اثر کیتنین روی رشد خوشه نارس قطع شده گیاه مزرع در شرایط عادی و شوری

سیدعلی محمد میر محمدرضا میبدی

چکیده
دوره ی نمادن زایشی، دورهای حساس مهر و مهم در زندگی گیاه برای مطالعه پاتیسه فنگیک گروه کیتنین است. تحلیل به شوری طی این مراحل برای به دست آوردن عملکرد بالا پایدار مطلوب است. توده‌های زراعتی از گل‌های خشک که به عنوان بذر چمن از آمریکا وارد ایران شده بودند جهت کشت خورشید نارس قطع شده در مرحله‌ی ترمیم بالک پرچم روی محلول غلیظ رنگی انتخاب شد. این خشونه روی محلول غلیظ رنگی به طور مجزا با یا بدون صفر تا در دستگاه مکث طعام و غلظت‌های مختلف کیتنین (۱، ۵، ۱۰، ۱۵، ۲۰ و ۲۵ مولار) کشت گردید.

سیر نمای خسارت قطع شده در شرایط آزمایشگاهی به تناسب بررسی در این غلظت‌های مختلف نمک روی ۱۰/۵ با شدن خوشه‌جناه نموده شد.

جنتی، باروری و تشکیل بذر خشونت قطع شده گیاه عنی مزرع در شرایط آزمایشگاهی مورد بررسی قرار گرفت.

محیط کشت مایع حاوی نمک میکرو‌کیتنین نمروطبیعی بذر را باعث گردید. در حالی که افزایش نمک به این میکرو‌کیتنین جنین و انوپسرم را در بهتر مورد مختل شد و باعث تشکیل گزیده‌های غیرطبیعی و نقط نمک جنین شد. بذرهای غیرطبیعی دارای جنتی کیتنین و یا فاقق جنین بودند. حجم کم انوپسرم و کوچکی اندازه‌بندی از دیگر مشخصات برخی گزیده‌های غیرطبیعی بود. با این حال نتایج کمی از خوشه‌جناه در حال رشد در محیط‌های کشت حاوی غلظت‌های کم نمک (۵/۰ درصد) بذرهای طبیعی تولید نمودند. که پس از ۵ تا ۱۰ روز قرارگیرین در شرایط مناسب جوانه‌زدن.

واژه‌های کلیدی - کشت خوشه، شوری، غلظت نمک، کیتنین

مقدمه
میلیون‌ها هکتار از زمین‌های کشاورزی در دنیا به دلیل مسائل شوری به حالات باهنر در آمده و هر ساله در نتیجه آسیب‌پذیری یپ رویی به وسعت این زمین‌ها افزوده می‌شود. به منظور تعیین این مشکل ابداع و گسترش های مقاوم به شوری (۲) و اجرای عملیات مهندسی، مشتمل بر مدیریت صحت آبیاری و زهکشی (۳) در این نوع زمین‌ها توصیه شده است. با این حال

دلاوی چنین عدم وجود فشار کامل طبیعی برای پیشگیری مقاومت به شوری و عدم توقف برآمدهای اصلاحی منجر به حساس باقی ماندن گیاهان به شوری شده است. همین بر بودن عملیات مهندسی و مشکلات کاربردی و مدیریت آن (۱۹) دریافت راه حل ایجاد استفاده از تعداد زیادی گیاهان مقاوم به شوری موجود در فلور مناطق مختلف جغرافیایی را.
به طور دقیق مطالعه وصدامات شوري را روی نمو زایشی خوابشناسی منج مطالعه نمود. به مکتی این روش می توان مواد غذایی و تغذیه را با در اثرها تکمیل نمود و هدف از این مطالعه مشاهده تغییرات نمود. خوابشناسی نارس مقر اصلی نور نشانده یا رشد نشانده در سطح آزمایشگاهی و مطالعه اثرات شوري روی نمو زایشی خوابشناسی معرق بود.

مواد و روش‌ها

مواد یافته‌ای از تکنیک خوابشناسی مطالعه اثرات شوري روی نمایشگاهی گیاه را به صورت مستقل قرار می‌دهند.

اگرچه به بیست سال گذشته، شاخص محققین به کنت خوابشناسی یا خوابشناسی گیاهان علیه افزایش پاسخگویی است، ولی تمرکز مطالعات روی ممنوعیت گل‌شانه و سالم در گروه‌های چهار (1)، بیشتر (12) و احیاً روی گل‌منده تفاوت (17) بوده است. کنترل خوابشناسی و پتانسیل به کارگیری آن در زیست‌های مختلف زراعی، فیزیولوژی و اصولی توسط چهار (5) بررسی شد.

از کشت گیاه کامل در خاک شورد یا مرمت‌های کاشت‌های مختلف منک می‌توان به اطلاعات کلی در مورد اثرات منک فراهم آورده (4). استفاده از اندام قطع شده گیاه و کاشت آن در روی محیط کشت عادی از منک را، امکان انتخاب مرحله نمودی مناسب برای درختگی تغییرات تیترنامه انجام شده در فاصله به رشد گیاه (7). به عنوان نمایش محققی قرار است ضمن مطالعات توانایی بذور در حال نمو و تحمل سرما تاشه از نشان شوری، تغییرات ساختمانی حاصل در نمک که در حالت تغییر و سیستمیت محل را به صورت ممایه و در اثرات مستقیم نمک روی قسمت زایشی گیاه کاملاً در شیء کشته شده شاخص میزان وابستگی بر رشد و نمو قسمت زایشی گیاه به قسمت رویشی گیاه است. مطالعات فاکتورهای کنترل کننده نمو خوابشونده بر گیاه بدر در مرحله گیاهی شامل اندام زایشی مشکای به رشد (10) و (15) با استفاده از تکنیک کشته خوابشونده ترس نمایشگاهی را به صورت مجاری و

1-Chloridoideae 2-Eragrostideae 3-Cynodon dactylon 4-Wysi College 5-Cyn3
دیاه شده در محیط کشت مایع با محيط آب معمولی حاوی غلظت‌های مختلف هورمون کیتین‌ها (8، 10، 15 و 10 مولار) کشت گردید.

در آزمایش‌های دیگر، مجموعه‌ای از شش تیمار مختلف نمک برای هر دو محیط کشت مایع و آب معمولی حاوی 0، 30 و 60 مولار کبتین به کار گرفته شد. در کشت خوش‌های روش سیبیمیلهاری اصلاح‌شده، تیمار برای هر دو محیط کشت کبتهای آب آشامیدنی روش زیر مورد استفاده قرار گرفت:

ظرف پایه‌ای لاستیکی بر روی شیشه کوچک مستقیم یا حاوی آب معمولی قرار داده شد و سراغی در وسط ظرف پنجره کبتهای آب موجود. در داخل ظرف پنجره تیغه قرار گرفت و درب آن روز دهانه تیغه قرار داده شد. بسته و پنجره عده از شیشه‌های کلمه پنجره اتاقی، مربع خورشید قرار داده شد و به همین تعداد به اتفاق رشد متغیر گردید. بقیه عملیات انجام شده مشابه عملیات انجام شده برای کشت مایع در میکروب بهبود.

لولا شیشه‌ای به ارتفاع 10 سانتی‌متر و قطر 25 سانتی‌متر داخل اتفاق رشد در روز 24 سانتی‌گراد و طول روز 16 ساعت قرار گرفت. بعد از پای شدن خوش‌های و بیرون آمدن کلاته‌های خوش‌های، هر گرده اصلاح‌شده در شیب از میکروب انجم می‌شود. گرده‌های مورد نیاز به کبتهای مصنوعی از خوش‌های مبتنی بر پاناز و دما تغییر متغیری در خوش‌های مصنوعی مربوط 2 (شکل 1) کشت شده در جمعیت کاشت (شکل 2) یا در داخل ظرف پنجره کبتهای آب مصنوعی به‌طور پیشرفت می‌باشد.

به منظور بررسی نحوه زایشی خوش‌های روش محیط کشت استریل، مقدار بسته و پنجره که در مراحل مختلف نحوه زایشی 1- صفر و 2- بودند (شکل 1) برطریق دستورالعمل شرح

1-Wheat spikelet medium (WSM) 2-Magenta box 3-Sigma
شکل ۲- طراحی وسیله جمع‌آوری دانه‌گره در شرایط آزمایشگاهی، از طریق کشت خوشه در مرحله نمود ۲، روی محیط کشت آب معمولی حاچی کشت برای جمع‌آوری دانه‌گره تحت شرایط استریل. ۴- فرآیند تغییرات جهت جمع‌آوری دانه‌گره تحت شرایط عادی ۱ - جعبه کشت ۲- اتصال دهنده جعبه ۳ - صفحه کاغذی پیل پروبیکت ۴- خوشه علف مرگ ۵- چند لوله کشت ۶- آب معمولی ۷- درویش ۸- ۸۰ فرآیند ۹- باک ۱۰- ۲۰ فرآیند کرجک صیدی‌های تداوم رشدندیم‌های خوشه‌های قطع شده در تیمارهای مختلف، قدرت باروری دانه‌گره، تشکیل یا عدم تشکیل بذر و قدرت جوانان زدن بذر اندام‌هایی شد. همچنین پارامترهای اثرات نمک‌های طعم روی خروج‌های و طول شدن ساقه در مرحله ابتدا، تمرکز دانه‌گره، کاهش پیش‌روی و عضو و دانه‌گره تحت شرایعی نمود دانه‌گره و کیفیت جهت خروج نامناسبی و توپی نمود تیمار خوشه‌ها با نش شوری مطالعه گردید.

نتایج
میزان روشهای خوشه‌ها در این مطالعه تا کنون روشهای مختلفی برای کشت خوشه‌ها مانند روش دونومن و لن (۰) و سیون و کیمر (۱۴) منفرد نشده است. روش معیاری شده در این آزمایش از نظر طراحی و کاربردی‌تر مورد بهره‌برداری شده و کشت خوشه‌ها بر محیط آزمایشگاهی به آسانی امکان‌پذیر می‌سازد. از دیگر امتیازات این روش، تناهی نمودن تهیه کردن گانزی لازم پیشین محیط داخل جعبه کشت و نمودن
جدول ۱ بیررسی خوشه‌های کاشته شده گیاه مرغ به کمک برخی از خصوصیات نمو زایی‌شان

در محیط‌های مختلف کشت در شرایط آزمایش‌گاهی

<table>
<thead>
<tr>
<th>مرحله نمو</th>
<th>محیط کشت مایع</th>
<th>آب آشامیدنی به عنوان ۵۰٪ مولری کشت مایع</th>
<th>زایی‌شان</th>
<th>مولری کشت</th>
<th>زایی‌شان</th>
<th>مولری کشت</th>
<th>زایی‌شان</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d c b a</td>
</tr>
<tr>
<td>از تا</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰-۱</td>
<td>– – + +</td>
<td>– – + +</td>
<td>– – –</td>
</tr>
<tr>
<td>۱</td>
<td>– – + +</td>
<td>– – + +</td>
<td>x x x</td>
<td>x x x</td>
<td>x x x</td>
<td>x x x</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>x x x</td>
<td>– – + +</td>
<td>x x x</td>
<td>x x x</td>
<td>x x x</td>
<td>x x x</td>
<td>۲ x بعد</td>
</tr>
<tr>
<td></td>
<td>x x x</td>
<td>– – + +</td>
<td>x x x</td>
<td>x x x</td>
<td>x x x</td>
<td>x x x</td>
<td>۲ x بعد</td>
</tr>
<tr>
<td></td>
<td>x x x</td>
<td>– – + +</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>= = = =</td>
</tr>
<tr>
<td></td>
<td>= = = =</td>
</tr>
</tbody>
</table>

علاطم اختصاصی: ۱. امکان تداوم رشد نوین خوشه‌های فیتایی مرحله ناشده شده ۲. امکان تولید بذور دارای قوه نامیه در محیط کشت فاقد نمک طعام ۳. امکان تولید بذور دارای قوه نامیه در محیط کشت حاوی نمک طعام ۴. عدم نمک کشت نمک دار (نمک کشت حاوی نمک طعام) ۵. عدم نمک کشت نمک حاوی نمک طعام ۶. عدم نمک کشت نمک حاوی نمک طعام ۷. عدم نمک کشت نمک حاوی نمک طام ۸. عدم نمک کشت نمک حاوی نمک لاحق

مواد غذایی کمبودی جهت ادامه نمو زایی شده شکی بیشتر نداشته و افزایش هورمون ممکن است افزایش نمو زایی را تغییر دهد.

درصد‌های مختلف نمک طعام نیز قادر بودند به صورت طبیعی مرحله طولانی شدن ساقه، را طنین مانند و از غلاف برگ پرچم خارج شوند.

ب - کشت خوشه‌های مرحله نموی ۲ موفقیت آمیز بود و از خوشه‌های کشت شده به‌طور گسترده شد. بخش از ۵۰٪ از خوشه‌ها در مدت ۶ روز پس از شروع گریچه حجمی از خوشه‌ها هرگز باز شدند. مرحله نموی خوشه‌های مرحله
جدول 2- اطلاعات مربوط به درصد تولید بذر گیاه علف مرغ در شرایط مختلف گلخانه‌ای و آزمایشگاهی

<table>
<thead>
<tr>
<th>شرایط نشست</th>
<th>زمان وضعش</th>
<th>مرحله نمو (μ ± α)</th>
<th>میزان تولید بذر (μ ± α)</th>
<th>طریق گونه‌گشایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بذر</td>
<td>-</td>
<td>2/9 ± 2/35</td>
<td>2/11 ± 2/35</td>
<td>گلخانه‌ای</td>
</tr>
<tr>
<td>(n = 25)</td>
<td>(n = 25)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مراحل گیاه</td>
<td>0-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میکروسکوپی مایع حاوی</td>
<td>10-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مراحل 1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مولار کیتین</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میکروسکوپی مایع بدون</td>
<td>0-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مراحل 2-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هورمون</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آب مشابه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 25)</td>
<td>(n = 25)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میانگین و Σ - اشتباه معيار</td>
<td>0-6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 2- اثر گلخانه‌ای مختلف هورمون کیتین روی ادامه نمو زایش خوش‌های علف شده علف مرغ. هورمون کیتین

در گلخانه‌ای به کار رفته باعث انحراف رشد زایش و تشکیل ساقه جدید در کارگه‌ی‌های موجود در سالن کاره است.

- 10 مولار کیتین + میکروسکوپی خوش‌های 0.05
- 10 مولار کیتین + میکروسکوپی خوش‌های 0.05
- هورمون
- خوش‌های 0.05
- عایر از هورمون
- شهدر
- در غلاف و Sh
- ساقه تولید شده از کار خوش‌های

سازگار 25 درصد بذر تولید گردید (جدول 2).

- کارگه‌ی خوش‌های در میکروسکوپی مایع حاوی 10 مولار کیتین سبب تداوم‌مراحل نموی خوش‌های برای خوش‌های تارس مراحل نموی 1- و صفر گردید. اگرچه در قسمت انتهايی...
کاشت خوشه‌های مراحل نمو ۱ و ۲ مصرف حامل گردید. در نتیجه خودکشی خوشه‌هایی هیچ گونه بذری تولید نشد. و لیست از خوشه‌های تلقیح شده با داده‌گر سازگار بذر حاصل گردید، لیکن بذر تولید شده در دصد، های بالای نمک غیرطبیعی بوده. هیچ گونه تفاوت معنی‌داری بین درصد بارودی داده‌گر حاصل از کشت آزمایشگاهی خوشه‌های مطلوبی گاهی شده‌اند. در کاهش درصد کشت‌های تولید نمک، مکا و جهانی در دصد بذر بوده. البته این تفاوت و نتایج منشی نشان داده شده که کشت‌های مکا خواهانی در دصد گروهی که به تولید افزایش غلظت‌های مطلوبی کیتین به آم معمولی هیچ گونه تاثیری روی تولید زایشی خوشه‌های کشت شده را نمی‌یابد. ساده حاوی آب آب‌امضایی نشان نموده. مگر غلظت ۴۰–۵۰ مولار یکی از همانند که در کشت خوشه‌های مرحله نمو ۲ و ۳ میکروب حاصل حاصل آزمایشگاهی خوشه‌ها و از غلاف بزرگ پرچم به فرآیند مصرف حاصل نمود. در حالی که در کشت خوشه‌های مرحله نمو ۲ و ۳ میکروب حاصل زمین از غلاف بزرگ پرچم به فرآیند مصرف حاصل نمود. در حالی که در کشت خوشه‌های مرحله نمو ۲ و ۳ میکروب حاصل نمود. در حالی که در کشت خوشه‌های مرحله نمو ۲ و ۳ میکروب حاصل جلوگیری از تغییرات مورفولوژیک خوشه‌ها در میکروب آزمایشگاهی قابل مقایسه با شرایط غلظت‌های (رصد، تغییر خوشه‌های روى گیاه اصلی) بود. مراحل نمود تغییر شده برای خوشه‌ها (شکل ۱) از تغییرات نوز ۱ و ۲ در میکروب‌هایی کشت مراحل نمو ۱ و ۲ در میکروب‌هایی کشت مراحل نمو ۱ و ۲ در میکروب‌هایی کشت مراحل نمو ۱ و ۳. با دقیق تفاوت ۱۷٪ ۱۷٪ مولار (کشت مراحل نمو ۱ و ۲) در میکروب‌هایی کشت مراحل نمو ۱ و ۲ در میکرو
کیتینین نشان داد که هورمون های دیگر جهت نمو خوشه ضروری به نظر نمی‌رسد. با این حال مکانیزم عمل هورمون کیتینین در نمو زایمان هنوز شناخته نشده است. گفته می‌شود یکی از اثرات این هورمون کمک به انتقال ماده آلی به خوشه‌های در حال رشد می‌باشد. این مشاهده نمی‌تواند خشک‌سازی و بازگشت بندی چرخه‌ها و افزایش حساسیت مراحل مختلف نمای خوشه به تنش کمبود آب را تبیین مطالعات گلخانه‌ای مطالعات دارد.

سیاستگری

از آقایان دکتر محمد رضا خواجه‌پور، دکتر عبادالجمیه رضائی و دکتر خورشید رضوی به ترتیب دانشیار، استاد و استادیار گروه زراعت و اصلاح پتاسیمی اسپانیول و آقای دکتر مصطفی و لی زاده استاد دانشگاه تبریز که می‌تواند را با دقت مورد بررسی قرار داده و نظارت اصلاحی آنها در مهندسی اعمال گردید و از خانه‌های نازی که تابع مقاله را به انجام رساندند سیاستگری و تشکر می‌گردد.

میتر مورد استفاده

1- Ryegrass

