مهدی شریفی، محمد علی حاج عباسی، محمود کلابی و مصطفی مبیلی

چکیده

سیب زمینی (Solanum tuberosum L.) گیاهی است با سیستم رشدی که نیاز بالایی آن به تیترازون از جنوبهای اکتاسی و زیست محیطی جات آبیات است. این گیاه با هدف تعداد و مقایسه ویژگی‌های مورفولوژیکی ریشه و جذب تیترازون در رتبه رایج و جدید سیب زمینی تحت کشت در ایران انجام شد. برای این منظور رقمند سیب زمینی، آرژانتین، آرژانتین، گینه زیمبابوه، مازوارا و تونسی در یک آزمایش در قالب طرح کاملاً تصادفی با 3 تکرار در گلخانه تحت شرایط زراعتی دانشگاه صنعتی اصفهان مورد مقایسه قرار گرفتند. نتایج نشان دادند که سیب زمینی از ویروس‌های واکنش‌ نشان دهنده، در زمان کلسیم برداشت شده و ریشه‌های مرحوم است. همچنین، در بررسی قطع رشته به اندام‌های تیترازون و سطح رشته با استفاده از دستگاه دانش، تعیین آنتی‌ژن همچنین تراکم طول رشته و نسبت رشته به اندام هواپیمای تعیین شد. وزن خشک و تیترازون (کل تیترازون جذب شده) در پایه این باتری گیری شد. نتایج تیترازون معادل خاک نیز قابل از کشت بود و بعد از برداشت تعیین شد.

نتایج پایان‌گزار تفاوت معنی‌دار رقم‌ها از نظر تمام ویژگی‌های مورد بررسی به جز متوسط قطر رشته بود. تفاوت زیاد بین رقم‌ها برای بیشتر صفات حاکی از نوع رنگی‌کلی بین رقم‌ها بود. رقم‌های مازوارا و تونسی به ترتیب دارای بالاترین و پایین‌ترین مقادیر ویژگی‌های مورفولوژیکی ریشه، نسبت ریشه به اندام هواپیمای تیترازون و همچنین شانزده و سیزده مورد تحقیق قرار گرفتند. نتایج نشان داد که سیب زمینی از ۶ رقم مورد مطالعه از نظر ویژگی‌های ریشه، تیترازون، وزن خشک و جذب تیترازون به عنوان مناسب‌ترین رقم شناخته شد. در حالی که رقم‌های جنوب و جذب تیترازون اکتشافات و استفاده از رم‌های از سیستم رشدی نیز قابل قبول جذب بالاتر تیترازون را به وسیله مختصات اصلاح نماید. (Solanum tuberosum L. (گروه‌بندی، ویژگی‌های ریشه، ویژگی‌های جاذب

واژه‌های کلیدی: جذب تیترازون، سیب زمینی (Solanum tuberosum L. (گروه‌بندی، ویژگی‌های ریشه

1. به ترتیب دانشجوی دکتری، دانشیار و استاد خان شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار باپیشی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

181
سپی زمینی گیاهی با ریشه سطحی است که برای دستیابی به عملکرده، مقدار بالایی نیترژن نیاز دارد. باعث آسفی شدن، نیتریسیون نیترات به دلیل آب‌روبی، سنتیون و پارنداگی خصوصاً در خاک‌های دشت بافت زیاد بهره و باعث نمونه‌کردن آن‌ها خیز زمینی به نیترات در مزرعه می‌گردد. یکی از راک‌های کلیه احتمالاً نظر بسیاری از پژوهشگران را در جهت کاهش یکی نیترات از مزرعه سپی زمینی به دلیل معطوف ساخته، انتخاب و استفاده از رقمه‌های است که دارای کارآیی جدید بالاتر نیترژن می‌باشد (۲۹).}

خاطرات زمینی با کارآی مصرف عنصر برای انتقال از عنصر و گونه‌های گیاهی شاخه‌های تولیده از چنین باعث مصرف نیترژن (مقدار عملکرد تولید) در واحدهای سپی زمینی گزارش شده است (۶ و ۸). این اختلافات در کارآیی مصرف نیترژن با اختلاف کارآی چند نیترژن (مقدار عملکرد) جذب شده در واحدهای نیترژن مصرفی) و کارآیی استفاده نیترژن (مقدار عملکرد) در واحدهای سپی زمینی است. این اختلافات ممکن است با افزایش مقدار نیترژن جذب شده به وسیله گیاه باعث داشته شده است. کلیفک و همکاران (۲۶) در بررسی خوید روزی واقع رقیب برای کارآیی مصرف زمینی مشاهده کردند و دریافتند که کارآیی گیاه با افزایش مقدار نیترژن مصرفی کاهش می‌یابد. اساس فیزیولوژیکی در این اختلافات سبب زمینی هنوز به درستی شناخته نمی‌شود. یکی از مسئولیت اصلی مصرفی هستند. و یکی از مسئولیت ریشه به بنی‌بردن جذب عنصر بر مصرفی مانند نیترژن، فسفر و پتاسیم از همین و پذیره برخوردار است (۳). سلطان‌یارو و کاردن (۲۲) گزارش کرده‌اند که کارآیی جذب عنصر غذایی با جرم ریشه و در نتیجه با عملکرد گیاه رابطه مستلزم دارد.

مطالعات آنها بر روی دو رقم سپی زمینی راست رنگا نشان و راست ناکت (Russet Norkotah) داد که نیترژنی رخ سپی نوروزن در پیلو نمود. عملکرد بهبودی تقریباً دو پر اکثر ناکت است. تحقیقاتی به عمل آمده

مقدمه

سپی زمینی گیاهی با ریشه سطحی است که برای دستیابی به عملکرده، مقدار بالایی نیترژن نیاز دارد. باعث آسفی شدن، نیتریسیون نیترات به دلیل آب‌روبی، سنتیون و پارنداگی خصوصاً در خاک‌های دشت بافت زیاد بهره و باعث نمونه‌کردن آن‌ها خیز زمینی به نیترات در مزرعه می‌گردد. یکی از راک‌های کلیه احتمالاً نظر بسیاری از پژوهشگران را در جهت

کاهش یکی نیترات از مزرعه سپی زمینی به دلیل معطوف ساخته، انتخاب و استفاده از رقمه‌های است که دارای کارآیی جدید بالاتر نیترژن می‌باشد (۲۹).

خاطرات زمینی با کارآی مصرف عنصر برای انتقال از عنصر و گونه‌های گیاهی شاخه‌های تولیده از چنین باعث مصرف نیترژن (مقدار عملکرد تولید) در واحدهای سپی زمینی گزارش شده است (۶ و ۸). این اختلافات در کارآیی مصرف نیترژن با اختلاف کارآی چند نیترژن (مقدار عملکرد) جذب شده در واحدهای نیترژن مصرفی) و کارآیی استفاده نیترژن (مقدار عملکرد) در واحدهای سپی زمینی است. این اختلافات ممکن است با افزایش مقدار نیترژن جذب شده به وسیله گیاه باعث داشته شده است. کلیفک و همکاران (۲۶) در بررسی خوید روزی واقع رقیب برای کارآیی مصرف زمینی مشاهده کردند و دریافتند که کارآیی گیاه با افزایش مقدار نیترژن مصرفی کاهش می‌یابد. اساس فیزیولوژیکی در این اختلافات سبب زمینی هنوز به درستی شناخته نمی‌شود. یکی از مسئولیت اصلی مصرفی هستند. و یکی از مسئولیت ریشه به بنی‌بردن جذب عنصر بر مصرفی مانند نیترژن، فسفر و پتاسیم از همین و پذیره برخوردار است (۳). سلطان‌یارو و کاردن (۲۲) گزارش کرده‌اند که کارآیی جذب عنصر غذایی با جرم ریشه و در نتیجه با عملکرد گیاه رابطه مستلزم دارد.

مطالعات آنها بر روی دو رقم سپی زمینی راست رنگا نشان و راست ناکت (Russet Norkotah) داد که نیترژنی رخ سپی نوروزن در پیلو نمود. عملکرد بهبودی تقریباً دو پر اکثر ناکت است. تحقیقاتی به عمل آمده

مقدمه

سپی زمینی گیاهی با ریشه سطحی است که برای دستیابی به عملکرده، مقدار بالایی نیترژن نیاز دارد. باعث آسفی شدن، نیتریسیون نیترات به دلیل آب‌روبی، سنتیون و پارنداگی خصوصاً در خاک‌های دشت بافت زیاد بهره و باعث نمونه‌کردن آن‌ها خیز زمینی به نیترات در مزرعه می‌گردد. یکی از راک‌های کلیه احتمالاً نظر بسیاری از پژوهشگران را در جهت کاهش یکی نیترات از مزرعه سپی زمینی به دلیل معطوف ساخته، انتخاب و استفاده از رقمه‌های است که دارای کارآیی جدید بالاتر نیترژن می‌باشد (۲۹).
ویژگی‌های مرفولوژیکی ریشه و چند نیتروژن در هشت رقم سیب زمینی

نگهداری شدن (11). میزان نمونه‌های ریشه در باز زبانی از آب در سیستم مخصوص اندازه‌گیری ریشه با جاده‌های تحت‌رشد شفاف، کاملاً از هم مجزا شده و با استفاده از دستگاه دناتس (Delta T SCAN image analysis اسکن ایمیج آنتالیز طول (Windias) اسکن شده و با نرم‌افزار و پایگاه (system سطح و قطر ریشه اندازه‌گیری شد. همه ترانک طول ریشه از تقسیم طول ریشه به حجم خاک گلدان و نسبت ریشه به اندازه هواپیما از تقسیم طول ریشه به وزن اندازه هواپیما محاسبه شد. غلظت نیتروژن در کیلوگرم به وسیله کتاب نیتروژن (2300 Kjetelc Analyzer (Kjeldahl اندازه‌گیری (5) و تجمیع نیتروژن در گیاه (جدول کل نیتروژن از حاویت ضرب (6) و اندازه‌گیری محاسبه شد. نیتروژن محتوی گیاه (Treats and Damages) با استفاده از نرم‌افزار به روش وارد SPSS بر اساس معادلات طول ریشه. نسبت ریشه به اندازه هواپیما، جمع ماده شکسک و جمع نیتروژن در گیاه که از رقم احتمال معنی‌دار داشته، انجام گردید.

نتایج و بحث

نتایج تجزیه واریانس داده‌ها (جدول 2 نشان می‌دهد که در همه صفات به جز هشتوی قطر ریشه و غلظت آنوموم در خاک پس از برداشت، اختلاف معناداری بین رقم وجود دارد که حاکی از وجود تنوع بالا بین رقم‌های مورد مطالعه از نظر صفات اندازه‌گیری شده بود.

ویژگی‌های مرفولوژیکی ریشه دامنه تغییرات طول ریشه (RL) بین 0/5 تا 0/32 میلی‌متر در بونه

از این طریق (Agria, Arinda, Diamant, Concorde, Marodana, Marfona) به ویژگی‌های خاک مورد نظر در جدول 1 آورده شده است. پس از خشک شدن در هوا از سه میلی‌متر گذارینده و حدود 8 کیلوجرم آن داخل گلدان‌های بالا‌پلاستیکی با قطع دهانه 35 سانتی‌متر ریخته شد. همچنین به وزن گرم که از طریق سامسون کشاورزی استان اصفهان تهیه شده بود انجام گرفت و سپس برای شکستن چربی آنها غلظت را به سمت دوقیلی در محلول 1 میلی‌گرم در لیتر جیرات سدیم در این گاز خشک و تاریک نگهداری گردید. در هر گلدان بک غله در میلی‌گرم خاک کشته شد. کوه‌های سولفات تاپتنی، سولفات سنگر متخلخل و سولفات روتی به مقادیر توصیه شده به وسیله مؤسسه تحقیقات خاک و آب (به ترتیب میلی‌گرم 31 و 32 میلی‌گرم در گلدان‌های خاک) به صورت محلول و بعد از کاشت به گلدان‌ها اضافه شد.

گلدان‌ها در فاصله زمانی مناسب توزین و رطوبیت خاک به حد طرفین مربوط رسانیده شد. در مدت آزمایش میانگین دمای روزانه و شبانه به ترتیب 25 و 18 درجه سانتی‌گراد و رطوبیت نسبی حدود 60 درصد بود. برای مبارزه با کرم کارادینا 35 روز از کاشت سپاسی بی به وسیله اکتام 1 درصد صورت گرفت. گیاهان در مرحله گل‌دهی برداشت شدند. اندازه‌گیری ریشه و غلظت جدی شده، وزن خشک آنها پس از خشک کردن در دمای 70 درجه سانتی‌گراد به مدت 34 ساعت، تعین شد (20). قبل از خشک کردن، ریشه‌ها به روش‌های شناسایی، اندازه‌گیری از اندازه‌گیری از اندازه‌گیری از 4 درجه سانتی‌گراد
جدول 1. برخی ویژگی‌های فیزیکوشیمیایی خاک مورد مطالعه قبل از کاشت

<table>
<thead>
<tr>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7/4</td>
</tr>
<tr>
<td>گرم در کیلوگرم خاک</td>
<td>400</td>
</tr>
<tr>
<td>سیلت</td>
<td>303</td>
</tr>
<tr>
<td>رس</td>
<td>280</td>
</tr>
<tr>
<td>مواد آلی</td>
<td>2/1</td>
</tr>
<tr>
<td>پنسل فیلر</td>
<td>280</td>
</tr>
<tr>
<td>فسفر فیلر</td>
<td>75</td>
</tr>
<tr>
<td>نیترات</td>
<td>62/9</td>
</tr>
<tr>
<td>آمونیوم</td>
<td>32/4</td>
</tr>
<tr>
<td>وزن مخصوص ظاهری</td>
<td>1/32</td>
</tr>
</tbody>
</table>

1. در این پژوهش اجرای بتافت خاک با روش هیدرومتر، مواد آلی به روش پنسل (21)، پنسل فیلر به روش عصارهگیری با استان آمونیوم مولار خشی (22) و فسفر به روش عصارهگیری با بی‌کربنی متود مولار با pH 8/5 روش عصارهگیری شد.

جدول 2. خلاصه تجزیه واریانس صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>متغیرات</th>
<th>درجه آزادی</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>رقم</td>
<td>7</td>
<td>***ns</td>
</tr>
<tr>
<td>خطا</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

راهنمای لمب (NH4-N) 5/6 میکرومتر بر متر مربع خاک) و تراکم طول ریشه (RLD) بین 6/3 میکرومتر بر متر مربع خاک و 8/5 میکرومتر بر متر مربع خاک تأثیرات استالیشوم و آنل (23) برای تعدادی از رقم‌های سبب زمینی در اروپا، ایتالیا و ترکیه (23) برای رقم ریشه و اسپری و همکاران (2) برای رقم وانسار که جدول در ریشه را 12 تا 17 کیلومتر بر متر مربع و تراکم ریشه را 10 تا 15 سانتیمتر بر سانتیمتر مکعب در مزرعه و هنگام برداشت گزارش کردند. (معادل 10/6 تا 59/2 کیلومتر بر متر مربع خاک) و تراکم طول ریشه (RLD) بین 6/3 میکرومتر بر متر مربع خاک و 8/5 میکرومتر بر متر مربع خاک تأثیرات استالیشوم و آنل (23) برای تعدادی از رقم‌های سبب زمینی در اروپا، ایتالیا و ترکیه (23) برای رقم ریشه و اسپری و همکاران (2) برای رقم وانسار که جدول در ریشه را 12 تا 17 کیلومتر بر متر مربع و تراکم ریشه را 10 تا 15 سانتیمتر بر سانتیمتر مکعب در مزرعه و هنگام برداشت گزارش کردند.
جدول 3: میانگین و ریطگی های تداوگیری شده برای همست رقم سب زمین

<table>
<thead>
<tr>
<th>رقم</th>
<th>NE-N (mg kg⁻¹)</th>
<th>NO₃-N (mg kg⁻¹)</th>
<th>PNA (g plant⁻¹)</th>
<th>DMP (g plant⁻¹)</th>
<th>F/S (cm. g⁻¹)</th>
<th>RAD (mm)</th>
<th>RDW (g plant⁻¹)</th>
<th>RSA (m² plant⁻¹)</th>
<th>RLD (cm can⁻¹)</th>
<th>RL (cm plan⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>28.6 ± 3.9</td>
<td>15.7 ± 2.1</td>
<td>12.8 ± 2.3</td>
<td>5.1 ± 2.3</td>
<td>0.6 ± 0.2</td>
<td>20.6 ± 0.3</td>
<td>4.2 ± 0.3</td>
<td>1.8 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>3</td>
<td>26.7 ± 2.9</td>
<td>18.9 ± 2.8</td>
<td>20.8 ± 2.3</td>
<td>3.1 ± 2.3</td>
<td>0.6 ± 0.2</td>
<td>12.6 ± 0.3</td>
<td>3.2 ± 0.3</td>
<td>0.6 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>4</td>
<td>32.6 ± 2.4</td>
<td>15.7 ± 2.1</td>
<td>12.8 ± 2.3</td>
<td>5.1 ± 2.3</td>
<td>0.6 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>2.1 ± 0.3</td>
<td>1.8 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>5</td>
<td>18.7 ± 2.1</td>
<td>18.9 ± 2.8</td>
<td>20.8 ± 2.3</td>
<td>3.1 ± 2.3</td>
<td>0.6 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>4.2 ± 0.3</td>
<td>1.8 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>6</td>
<td>24.7 ± 2.8</td>
<td>15.7 ± 2.1</td>
<td>12.8 ± 2.3</td>
<td>5.1 ± 2.3</td>
<td>0.6 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>2.1 ± 0.3</td>
<td>1.8 ± 0.2</td>
<td>10.6 ± 0.3</td>
<td>0.6 ± 0.2</td>
</tr>
</tbody>
</table>

1. در همه سنندی میانگین میان که دارای حرف مشابه هستند. بر بونام آزمون دلگان در سطح احتمال 95% اختلاف معناداری دادند.

2. ترکیب دمایی (RDA), ترکیب بیشتر (RDI), سطح سیستم (RSA), رشد خشک ریشه (RDW), نسبت خشک تولید (S/S), مقدار خشک تولید (DMP), ماده خشک تولید (DMF), مقدار خشک تولید (DMF).
برای جدیب مقدار کافی عنصر غذایی در شرایط کمبود، افراد نسبت ریشه به آدام هواپیمایی می‌باشند. این نسبت بیانگر توانایی گیاه در جدیب عنصر غذایی در شرایط محدودیت عنصر غذایی در خاک می‌باشد (10). بنابراین در این بررسی به گریز رقمه‌ی مارفارنا، پریمیر و کانکورد این نظر ارجحیت دارند.

یافته‌ها: نسبت به تیتر به رشته سپسیونی می‌باشد. سطح ریشه (RSA) بهترین امکان مسیر ریشه داشته و کمترین مقدار آن مربوط به نقطه نویسته. و بیشترین مقدار آن مربوط به رقم مارفارنا (جدول 1). سلسله و همبستگی (R) سطح ریشه را بهترین امکان مسیر ریشه در بیشترین نقطه نویسته ژست مربوط به یک نوت می‌باشد.

پیشنهاد: با استفاده از نقطه نویسته می‌باشد. سطح ریشه (RSA) بهترین امکان مسیر ریشه داشته و کمترین مقدار آن مربوط به رقم مارفارنا (جدول 1). سلسله و همبستگی (R) سطح ریشه را بهترین امکان مسیر ریشه در بیشترین نقطه نویسته ژست مربوط به یک نوت می‌باشد.

پیشنهاد: با استفاده از نقطه نویسته می‌باشد. سطح ریشه (RSA) بهترین امکان مسیر ریشه داشته و کمترین مقدار آن مربوط به رقم مارفارنا (جدول 1). سلسله و همبستگی (R) سطح ریشه را بهترین امکان مسیر ریشه در بیشترین نقطه نویسته ژست مربوط به یک نوت می‌باشد.

پیشنهاد: با استفاده از نقطه نویسته می‌باشد. سطح ریشه (RSA) بهترین امکان مسیر ریشه داشته و کمترین مقدار آن مربوط به رقم مارفارنا (جدول 1). سلسله و همبستگی (R) سطح ریشه را بهترین امکان مسیر ریشه در بیشترین نقطه نویسته ژست مربوط به یک نوت می‌باشد.
جدول ۳: هم یا بین صفات اندازه‌گیری شده در ۸ رنگ سبیل زمینی

<table>
<thead>
<tr>
<th>RL</th>
<th>RSA</th>
<th>RAD</th>
<th>R/S</th>
<th>NO₃⁻</th>
<th>NO₄⁺</th>
<th>RDW</th>
<th>PNA</th>
<th>DMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
</tr>
<tr>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

*، **، ***: به ترتیب نشان‌گر معنی‌دار بودن اختلاف در سطح ۵ درصد، ۱ درصد و ۰/۰۱ درصد معنی‌دار بودن اختلاف در سطح ۵ درصد می‌باشد.

۱. طول رشته (RL) متوسط قطر رشته (RAD) و وزن خشک رشته (RSA) نسبت رشته به اندازه هواپیمای (R/S) از ماده خشک (NH₄NO₃) تولیدی (PNA) و فلزات آمونیوم در خاک پس از برداشت (DMP) و فلزات آمونیوم در خاک پس از برداشت (PNA) و فلزات آمونیوم در خاک پس از برداشت (DMP)

![Graph](image_url)

شکل ۱. رابطه بین وزن خشک رشته و طول رشته

\[y = 1.988x - 0.582 \]

\[R^2 = 0.80 \]

188
در بونه اندازه‌گیری شد (جدول 3). رقیم‌های آگری، مارودان و نوینتی با ترتیب یک به پایه‌سازی ۹۸٫۸۳ء/۱۰ گرم در بونه تجمع ماده خشک پایین داشتند. بنابراین دانه ویژه از تغییرات تجمع ماده خشک بین رقم دیده شد که بخشی از این اختلاف مربوط به وزن در صورتی که وزن به‌طور متوسط رئیسه بود بازاری و ویژگی‌های مرفورولیزیکی ریشه بود زیرا همبستگی مثبت و معنی‌داری بین تجمع ماده خشک و ویژگی‌های مرفورولیزیکی ریشه (طول، سطح و وزن ریشه) به دست آمد (جدول ۴). گروه‌های بسیاری از ارتباط با همبستگی است. همبستگی ریشه‌های زیرا در بونه با عملکرد پالا در دست زیستی وجود دارد (۹). علاوه بر این اختلاف با تفاوت در تجمع ماده خشک در رقیم‌های مختلف مربوط به تفاوت در زمان تشکیل صورت گرفت و گاهی در رنگ‌آمیزی ورودی رشد نشان ورود در زمان کمتر نسبت به حدود گزارش شده به وسیله سایر محققین به دست آمد. برای نمودار ارتباط و همبستگی (۴) در مطالعه ۱۸ رقم سبب زیمت مقدار ورود خشک را بند مصرف کود نیتروژن بیش از ۹/۸۵گرم در بونه و با مصرف کود نیتروژن بین ۱۷/۰/۱۷ گرم در بونه گزارش کردند. آنان این دانه‌ها وسیع را نیز به تفاوت زیثی رقم ها در تولید ماده خشک و پاسخ به مصرف نیتروژن نسبت دادند. از نظر تجمع نیتروژن در ماده خشک (PNA) کنکورد دارای تجمع نیتروژن بالا بودند (جدول ۳) که احتمالاً به دلیل تجمع ماده خشک و طول ریشه بالاتر این رقم‌ها می‌باشد. زیرا تجمع نیتروژن در گیاه همبستگی بالاتر با تجمع ماده خشک (ضربی همبستگی معادال ۳/۶) و طول ریشه (ضربی همبستگی معادال ۶/۹) داشتند (جدول ۴) (محققین دیگری نیز رابطه نیتروژن و تجمع ماده خشک در گیاه را مذکرده‌اند (۱۵). در این پژوهش بررسی رگرسیون بین این دو متغیر نشان دهنده وجود یک رابطه خطی بین این دو متغیر با ضرب درین اثبات نشکل (۲) نشان‌داده که تینی و سه این ارتباط به‌طور عمده تابعی از تجمع نیتروژن در گیاه داشت. ارتباط و همبستگی (۴) یک رابطه خطی
تریزوئن در خاک‌های خاصیه رودخانه زاینده رود سبب می‌شود.

غلظت مناسب نیترات در خاک بین 20 تا 30 میلی‌گرم نیترات در کیلوگرم خاک ضروری است. غلظت آمونیوم بالا مانده در خاک پس از برداشت، اختلاف معنی‌داری بین رقم‌های مختلف نسبت نداد.

همان‌طور که ذکر شد تجمع ماده خشک و تجمع نیتروزن در گیاه دارای همبستگی منفی با غلظت نیترات باقی مانده در خاک پس از برداشت بودن (جدول 4) که نشان می‌دهد هر چه تجمع ماده خشک و نیتروزن در گیاه افزایش یافته است نیتروزن بیشتری از خاک جذب شده است.

گروه‌بندی نت‌ها (تجزیه دیجیتال)

تجزیه دیجیتال بر اساس 4 صفت اصلی (طول ریشه، نسبت ریشه به اندام هواپی، تجمع ماده خشک و تجمع نیتروزن در گیاه) که اختلاف معنی‌داری را نشان دادند، رقم‌های مورد مطالعه را به چهار گروه مجزا در فواصل مقبلاً تغییر یافته 0/6

نبطه 2: رابطه بین تجمع نیتروزن در گیاه (PNA) و تجمع ماده خشک در گیاه (DMP)

))

\[
y = 82.54x - 16.52 \\
R^2 = 0.87
\]

Dry matter production (g plant\(^{-1}\))

Plant N accumulation (g plant\(^{-1}\))

\[
\text{C4} \quad \text{C1} \\
\text{فیکسیون نمود (شکل 3), خوش‌های C4 تا C1 به ترتیب شامل چهار رقم (نونیا، آریانا، اگریا و ازونیا)، رقم (بریسی) و دیامانت، یک رقم (مارفونیا) و یک رقم (کابوره) شده‌اند. مقایسه گاه‌گیری‌ها از نظر صفات فوق (جدول 5) نشان داد که رقم‌های C3 و C4 هم از نظر سیستم ریشه‌ای و هم از نظر تولید ماده خشک ضعیف‌تری بودند. رقم‌های C1 و C2 رقم‌هایی هستند که از نظر سیستم ریشه‌ای نسبتاً قوی و لی می‌توانند ماده خشک کمتری داشته‌اند. رقم‌های C3 و C4 در ماده خشک بالایی تولید نموده‌بودند. که گروه C4 دارای سیستم ریشه‌ای قوی‌تر و گروه C4 دارای سیستم ریشه‌ای نسبتاً ضعیف‌تری بود تولید ماده خشک بالا را منجر می‌ساخت که گروه C4 تا C1 احتمالاً به دلیل سرعت جذب بالایی در واحد طول ریشه، محدود کننده نبودن گل‌خست نیتروزن در خاک و یا بالاتر بودن کارایی استفاده (Utilization efficiency) گیاه به عنی مقدار تجمع ماده خشک در واحد نیتروزن مصری به‌وده است.

\[
\text{C3} \\
\text{C2} \\
\text{C1} \\
\text{C4}
\]
جدول 5 مقایسه میانگین صفات اندازه‌گیری شده بین گروه‌ها

<table>
<thead>
<tr>
<th>گروه‌ها</th>
<th>تجمع نیتروژن</th>
<th>نسبت ریشه به اندازه‌های تجمع ماده خشک</th>
<th>طول ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه 1</td>
<td>17/64</td>
<td>5/18/6</td>
<td>131/62</td>
</tr>
<tr>
<td>گروه 2</td>
<td>23/64</td>
<td>1/15/6</td>
<td>1/132</td>
</tr>
<tr>
<td>گروه 3</td>
<td>31/64</td>
<td>37/1/6</td>
<td>1/135</td>
</tr>
<tr>
<td>گروه 4</td>
<td>2/64</td>
<td>12/1/6</td>
<td>1/130</td>
</tr>
</tbody>
</table>

در هر ستون برای گروه‌های 1 تا 3 اعدادی که دارای جریب کسی هستند از نظر آماری در سطح احتمال 5/ بر اساس آزمون LSD تفاوتی ندارند.

نتیجه‌گیری
1. نتایج به‌دست‌آمده بانگر وجود ناب‌پایی ملایم‌نظر رقیماً از لحاظ ویژگی‌های هورمون‌زیک ریشه به جه تغییر قطر ریشه و همچنین تجمع ماده خشک و نیتروژن در گیاه است. رابطه به‌دست‌آمده بین تجمع نیتروژن و ویژگی‌های ریشه نشان‌گذاری اهمیت سیستم ریشه در جذب نیتروژن از خاک است. همچنین تجمع نیتروژن در گیاه دارای رابطه مستقیم و نهایتاً با تجمع ماده خشک بوده. بنابراین احتمالاً جذب نیتروژن تحت تأثیر اندازه سیستم ریشه است.

2. نتایج به‌دست‌آمده نشان‌داده‌اند که رشد و تجمع ماده خشک بوده است.

نتیجه‌گیری به‌دست‌آمده نشان‌داده‌اند که رشد و تجمع ماده خشک بوده است.

