جنین زایی بدنی از گالوس گیاه (Medicago sativa) یونجه با استفاده از اتیل استرادیول

چکیده
در پژوهش حاضر اثر اتیل استرادیول (کیکی از مشتقات استروژن) روی پودر میوه گیاه یونجه بررسی شد. نخست بذرهای یونجه در مهیج (Murashige & skoog, 1962) MS کشت شدند. سپس به آزمایشگاهی کشت شدند. پس از آن، قطعات جدا کشت ساقه و از همکناری با مهیج کشت با ترکیب هورمونی مختلف از اکسین، سیدخوکن و اتیل استرادیول ساخته شدند و در ۳ روز به در مرحله گیاه گاکشت‌های هیپوکریت و ساقه یونجه به آنها متقابل گردید. نتایج نشان داد کالکوس‌هایی که به مهیج کشت‌های هاوی اکسین و اتیل استرادیول مختلف شدند، بعد از چند هفته ایجاد جنین سوماتیک رشت و ساقه نمویند. در قطعات گاکشت پس از ۱۰ روز ظهور ریشه دیده شد. برای مراحل داد که ظهور ریشه و ساقه و تشکیل جنین سوماتیک به روش تعامل اکسین و اتیل استرادیول متفاوت شده است و حضور هریک از هورمون‌ها به تنهایی نمی‌تواند آثار دکتری شده را نشان دهد.

واژه‌های کلیدی: استروژن، اتیل استرادیول، پودر، یونجه

مقدمه (Medicago sativa) گیاه یونجه در ایران دارای گونه‌های بسیار است و از نظر دانه‌دار و نه تنها به این جنین سوماتیک از این گیاه اقدام کرده، همچنین تولید کالکوس از قطعات هیپوکریت این گیاه در مهیج کشت B5 نیز با استفاده از

۱. به ترتیب دانشیار و کارشناس ارشد رئیس شناسی، دانشگاه علوم، دانشگاه اصفهان

۱۰۳
آثربخشی ادراک در ایجاد جنین سوماتیک در گیاهان بوده و تأثیر بی‌توجهی در این سیستم در آنها بی‌توجهی به‌وجود
کیفیت و انرژی میزان متقابل بوده و به‌شراط
سخت طبیعت استفاده شود.

مواد و روش‌ها
برد پوش‌هایی از مرکز تحقیقات امور دام و منابع طبیعی اصفهان
نه ته گرده، بذرها را در ضعف‌پذیری به‌مدت 30 روزه در کلی
در صد و ۲۰ دقیقه در محلول دی‌هیپوکلریت می‌دریم سهم ۲ درصد قرار
گرفته‌اند، بعد از آن بذرها در محیط کشت
(4) MS گردیده. پس از ۲-۵ هفته در شیشه کشت تعداد 2-4 فлечه
جدایشی به انتهای تقریبی 1۵ سانتی‌متر از سطح و بزرگ
پیوندهای موجب کشت جد، شاهد و تولید MS کالوس به محیط کشت
قرار MS حاوی ۲۴۵ ن‌مر. NAA و Kin، هر
کلام به محیط کشت قطعات کالوس به قطر ۱۵ سانتی‌متر
ریسیدن. (پس از حدود ۲ هفته) به محیط کشت جنین زایی منتقل
شدند. زمان‌کش قطعات کالوس به قطر ۱۵ میلی‌گرم (ژانوری)
شدند. کلیه ریزشی کرش به صورت خودکار و پیش‌بینی
استریل انجم کرته و در نهایت نمونه‌های کشت شده در شیشه در
اثاق کشت باید ۲۵ درجه به‌سرعت گردو و زمان نور به ۴ ساعت نور و ۸ ساعت تاریکی قرار گرفته.

طرح میکروبی کشت بازایی
برای ارگاتی‌های ادراک استفاده بر جنین زایی گیاهان بوده، در
مجموع ۱۴ ترکیب هورمونی متفاوت در بن می‌دریم گردو که برای
M14 مهولت کار، این محیط کشت‌ها به اختصار از
نام‌گذاری شدند (جدول 1). این ترکیب‌های هورمونی به محیط
اضافه شد. ۵ تا ۸۰ میلی‌گرم با قطر متوسط
۵ سانتی‌متر به محیط کشت‌ها بازی (۱۰ تکرار منتق
گردیدند و مشاهدات در دمای و گردو‌گیری تغییرات آنها در
تیمارهای مختلف هر ۱۰ روز یک یک بازی شدند. گیاهان
بازایی شده پس از ابتدا وجود جنین سوماتیک به محیط

104

هورمون‌های ۴-D BA و ۲-۴ دی‌هیپوکلریت در حال حاضر در کتاب‌های سنتی کنی این
جهت‌نما شده، جنبه‌های شرایط و نظریه شیمی
هورمون‌ها گیاهی شاخشی می‌شوند (۴ و ۱۱). این هورمون‌ها
در جوان‌ترین، تحقیق تکمیلی سلولی و متابولیت جویی
بوده و گاهی تأثیر هورمون‌های گیاهی اثر متقابل و گاهی اثر
تشادن کندگی داشته و آثار زند و نمودی نیز نشان می‌دهند (11 و
۱۷). گاهی وجود یک کاربرد این هورمون‌ها در شرایط
آزمایشگاهی کمتر مورد توجه قرار گرفته و به یک مورد که
توسط حسامی (۱۴) در سال ۲۰۰۲ گزارش شده تحقیق علمی
اجراگزاری به ویژه روی ایده‌آل استرایپل سرپوش‌شده است.
این هورمون‌ها از طریق ترکیبات بسیاری از مسئله‌های
هورمون‌های استریپلیکتی بکار می‌رود و در سلول‌های جانوری داری
خیال برای انیمیشن حیاتیباید یک نیروی ایجاد قرار نگرفته است (8 و ۱۷). از
انجام‌های که پاسخ‌های گیاهی نسبت به شرایط کشت بازی می‌باشد
محیط کشت فلسطین و نگهداری هورمون‌های گیاهی، جهت بازی می‌باشد و
با تولید جنین سوماتیک به کار می‌رود، به شدت وابسته به
زون اندازه است (9). در تازه‌برای برای
کشت و تولید جنین سوماتیک برای ارائه و یا گونه‌های مختلف
گیاه پوشش به عنوان یک گیاه به ارائه باید مورد بررسی قرار
گیرد. به عنوان مثال تحقیقات انگلیسی‌زبان و بررسی‌های
Medicago truncatula

Downloaded from jppj.iut.ac.ir at 6:01 IRDT on Sunday September 15th 2019
جدول 1. ترکیب هورمونی محیط‌های کشت جنین زایی سوماتیک

<table>
<thead>
<tr>
<th>نام محیط کشت</th>
<th>ترکیب هورمونی که به محیط کشت پایه MS افزوده شد است</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (0.5 mg/L))</td>
</tr>
<tr>
<td>M2</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (1 mg/L))</td>
</tr>
<tr>
<td>M3</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (2 mg/L))</td>
</tr>
<tr>
<td>M4</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L))</td>
</tr>
<tr>
<td>M5</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (0.5 mg/L))</td>
</tr>
<tr>
<td>M6</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (1 mg/L))</td>
</tr>
<tr>
<td>M7</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (2 mg/L))</td>
</tr>
<tr>
<td>M8</td>
<td>(NAA (0.5 mg/L))</td>
</tr>
<tr>
<td>M9</td>
<td>Ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M10</td>
<td>IAA (0.1 mg/L) + BAP (1 mg/L)</td>
</tr>
<tr>
<td>M11</td>
<td>IAA (0.1 mg/L) + BAP (1 mg/L) + Ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M12</td>
<td>IAA (0.1 mg/L) + ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M13</td>
<td>NAA (0.5 mg/L) + BAP (1 mg/L)</td>
</tr>
<tr>
<td>M14</td>
<td>NAA (0.5 mg/L) + BAP (1 mg/L) + Ethinyl estradiol (1 mg/L)</td>
</tr>
</tbody>
</table>

کشت MS می‌تواند باعث افزایش کاربرد (ex vitro) یا سطح (in vitro) شود. این کشت می‌تواند میکروسکوپی مورد استفاده قرار گیرد. نتایج نشان داده می‌شود که در شرویه‌های مهار، غدد سوماتیک به حرکت می‌آیند. غدد سوماتیک به غدد nervous سوماتیک می‌پردازد. غدد nervous سوماتیک به مرکز nervous سوماتیک می‌پردازد. غدد nervous سوماتیک به غدد nervous سوماتیک می‌پردازد. غدد nervous سوماتیک به غدد nervous سوماتیک می‌پردازد. غدد nervous سوماتیک به مرکز nervous سوماتیک می‌پردازد.

نتایج نشان داده می‌شود که در شرویه‌های مهار، غدد nervous سوماتیک به غدد nervous سوماتیک می‌پردازد. غدد nervous سوماتیک به غدد nervous سوماتیک می‌پردازد. غدد nervous سوماتیک به مرکز nervous سوماتیک می‌پردازد. غدد nervous سوماتیک به غدد nervous سوماتیک می‌پردازد. غد
جدول 2: نتایج حاصل از پژوهش از گرماتوکلریس در محیط کشت‌های بایزابایی M1-M14

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>دوست‌داد کنش جنین سوماتیک (نر)</th>
<th>محیط کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 میلایژ سوماتیک بادون اندام‌زایی</td>
<td>M1</td>
</tr>
<tr>
<td>2</td>
<td>2 میلایژ سوماتیک بادون اندام‌زایی</td>
<td>M2</td>
</tr>
<tr>
<td>2</td>
<td>2 میلایژ سوماتیک بادون اندام‌زایی</td>
<td>M3</td>
</tr>
<tr>
<td>0</td>
<td>40 کالوس‌های سبز‌شده و جنین سوماتیک همراه با ریشه و ساقه تولید گردند</td>
<td>M4</td>
</tr>
<tr>
<td>30</td>
<td>30 کالوس‌های سبز‌شده و جنین سوماتیک همراه با ریشه و ساقه تولید گردند</td>
<td>M5</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پیس مدنی قهوه‌ای شده و از بین رفته‌اند</td>
<td>M6</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پیس مدنی قهوه‌ای شده و از بین رفته‌اند</td>
<td>M7</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پیس مدنی قهوه‌ای شده و از بین رفته‌اند</td>
<td>M8</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پیس مدنی قهوه‌ای شده و از بین رفته‌اند</td>
<td>M9</td>
</tr>
<tr>
<td>12</td>
<td>12 نوسافق و ریشه تولید گردند و حسی سوماتیک مشاهده نشده‌اند</td>
<td>M10</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پن‌های مشاهده شده‌اند</td>
<td>M11</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پن‌های مشاهده شده‌اند</td>
<td>M12</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پن‌های مشاهده شده‌اند</td>
<td>M13</td>
</tr>
<tr>
<td>0</td>
<td>0 کالوس‌های پن‌های مشاهده شده‌اند</td>
<td>M14</td>
</tr>
</tbody>
</table>

**: پیوستگی معنی‌دار بودن اختلاف داده‌ها (P<0.01) بر اساس آنالیز واریانس (ANOVA) (می‌باشد.)

شکل 1: ایجاد جنین سوماتیک در کالوس‌های بونجه در محیط کشت M6 در کالوس‌های بونجه در محیط کشت M6 (برگ‌نشانی: 10000)
جِنَین‌زاً سوماتیک از کالوس‌گیاه یونجه (Medicago sativa...)

...و با آنادام زایی و تولید جنين داشتند پس از پیشینه تمام ایکس هایی و این اکسیون نهاد که اکسیون و اتیل استردادول به نهادی به توانائد باعث افزایش و جنين گردد می‌باشد این پیدایش را داشته باشیم. نتیجه بده باست اینج سما و گلوت‌های و با توربک هورمونی اکسیون (NAA) با توربک هورمونی اکسیون (NAA) و درصد M7 به ترتیب 0.5 و 0.1 میلی‌گرم در لیتر اتیل استردادول طراحی گردید. نتایج ذکر شده نشان داد کالوس‌های گروهی از این سه محیط کشت ریشه و جنين سوماتیک تولید کرده‌اند. درصد جنين سوماتیک تولید و در این محیط کشت کاهش تا M5 به ترتیب 50 و 30 درصد است. این نتایج نشان می‌دهد اتیل استردادول (TDZ) غلظت (در حدود غلظت NAA) در محیط کشت داشته‌است. بنابراین به‌طور کلی می‌توان در تولید جنين سوماتیک تولید و در محیط کشت M6 است. ممکن است ممکن است ممکن است با توجه به سه‌مادم های دیل این کانسین و اتیل سوماتیک بدن حضور سوماتیک غیر تقیی‌تر این‌ها ریشه و جنين سوماتیک شده است و تولید جنين سوماتیک شده است. واکنش کالوس‌های که به محیط کشت (ethyl estradiol 1 mg/L) M9 و (NAA 0.5 mg/L) M8 متقابل شدند در هر دو محیط کشت رشد نکردند. در نتیجه M10 ناتایج این می‌تواند بی‌ значение نمود که ممکن است واکنش متقابل این اکسیون و اتیل استردادول جنبه فعال نسیم تا MAA (NAA) و اتیل استردادول ضریح غلظت NAA و جنين سوماتیک شده و در این اتیل استردادول نش در محیط کشت نیز با عوامل تا ۵ میلی‌گرم در لیتر مورد استفاده قرار گرفت و فعالیت سوماتیک با قطر حدود ۵/۵ سانتی‌متر بی‌ значение می‌باید که این محیط کشت متقابلی گردد. محیط کشت M4 نیز به عنوان شاهد برای این سه محیط کشت استفاده شد. نتایج نشان داد کالوس‌ها در محیط کشت M3 می‌توانند از وابستگی به جنين سوماتیک تولید کنند. این نتایج نشان داد این اتیل سوماتیک می‌تواند مراحل فلکی شکل از مراحل تکنیکی جنين رشدی با فرض اینکه در آزمایش‌های انجام

بحث

با توجه به اینکه گزارش علمی منتشر شده‌ای در زمینه تأثیر اتیل استردادول بر بازایی گیاه یونجه در دست نیست، محیط کشت یا در محیط کشت M8 با توربک هورمونی یک اکسیون (IAA) یک سیتوکین (TDZ) و اتیل استردادول در غلظت‌های ۰/۵ و ۰/۵ میلی‌گرم در لیتر مورد استفاده قرار گرفت و فعالیت کالوس‌ها در قطر حدود ۵/۵ سانتی‌متر به این محیط بی‌ значение می‌باشد. این نتایج نشان می‌دهد که این محیط کشت M3 می‌توانند از وابستگی به جنين سوماتیک تولید کنند. این نتایج نشان داد این‌ها از مراحل فلکی شکل‌کردن مراحل تکنیکی جنين رشدی با فرض اینکه در آزمایش‌های انجام

یکسیس ۴ (شکل ۳).
شکل 3 ایجاد نوسانه در کالوسهای بونجه در محیط کشت M12

شکل 4 مرحله مختلف بازیابی گیاه بونجه از طریق ایجاد چین سوماتیک
1. تهیه قطعات جدایکشته و هیپوکتیل و ساقه
2. تولید کالوس از قطعات جدایکشته و انتقال آنها به محیط بازیابی
3. بازیابی و تولید چین سوماتیک
4. انتقال گیاهان به گلدان و کاهش تدریجی رطوبت
5. ایجاد گیاه کامل
جنین زایی سوماتیک از کالایوس گیاه پونه‌ای (Medicago sativa) بدون M11 و M8 کالوس‌های متقل شده به محیط کشت M11 تا M5 بندون آنکه برد کند، تحلیل رنگ و قهقایی شدید. به نظر می‌رسد واکنش متفاوت BAP و اتیل استرادول واکنش متفاوت نباشد. این مطالعه نیز مجدداً گویای این امر که ممکن است اتیل استرادول نقش آنکسین داشته و BAP می‌تواند اثر آن را کننده کند. به هر حال، با توجه به اینکه نشان دهنده نقش هیپومونه‌های استروئیدی بر سطوح گیاهی کاملاً مشخص نشده است، این فرضیات نیاز به بررسی‌های دقیق‌تر علمی دارد.

با توجه به نتایج (۱۰) فضله ساقه و هیپوکول، باید فعالفی باری برای ازایه‌های هستند، بنابراین باری برای انجام پاساژی‌های ساقه از نگاه آن و از نگاه اصولی برای مصرف می‌شود. پاساژی و هیپوکول و ساقه به نحوی تقابلی به دست آمده که این کشت M1 تحت قطعه M7 جدایی‌سازه و هیپوکول هم به محیط کشت M11 منقل شده، پس از یک هفته تولید ریشه نمودند. تعمید ریشه‌ها تشکیل شده به طور مبتنی ۲ ریشه در هر قطعه جدایی‌سازه بود. این نتایج نشان داد اتیل استرادول در القای ریشه بسیار مؤثر است.

منابع مورد استفاده
1. اسلامی، ع. و ف. امینی. ۱۳۷۹. کشت ساقه و گیاه کامیاب انتشار جهاد دانشگاهی اصفهان.
2. خرندورف، ن. و م. قاسمی. ۱۳۷۷. تحلیل آماری داده‌های طرح هم‌کیستی‌های اختلالات رویان اصفهان. مجله پژوهشی دانشگاه اصفهان. ۱(۳): ۲۰۶-۲۱۰.
3. کریمی، ه. ۱۳۷۵. گیاهان زراعی انتشارات دانشگاه تهران.
4. صربیاران، ر. ۱۳۸۱. آثار استروئید بر قیمت‌ها و لپیپوتین‌های سرم رات. پایان نامه کارشناسی ارشد علوم جانوری، دانشگاه زیست شناسی اکولوژی‌دانشگاه اصفهان.