جنین زایی بدینی از کالوس گیاه یونجه از اتیل استرادیول (Medicago sativa) با استفاده

چکیده

در پژوهش حاضر اثر اتیل استرادیول (یکی از مشتقات استروژن) روی بازاژای گیاه یونجه بررسی شد. نخست بذرهای یونجه در محیط شرایط آزمایشگاهی شدند. پس از آن قطعات جدا کنندگی ساقه و هیپوتریکلبی به محیط کشت الکالوس برده و کالوس تولید شد. در هر یک از این بیا یونجه 14 محیط کشت با ترکیب هرمونی مختلف از اکسین سیتوکین و اتیل استرادیول ساخته شدند. نتایج در 2 مرحله مشخص شد. نتایج نشان داد کل میزان یونجه که به محیط کشت گذشتهای حاصل اکسین و اتیل استرادیول مختلفه داده. بعد از چند ماهه ایجاد جنین سوماتیک، رشد و سایه نمود. در قطعات جدایی گرفته از 10 روز اول رشد ریشه دیده شد. بررسی نشان داد که ظهور ریشه و سایه و تشکیل جنین سوماتیک به راسته تعامل اکسین و اتیل استرادیول الکالوس شده است و حضور هریک از هورمون ها به تنهایی نیست. نتایج نشان داد که بازهای کلیدی استروژن اتیل استرادیول، بزرگتر و یونجه می‌باشد.

مقدمه

بازه یونجه (Medicago sativa) در ایران دارای گونه‌های بسیاری است و از نظر گذشته داده، پوشش گیاهی، نتیجه نتیجه

1. به ترتیب دانشیار و کارشناس ارشد ریست شناسی، دانشگاه علوم، دانشگاه اصفهان:

8

103
مواد و روش‌ها
بدر وضعیتی مربوط به شرایط مورد، در حال حاضر از کنکین‌ها سیستم‌کوینهای خیره، این انتی‌بیوبی‌های مصرفی سیستم‌کوینهای مصرفی در کاربرد به موقع بهبود کیفیت و یا افزایش میزان مقاومت بیو‌نجه نسبت به شرایط سخت طیب‌س تغییراتی استفاده شود.

 Siegeh، و رشید و نموی نیز نشان می‌دهند (11) و (17) با این وجود تا کنون کاربرد این هورمون‌ها در شرایط آزمایشگاهی کمتر مورد توجه قرار گرفته و به جز یک مورد که توسط سال (17) در گزارش شده تحقیقات علمی دیگری به ویژه روی انتی‌بیو‌تی است، مشابه است. ساختار و نحوه تغییراتی که در پی انجام گرفته و در نهایت نمونه‌های کشت شده در شیشه علت کشتن تا 15 درجه سانتی‌گراد و شدت تعداد 1500 لیکوک و زمان نوری 14 ساعت زمان و 8 ساعت تاریکی قرار گرفته.

طرح‌های محیط‌های کشت بازیابی
برای ارزیابی انتی‌بیو‌تی است، میزان قابلیت گنجینه‌های بازیابی کشت کشت می‌باشد. 14 ترکیب هورمون‌های متداول در دسترس گرفته شده که برای M14 مدل کارت، انی می‌باشد. به اختصار از همکاری در دانشگاه 100 تکرار متقابل گردیده و مشاهده‌های موجود گروه تشابه‌های مختلف در 10 روژ یک بار ثبت شده. کیفیت بازیابی شده پس از ابتلا و وجود جنین سوماتیک به محیط
جدول 1. ترکیب هورمونی محیط‌های کشت جنین زایی سوماتیک

<table>
<thead>
<tr>
<th>نام محیط کشت</th>
<th>ترکیب هورمونی که به محیط کشت پایه MS افزوده شده است</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (0.5 mg/L))</td>
</tr>
<tr>
<td>M2</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (1 mg/L))</td>
</tr>
<tr>
<td>M3</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (2 mg/L))</td>
</tr>
<tr>
<td>M4</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (0.5 mg/L))</td>
</tr>
<tr>
<td>M5</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (1 mg/L))</td>
</tr>
<tr>
<td>M6</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (1 mg/L))</td>
</tr>
<tr>
<td>M7</td>
<td>(NAA (0.5 mg/L) + ethinyl estradiol (2 mg/L))</td>
</tr>
<tr>
<td>M8</td>
<td>(NAA (0.5 mg/L))</td>
</tr>
<tr>
<td>M9</td>
<td>Ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M10</td>
<td>IAA (0.1 mg/L) + BAP (1 mg/L)</td>
</tr>
<tr>
<td>M11</td>
<td>IAA (0.1 mg/L) + BAP (1 mg/L) + Ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M12</td>
<td>IAA (0.1 mg/L) + ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M13</td>
<td>NAA (0.5 mg/L) + BAP (1 mg/L)</td>
</tr>
<tr>
<td>M14</td>
<td>NAA (0.5 mg/L) + BAP (1 mg/L) + Ethinyl estradiol (1 mg/L)</td>
</tr>
</tbody>
</table>

* جنین زایی سوماتیک از کالوس گیاه پونچه (Medicago sativa) با استفاده...

گرددید(شکل 1). ۴۰ درصد از کالوس‌ها جنین تولید نمودند که میانگین تعداد آنها در هر نقطه کالوس ۲ عدد بود. در محیط M7 و M6 ۵۰ درصد و در محیط M5 ۳۰ درصد از کالوس‌ها تولید جنین سوماتیک نمودند. با وجود این که جنین‌های سوماتیک تولید شده از لحاظ مورفولوژی کاملاً قابل تشخیص بودند و لی برای اطمینان بیشتر مطالعات میکروسکوپی روی آنها انجام گرفت. نتایج به دست آمده در شکل ۲ نشان داده شده است. در این تصور میکروسکوپی سلول‌های میوستاتیک موند ریشه و ساقه و باختری میوستاتیک بهبودی آنها کاملاً قابل رؤیت است. M7 گذاری کشت‌های مختلف شده به محیط کشت‌های M5 چنین‌جای زا در جدول ۲ آرائه شده است. کالوس‌ها در سه محیط کشت M5 به‌خوبی رشد کرده و سپس شدتند. علاوه بر این ۲ درصد از کالوس‌ها تولید ساختارهای شبیه به جنین سوماتیک نمودند و در ادامه زایی مشاهده تکرر دید. در محیط کشت‌های M4 کشت‌های کالوس‌ها رشد نداشتند و ادامه زایی نیز در آنها دیده نشد. پس از حدود ۴ هفته از واکنش کالوس‌ها در محیط کشت‌های M7، جنین سوماتیک در روی آنها مشاهده

نتایج

نتایج به دست آمده از کشت کالوس در محیط‌های کشت جنین‌زا در جدول ۲ آرائه شده است. کالوس‌ها در سه محیط M3 کشت تا M1 کشت ۲ درصد از کالوس‌ها تولید ساختارهای شبیه به جنین سوماتیک نمودند و در ادامه زایی مشاهده تکرر دید. در محیط کشت‌های M4 کشت کالوس‌ها رشد نداشتند و ادامه زایی نیز در آنها دیده نشد. پس از حدود ۴ هفته از واکنش کالوس‌ها در محیط کشت‌های M5، جنین سوماتیک در روی آنها مشاهده نشد.
جدول ۲: نتایج حاصل از بازآوری فلزات کالوس در محیط کشت‌های بایزایی M1-M14

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>درصد تولید جذبی سوماتیک و یا اندازه‌گیری کالوس‌ها</th>
<th>محیط کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>تولید خاصت شیب جذبی سوماتیک بدون اندازه‌گیری</td>
<td>۲</td>
<td>M1</td>
</tr>
<tr>
<td>تولید خاصت شیب جذبی سوماتیک بدون اندازه‌گیری</td>
<td>۲</td>
<td>M2</td>
</tr>
<tr>
<td>تولید خاصت شیب جذبی سوماتیک بدون اندازه‌گیری</td>
<td>۲</td>
<td>M3</td>
</tr>
<tr>
<td>رسید در کالوس‌ها کاملاً متوقف شد.</td>
<td>۰</td>
<td>M4</td>
</tr>
<tr>
<td>کالوس‌ها سبز شده و جذبی سوماتیک همراه با ریشه و ساقه تولید کردن.</td>
<td>۴۰</td>
<td>M5</td>
</tr>
<tr>
<td>کالوس‌ها سبز شده و جذبی سوماتیک همراه با ریشه و ساقه تولید کردن.</td>
<td>۵۰**</td>
<td>M6</td>
</tr>
<tr>
<td>کالوس‌ها سبز شده و جذبی سوماتیک همراه با ریشه و ساقه تولید کردن.</td>
<td>۳۰</td>
<td>M7</td>
</tr>
<tr>
<td>کالوس‌ها پس مدتی فوهای شده و از بین رفتن.</td>
<td>۰</td>
<td>M8</td>
</tr>
<tr>
<td>کالوس‌ها پس مدتی فوهای شده و از بین رفتن.</td>
<td>۰</td>
<td>M9</td>
</tr>
<tr>
<td>کالوس‌ها پس مدتی فوهای شده و از بین رفتن.</td>
<td>۰</td>
<td>M10</td>
</tr>
<tr>
<td>کالوس‌ها پس مدتی فوهای شده و از بین رفتن.</td>
<td>۰</td>
<td>M11</td>
</tr>
<tr>
<td>نوسانه و ریشه تولید کردن و لی قسمت سوماتیک مشاهده نشد.</td>
<td>۱۲</td>
<td>M12</td>
</tr>
<tr>
<td>کالوس‌ها پس اندازه‌گیری</td>
<td>۰</td>
<td>M13</td>
</tr>
<tr>
<td>کالوس‌ها پس اندازه‌گیری</td>
<td>۰</td>
<td>M14</td>
</tr>
</tbody>
</table>

**: بیانگر معنی‌دار بودن اختلاف داده‌ها (p<0/0/0۰) بر اساس آنالیز واریانس (ANOVA)

شکل ۱: ایجاد جذبی سوماتیک در کالوس‌های بوتیج در اکسین و اتانول استرادیول (محیط کشت M۶) (برگ‌شماری ۱۰۰۰۰)
بیانیه مرتبط با اینکه گرایش علمی منشتر شده‌ای در زمینه تأثیر اپتیپ استرادول بر پژوهشگاه گیاه بی‌پوئنه در دست نیست، محیطی کشت های یافته با (IAA) یک اکسین (M5) اپتیپ استرادول در غلظت‌های 1 و 2 میلی‌گرم در میکرو استفاده گرفته و قطعات کالوس با قطر حدود 5/5 سانتی‌متر به این محیطی کشت‌ها منحل گردید. محیطی کشت M4 نیز به عونان شاهد برای این سیس کشت استفاده شد. نتایج نشان داد کالوس‌ها در محیط کشت M3 تا با خویش رشد کرده و سری و رنگ می‌نشوند ولی M1 اندامزایی در این محیطی کشت‌ها دیده نمی‌شود. حدود 2/4 از کالوس‌ها اندام زایی به جنس سوماتیک تولید می‌کنند. بررسی‌ها نشان داد این اندام‌کش‌ها مرحله قطعی شکل‌کننده‌ای در مرحله تکوبن جنسی می‌باشد. با فرض اینکه در آزمایش‌های انجام
شکل ۳ ایجاد نوسافه در کالوس‌های بونجه در محیط کشت M12

شکل ۴ مرحله مختلف بازیابی گیاه بونجه از طریق ایجاد چنین سوماتیک

۱. تهیه فلسفات جداول کشت از هیپوپلی و ساله
۲. تولید کالوس از فلسفات جداول کشت و انتقال آنها به محیط بازیابی
۳. بازیابی و تولید چنین سوماتیک
۴. انتقال گیاهان به گلدان و کاهش تدریجی رطوبت
۵. ایجاد گیاه کامل
در پاسخ جمع بندی نتایج به دست آمده به نظر می‌رسد کالوس‌هایی منقل شده به محیط کشت M8 بدون M11 اکسین و نتیجه‌گیریکه ترکیب هورمونی برای انتقال آنها ایده‌آل و تولید کلین اکسین و انتیل استرادرالن (M12 و M6) به آن معادل می‌شود. با توجه به محتوای موجود تولید ریشه و جنین سوماتیک از مهم‌ترین مشخصات حضور اکسین در محیط‌های کشت در شرایط آزمایشگاهی می‌باشد (11). علاوه بر این با گزارش همکاران (16) برای بلوتوستون‌ها عملکردی مشابه به اکسین داده‌گردند. یک تاریخ به نظر می‌رسد در ترکیب اکسین و انتیل استرادرالن احتمالاً انتیل استرادرالن با اثر متفاوت خود با اکسین و یا عملکرد سینرژیزم (Synergism) و پژوهش و جنین سوماتیک مؤثر می‌گردد، ولی جوانسکی‌ها نشان دادند که این همبستگی مشابه با انتیل استرادرالن است و انتیل حضورهای انتیل استرادرالن مشابه با انتیل استرادرالن می‌باشد. یک تاریخ به نظر می‌رسد در گیاهان با مکانیزم مشابه برای استرادرالن‌ها عمل می‌کند.

رویکردهای مختلف، به گونه‌ای که به محیط کشت M8 جداسازی ساقه و هپیونیتند که به محیط کشت M7 منقل شده‌اند، به این دلیل تولید ریشه نمی‌شود. تعادل ریشه‌های پودری بسیار شدید بوده، طور مشابه در هر قطعه جداسازی بود. این نتایج داد که انتیل استرادرالن در القای ریشه بسیار مؤثر است.

منابع مورد استفاده
1. اساتید و. و. ف. اسکنی. 1379. کشت سلول‌های ویژه گیاهی. انتشارات جهاد دانشگاهی اصفهان.
2. خرمشهری، م. و. روشن، م. و. نوئیکی. 1377. تحلیل آماری داده‌های طرح همگرایی اکسین‌ها در محیط اکسینهای متنوع. مجله پزوهشی دانشگاه اصفهان. 3: 206-212.
3. کرمی، ه. 1375. گیاهان و. انتشارات دانشگاه تهران.
4. صبری، ر. 1381. آثار ترشحی بر محیط‌های سرم رات. ماهنامه کارشناسی آزمایشی، دانشگاه تهران.