری، حوضه‌های خشک‌رسیگیر

مقدمه

استان گیلان به عنوان یکی از اقلیم‌های کارزاری آبیر ایران با پیش از 340 هزار هکتار اراضی شالکاری از عمدترین تأمین کننده‌ی منابع مهربانی می‌گردد. تأمین آب این اراضی که عمده‌تر در اراضی کم شیب دشت گیلان قرار دارد، توسط شبکه و سیزرود flare آبیاری انجام می‌گردد. این شبکه از سد مخزنی سپیدرود شروع شده و به‌صورت سد‌های انحرافی تاریک و سبکر، از طریق 7 کالنیالهای مختلف، آب مورد نیاز را به مناطق مزارع می‌رساند. با توجه به کارشناسی ارشد مؤسسه‌تهیه‌نامه‌های نیروی در حال حاضر، خاصیت آبیاری این اراضی به‌صورت غیرمایع، گرفته و ضررت موتور سد سیزرود خیلی زودتر از زمان

کارشناسی ارشد مؤسسه تحقیقات بندر

دانشگاه آبیاری، دانشکده کشاورزی، دانشگاه ملی اصفهان
پیش‌بینی شده کمتری است. در برخی از این منابع، عملیات
رواب‌زداپی تحت عنوان "شاس" از سال 1359 در آن شروع
شد و تاکنون نیز ادامه دارد. در تیمی از عملیات، سالانه
میلیون‌ها نسخ رواب از مخزن سد تخلیه شده و به پایین دست
منتقل می‌شود.

توجه مختصات بی سوالی، رواب در
تاسیسات آبیاری نظر مخزن سد، پدیده انحرافی کالاهای
دارای ساختارهای پیچ از یک قرن قرن است. مدت اطلاعات موجود
دبایر در این رواب خود را پیش‌بینی کرده است. در تاسیسات
آبیاری مناسب از آن را با دقت بیشتری طراحی کرد. در یک
شبکه آبیاری، در جریه اولی سنا کلید رواب‌زداپی و فراموشی
طول و روتان‌های منطقه قرار گیرد زیرا در روتان‌های رواب در
طول زیاد پرگاهشان شده و نمی‌پرتواند بنشت.

کنی (14) ولینی (16) بعد از تحقیقات تجربی در
تعدادی از شبکه‌های آبیاری که در مراکز سد روزی
رژیم را ارائه داشته‌اند. در این ارتباط، سرعت جریان در حالت رژیم
پایه آموز بسته‌بسته است. تنها (17) در تکمیل مصالح لایه‌ای
کنی و لیندلی در فاکتور برتر و کاهش را در مورد
شداقل سرعت مجاز در کالاهای خیبرنشین و ویروس‌دار
تحقیقات زایده انجام شده است. (18) 130, 119, 71, 80
نواک و ناتچری (15) مصالح سرعت بحرانی و نش
بی‌حرانی برای ذرات متفرق رواب در کالاهای ویروس‌دار را قابل مقبلا
با کالاهای بدون ویروس دانستند. بر اساس تئوری حد نهایی
خلطت، با افزایش ضریب تغییر، حجم مول مطلق
کاهش می‌یابد (پارک که ناول از آن می‌باشد. پارک کار (2) سرعت
رواب‌زداپی در تعدادی از کالاهای آبیاری شبکه گونه
خوزستان، بررسی شده و از مجموع روش تحقیقی
غلظت با نظر دیگر بررسی شد. در مجموعه روش برنامه‌ریزی
غیر رواب‌زداپی در کالاهای خیبرنشین در دانشگاه است. (18)
وسکارچ (17) در این فاکتور که سه‌تیم از پارک خیبرنشین، فیزیولوژی و
جلگه‌ای از دیدگاه سرعت، مقطع مستطیلی و دوگانه تکه‌ای
است. در شبکه‌های آبیاری به میزان کوچک یک شیوی که
توحیع کن‌یابی مراکز رواب‌زداپی در جریان آب در کالاهای نشست
جدول ۱- درصد آب و رسواسی ورودی از رودخانه‌های قزل‌آوین و شهرود و رسواسی خروجی از سد سیپرود (۱)

| رسواسی خروجی | رسواسی ورودی | رسواسی تعیین‌شده | پژوهشگر | شماره
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰</td>
<td>۸۰</td>
<td>۶۲</td>
<td>۷۲</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰</td>
<td>۸۰</td>
<td>۶۲</td>
<td>۷۲</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>مجموع</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

سید سیپرود اندکی می‌باشد (این امر ناشی از بستر سنگی رودخانه‌ها و پوشش گیاهی خوب منطقه گیلان می‌باشد) و در دیپ‌های پایین، رودخانه سیپرود و مخزن سد تاریک نمی‌تواند رسواسی را در این محور بازدید دهد رسواسی از سد سیپرود، که با این‌گونه، افزایش رسواسی نیز هم‌زمان است، رسانه‌های تجمع پاشته در رودخانه و پشت سد تاریک به روش‌های مختلف به سمت سد راه می‌دهند. در این موارد، پشت دریچه‌های رود آب به سمت سد بردن کمک شناختی به جلوگیری از ورود رسواسی به حوضه‌های رسواسی و کانال‌های آن می‌کند.

سید احراز تاریک در ۴۰ کیلومتری پایای سد سیپرود از سه‌درصدی در این محور، می‌تواند با توجه به ۳۵ متریکیک در خاک آب را به تونل آب برکنار کند. کانال نومن با طول ۵۰۰ کیلومتر آب را به کانال‌ها می‌پیوندد. در آنجا به کانال‌های پایای درجه ۲ بیا مقطع نزدیک و از آنجا به کانال‌های درجه ۳، کانال‌های پایای در در فضای نیم دایره هدایت می‌کنند.

پس از تاریک با توجه به عرض شدن بستر رودخانه سید سیپرود، امکان رسواسی‌گذاری در طور بالقوه در موارد هیئت هوادار ندارد. به‌همین دلیل، رودخانه‌های چاه‌های منطقه ۱ و ۲، چشم‌پوشی نمی‌کند. در آن‌جایی که انسان در این محور، از سد سیپرود در داده‌های درآمدهای دیتی رودخانه‌های قابلیت فرسایش زیادی دارند.

سید احراز تاریک در ۴۰ کیلومتری پایای سد سیپرود قرار دارد و آب را کانال‌های سمت چپ و راست هدایت می‌کند. کانال‌های سمت راست با طول ۱۵ کیلومتر و دبی ۶۷ متریکیک در ناتیجه زمینه‌های مناطق میان‌کار، به‌همان‌گونه که در گذشته، با توجه به شکل، رسواسی رودخانه‌های میانی در مقایسه با رسواسی خروجی از

1. Density current
2. Braided

3
مکان. کانال سمت چپ با 25 کیلومتر طول، دی‌های 114 متری کمک کرد برای آب‌گیری قسمت غربی رودخانه. تراکم شامل مناطق رشد و شرق فرمات هنابی می‌گردد. حوضچه‌های روستوبرگ سد سنگر به شکل مستطیلی و به ابعاد 45×76 متر (چپ) و 38×68 متر (راست) و ارتفاع 4 متر برای تعیین کردن موانع مطلق آب و رود احداث شده‌اند. هدف از تحقیق حاضر عبارت است از تجزیه و تحلیل اطلاعات ایستگاه رودسنجی پایان سد سپیدرود در رودبار، نمونه برداری روابط از سد سه‌نمونه تاریک و سنگر، از روابط این سه نمونه روابطی برقرار می‌شود. از این روابط، توانایی ایستگاه‌های تاکستانی، باریک و تاکستانی آنها نظیر تنظیم کانال‌ها، سیفون‌ها، تپی‌کننده‌ها و همچنین کانال‌های داخلی و منابع دریافت‌های فصل آبی‌ای سال 1373 نمونه‌برداری شد. به منظور مقایسه غلط شدن سد به تاریک و سنگر، شکل 1- تغییرات دی ماهانه رودخانه‌های تاکستان و شاهرود و سپیدرود (1)
مطالعه تأثیر رسوپ زدایی سد سپید چاه‌بیابی آبیاری سیستم‌های در فروردین و اردیبهشت ۱۳۷۶ به صورت روزانه از رودخانه از محل آبگیری این سد، به وسیله لیتر بر دستی از نوع مداوم عمقی (۱) را به روش‌های بالا مشاهده شد. برای مقایسه غلظت‌ها در ایندا و انواع حوضچه‌های روستایی سدسنگر و محیط‌های بارده، نگهداری روستایی روستو در آن‌ها، در هر نقطه و در هر تکرار نمونه آب برداشت شد و دو تیز اندازه‌گیری گردید. در هفته ۱۳۷۶ زمانی که جریان غلظت از کانال‌ها شروع می‌کرد، از ابتدا سدهای انحرافی فوق در فواصل کوتاه تا نقاط انتهایی شیشه‌های آبیاری نمونه‌های آب برداشت شد و غلظت رسوپ نمونه‌ها در آزمایشگاه تعیین گردید. در تعدادی از کانال‌های خاکی مزارع در و جلال (با جوامع متخلفه هر یک یک عدد و بدون وجود علفهای مرگ) نمونه‌های آب صورت گرفت و غلظت رسوپ تعیین شد.

نتایج و بحث
الف-حوضچه‌های روستایی سدسنگر
نمونه‌برداری روزانه در طی دو ماه اول سال ۱۳۷۶ از روستای و خروجی‌های حوضچه‌های روستایی سدسنگر نشان می‌دهد که در حوضچه سمت چپ سدسنگر، غلظت رسوپ ورودی از ۷۵/۰ تا ۵۰/۰ گرم در لیتر و غلظت خروجی از ۶/۰ تا ۲۰/۰ گرم در لیتر متغیر است. نسبت حذف رسوپ (با به عبارتی بارده حوضچه‌های روستایی) از رابطه زیر به هستد:

\[R = \frac{q_{so} - q_{si}}{q_{si}} \]

که: R نسبت حذف رسوپ از آب حاصل رسوپ به حوضچه
q_{so} = دیب رسوپ ورودی به حوضچه
q_{si} = دیب رسوپ خروجی از حوضچه

براساس این رابطه، بازده حوضچه روستایی سدسنگر سمت چپ سدسنگر از ۱۳۷۶ تا ۱۳۷۵ درصد متفاوت بود. در این حوضچه، متوسط بازده ماهه فرودین و اردیبهشت ۱۳۷۳ به ۲۰/۵ درصد به هستد آماد. می‌توان گفت نمونه‌های غلظت کم آب ورودی و غلظت زیاد آب خروجی از حوضچه (به دلیل

1- Depth-integrating sampler (type DH-48)
2- Removal ratio
شکل ۴- توبوگرافی سطح حوضچه و رسوب‌گیر سمت چپ سد سنگر، بعد از اتمام فصل آبیاری در زمستان ۱۳۷۲

شکل ۵- توبوگرافی سطح حوضچه و رسوب‌گیر سمت راست سد سنگر، بعد از اتمام فصل آبیاری در زمستان ۱۳۷۳

آب، رسوب‌گذاری در چندیلی‌متر ابتدا، کانال فوم مشاهده نمی‌شود. شاید به این دلیل است که با کاهش غلتگی به میزان کمتر از طرفین حمل رسوب در کانال (که در بخش عمده فصل زراعی اتفاق می‌افتد)، رسوبات به شدت به تدریج دوباره از یکی سپرده و عمل می‌گردد.

کانال‌هایی درجه‌نده‌ای شکل در بین BP4 و SP3 از کانال خاکی فوم منشی به شکل ۶. چندین گاه شیب غلتگی رسوب در طول کانال BP4 را در پاتژ‌ها و ارديبهشت ۱۳۷۴ نشان می‌دهد. به طور متوسط در این روز حداکثر ۱/۵ سانتی‌متر رسوب در طول کانال نشسته است.

گرچه خصوصیات هیدرولیکی و هندسی کانال‌های خاکی BP4 و BP5 غلتگی رسوب وارد به آنها متفاوت است، اما مقایسه جداول ۲ و ۳ این نکته را مشخص می‌کند که کامیار مشابه پس از داشتن شیب ۲ در هزار تاکری رسوبی مشاهده نشده است.

پس از تونل، کانال خاکی آب برخوردار قرار دارد. سرعت آب در آن ۸/۶ متر در ثانیه است و در چندی‌متر ابتدا، کانال‌های رسوب‌گذاری قابل ملاحظه‌ای روی ندایه است. واکنش‌های مشابه جریان آب در آتی غلتگی زیاد یافته آب به شکل سریز از فلز هایی که در مسیر کانال و در اواخر آن قرار دارد مشاهده گردیده است. به طور قطع این مسئله به دلیل کم شدن قدرت عبور جریان در مرکز کانال می‌باشد. (که می‌تواند ناشی از رسوب‌گذاری ذرات در کف کانال در غلتگی بالای جریان آب یا پیش از حدود ۵ گرم در لیتر باشد) ادعا دارد ۲ این که از پاتژ‌های اردیبهشت ۱۳۷۴ و غلتگی زیاد آب کانال فوم به‌دست آمده است. این که چرا در پایان فصل آبیاری پس از قطع
جدول ۲- کاهش غلظت رسوب در طول مسیر کانال BP4

<table>
<thead>
<tr>
<th>فاصله از ابتدا کانال (گرم در لیتر)</th>
<th>غلظت رسوب در آب (گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۲۰</td>
<td>۶</td>
</tr>
<tr>
<td>۷/۶۹</td>
<td>۵۰</td>
</tr>
<tr>
<td>۶/۶۶</td>
<td>۱۶۰</td>
</tr>
<tr>
<td>۶/۸۹</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>۶/۵۷</td>
<td>۳۰۰</td>
</tr>
<tr>
<td>۶/۵۴</td>
<td>۴۰۰</td>
</tr>
<tr>
<td>۶/۴۲</td>
<td>۵۰۰</td>
</tr>
<tr>
<td>۶/۳۹</td>
<td>۶۰۰</td>
</tr>
<tr>
<td>۵/۸۶</td>
<td>۷۰۰</td>
</tr>
<tr>
<td>۵/۶۸</td>
<td>۸۰۰</td>
</tr>
<tr>
<td>۵/۵۴</td>
<td>۹۰۰</td>
</tr>
<tr>
<td>۵/۳۹</td>
<td>۱۰۰۰</td>
</tr>
</tbody>
</table>

جدول ۲- کاهش غلظت رسوبات در کانال فومن در مسیر چهارتا چهار راه اصلی شفت

<table>
<thead>
<tr>
<th>فاصله از ابتدا کانال (گرم در لیتر)</th>
<th>غلظت رسوبات در آب (گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵/۸</td>
<td>۰</td>
</tr>
<tr>
<td>۱۰/۸</td>
<td>۰</td>
</tr>
<tr>
<td>۹/۴</td>
<td>۱۶۰</td>
</tr>
<tr>
<td>۸/۸</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>۸/۴</td>
<td>۳۰۰</td>
</tr>
<tr>
<td>۷/۴</td>
<td>۴۰۰</td>
</tr>
<tr>
<td>۶/۷</td>
<td>۵۰۰</td>
</tr>
<tr>
<td>۶/۴</td>
<td>۶۰۰</td>
</tr>
<tr>
<td>۵/۱</td>
<td>۷۰۰</td>
</tr>
</tbody>
</table>

غلاظت رسوب در کانال فومن نسبت به کانال BP4 در یک فاصله مشخص بیشتر است. بنابراین انتقال رسوب در کانال BP4 تا فاصله بیشتری صورت می‌گیرد، بدون این که ذرات رسوب تنششین شوند. شبیه و سردت کافی آب در کانال BP4 سبب انتقال رسوبات به انتهای شبکه آبیاری می‌گردد که نتایج پاره‌کار (۲) را تایید می‌نماید.

بعد از اتمام فصل آبیاری، قطع آب در هر کانال از سال‌های ۱۲۷۲ و ۱۲۷۳ مشاهده شد که مکانیزمی روی رسوب در پشت اکثر تأثیرات این کانال جمع شده است که این مسئله در پره برداری تأثیر نامتولیدی خواهد داشت.

کانال BP4 تیز از لحاظ رسوب وضعیت مشابه کانال BP3 و BP4 دارد. در طول کانال BP4 BP3 و BP4 کانال‌های نری بی با مقیط نیم‌تاب، به فاصله حدود یک دهه می‌باشد. هدف می‌باشد که این کانال‌ها به طور متوسط تسخیر شده و کافی گردد. به تنها در انتهای فصل آبیاری، حدود دو پاره‌کانال اصلی بوده است. حتی در مواردی رسوبات تنششین شده چندان زیاد بوده که کانال
شکل ۶- کانال های SP۲ و BP۲ در زیر شبکه فومنات
مطالعه تأثیر رسوب زیادی سد سی‌سی‌دی رود پر شیب‌های آبیاری سیدرود

جدول ۴- دانه‌بندی مواد تنشینی شده در کانال‌های مزرعه

| مساحت | سیلت | رس | مزرعه | ابداع کالال | ابداع کالال
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۲</td>
<td>۸۸</td>
<td>۱۴</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

جدول ۵- کاهش غلظت رسوب در طول یک کرت برخی به‌ویژه بی‌بی ۱۰۰ متر در مرحله ۱۵ روز بعد از نشان

<table>
<thead>
<tr>
<th>فاصله از ابتدای (متر)</th>
<th>۰</th>
<th>۵</th>
<th>۱۰</th>
<th>۱۵</th>
<th>۲۰</th>
<th>۳۰</th>
<th>۴۰</th>
<th>۶۰</th>
<th>۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت (گرم در لیتر)</td>
<td>۱۱</td>
<td>۱۹</td>
<td>۲۷</td>
<td>۳۷</td>
<td>۴۱</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۸۰</td>
<td>۹۰</td>
</tr>
<tr>
<td>درصد تغییری تجربی</td>
<td>۰</td>
<td>۲۲</td>
<td>۷۸</td>
<td>۵۹</td>
<td>۴۱</td>
<td>۲۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

شکل ۸- مقایسه کاهش غلظت رسوب در کانال‌های پوسیده از علف هرز و علی از علف هرز

مزرعه، اقامت به نمونه‌برداری از مواد متعلق در طول ۲۰۰ متر یک کانال خاکی در مسیر رسوب گردیده. در حالت: ۱) کانال با علف هرز در طول ۲۰۰ متر به طوریکه بزرگی کانال کامل پوسیده باشد. و ۲) علف هرز در طول ۲۰۰ متر به طوریکه بزرگی کانال کامل پوسیده باشد و ۳) علف هرز در طول ۲۰۰ متر به طوریکه بزرگی کانال کامل پوسیده باشد.

شکل ۷- درصد ذرات ته تنشین شده از سد تاریک تا کانال مزرعه در مسیر ۴ BP

کرده‌اند. وضعیت رسوب کانال و SP۴ نزش شبیه ۴ می‌باشد.

کانال‌های خاکی موجود در سطح مزارع عمده‌ای دارای شیب و سرعت کم و علف‌های هرز سیاه و در مزارع سنتی مشکل پیچ و خم در بودن کانال نیز بیان اضافه می‌گردد. لذا یک می‌توان انتظار داشت که سرعت جریان آب در آنها کم باشد. به همین دلیل در این دانشگاه تثبیت نیز فرست تغییری به‌شکل می‌کند (جدول ۴). جنگلی و علف‌های هرز در این کانال‌ها به‌ویژه این کانال‌ها در کانال‌های مزرعه باقی خواهد ماند. همین‌طور می‌توان گفت که با افزایش علف‌های هرز مشکل رسوب‌گذاری به مراتب کمتر می‌شود.

کانال‌های مزارع، آب را به کرت‌های برخی رسوب می‌رسانند. این‌ها
شیبکه فومات و وجود ندارد ایجاد تأسیسات جدید رسوب‌گیری در اندیان، شیبکه می‌تواند مشکل رسوب را در این قسمت بسپار کاهش دهد. همچنین لازم است تأسیسات شیبکه مورد مورد بررسی بازرسی شده و در مواردی که در این ارتفاع به شدت رسوب‌گیر شده، کمک می‌کند. ارتفاع رسوب‌گیر در زمان قبلی تغییر کرد.

در کناره‌های زهکش، به دلیل تغییر شدت عمده ندانت در سطح کشتی در برنج، بسیار در رسوب به شدت کناره‌های آبیاری نیست، به طور مثال، زمانی که غلظت رسوب در کناره‌های آبیاری 5/8 می‌گردد در لیتر بود غلظت رسوب در اندیان زهکش مزده 3/4 می‌گردد در لیتر و در فاصله 90 متراً از ابتدا بیش از 3/2 می‌گردد در لیتر اندوز گیزی شد.

به طور کلی، از آنجا که هر گونه تأسیسات رسوب‌گیری در

منابع مورد استفاده

1- آموزش منابع آب و خاک. 1362. گزارش رسوب‌سوز سد سفیدرود، وزارت نیرو، شرکت سهامی آب منطقه‌ای شمال.
2- پاره کار. م. 1371. بررسی سرعت رسوب‌گذاری در کناره‌های آبیاری (شیبکه آبیاری گونه، خوزستان)، پایان‌نامه کارشناسی ارشد، دانشگاه تهران.
3- جعفرزاده. ا. 1371. روش‌های کنترل رسوب در شیبکه‌های آبیاری و آرسانی، انتشارات فرهنگ جامع، تهران، 189 صفحه.
4- حدادی، م. 1366. بررسی رسوب و رسوب‌زدایی در مخزن سد سفیدرود و اثر آن در پایان، پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی کرمان، دانشگاه تهران.
5- شبنم باقری. ص. 1372. محیط‌های جغرافیایی رسوب‌گیری در شیبکه‌های آبیاری، پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی دانشگاه صنعتی اصفهان.
6- شفیعی، م. 1369. کشتی سه‌ المنا Clausی در کناره‌های آب منطقه‌ای، تغییرات در زمان رسوب و ورود به آب‌گیرها در سه‌های انحرافی، پایان‌نامه کارشناسی ارشد، دانشگاه تهران.
7- میری‌پور، مسیو. 1371. تخمین سرعت رسوب‌گذاری در کناره‌های پوششی برای استفاده از غلظت مواد معلق و مقایسه آن با سایر رسوب‌های موجود، پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تهران.
Vorlag, Copenhagen, Denmark.