ویژگی‌های مرفولوژیکی ریشه و جذب نیتروژن در هشت رقم سیب زمینی

مهدی شریفی، محمد علی حاج عباسی، محمود کلابسی و مصطفی مبیل

چکیده
سیب زمینی (Solanum tuberosum L.) گیاهی است با سیستم رشدی که نیاز بالایی آن به نیتروژن از جنینه‌های اکتسادی و زیست محیطی حائز اهمیت است. این پژوهش با هدف تعیین و مقایسه ویژگی‌های مرفولوژیکی ریشه و جذب نیتروژن در هشت رقم رایج و جذب نیتروژن در یک آزمایش در قابل طرح کامل تصادفی با ۳ تکرار در گلخانه تحت تحقیقاتی دانشگاه صنعتی اصفهان مورد مقایسه قرار گرفتند. نتایج نشان داد که در نمونه گیاهی سیب زمینی از درون روش پی‌باند مواد در کamentos با بدنسازی و سطح ریشه با استفاده از دستگاه دانسا-ت اسکن ایمیج آنالیز، همچنین تراکم طول ریشه و نوع ریشه به اندازه‌های تعیین شده و وقوع خشک و تجمع نیتروژن (کل نیتروژن جذب شده) در گلیه اندازه‌گیری شد. نتایج نشان داد که برای بررسی تعیین شده.

نتایج نشان داد که برای بررسی تعیین شده.

واژه‌های کلیدی: جذب نیتروژن، سیب زمینی، (Solanum tuberosum L.) گروه‌بندی، ویژگی‌های ریشه
مقامه

سبیب زمینی گلایه با ریشه سطحی است که برای دستیابی به
عملکردن بهینه، مقدار بالایی نیتروژن نیاز دارد. بنابراین آب‌شیری
نیترات به دلیل ایجاد زیست‌بوده و باعث اندودگی آب‌های
زیرزمینی به نیترات در مراحل اقیانوس می‌گردد (75). اگر
راکاراهای یک امرزه نظر بپیاری از پژوهشگران را در جهت
کاهش آب‌شیری نیترات از مراحل سپیب زمینی به خود معروف
ساخته، انتخاب و استفاده از رهم‌هایی است که دارای کارآیی
جدب بالاخر نیتروژن می‌باشند (76).

اختلافات زنگی‌های در کارآیی مصرف عناصر برای تعدادی
از عناصر گونه‌های گیاهی شاخته شده است (76). از جمله
اختلافات معنی‌داری در کارآیی مصرف نیتروژن (مدافع عامل‌کرد
توارد) در واحد نیتروژن مصرفی (رهم تجاری سپیب
گرآورش شده است (76). این اختلافات در کارآیی مصرف
نیتروژن به اختلاف در کارآیی جذب نیتروژن (مدافع نیتروژن
جدب شده در واحد نیتروژن مصرفی) و کارآیی استفاده
نیتروژن (مدافع عملکردهای تولید در واحد نیتروژن جذب شده به
ویژه گیاه) نسبت داده شده است. کیلیفک و همکاران (72) در
بررسی خود روی شش رقم تجاری سپیب زمینی اختلاف
معنی‌داری در کارآیی جذب نیتروژن مشاهده کرده و دریافتند
که کارآیی جذب افرادی مقدار نیتروژن مصرفی کاهش
می‌باید. اساس فیزیولوژیکی، در اختلافات در سبیب زمینی هنوز
به دستیابی شاخته‌شده آب‌شیری رهم‌های زنگی پیامدهایی را
به‌وجود می‌آورد، که جذب عناصر بر مصرف مانند نیتروژن، فسفر و
نیترات به‌وجود آمیخت و به‌وجود خود، در توصیه (77)
سلطان‌نیا و کاردن (72) گزارش کرده که کارآیی جذب عناصر غذایی با
حجم ریشه و در نتیجه به عملکردن گیاه راهپیمایی می‌دارد.

مطالعات آنها بر روی رقم سبیب زمینی راست رترکا
نشان (Russet Nugget) و راست ناکت (Russet Norkotah)
داد که نیترولتز رقم سبیب نوروزنی برای تولید عملکرد
بهبود تقریباً در هر راست ناکت است. تحقیقات به عمل آمد.
(Delta-T SCAN image analysis) (Kjeldahl)

پیکرتور افزار به اسکایل نام‌نویسی شده با وسیله‌سنجی قدرت گرفته و وسیله‌سنجی نهایی حاصل از افزار جدیدی است. پس از حدود ۲۵۰۰۰ گرم که از طریق کاهش‌کننده استان اتصال به دهکده به استفاده از گردید و سپس برای شکستن خواب آنها گرفته و به‌دست داده شده در محلول ۱ میلی‌گرم در لیتر جریان سدیم قرار داده شد (۱) و تا شروع رشد جوان‌ها در گاز خشک و تارک تغذیه گردید. در هر گلدان به غده در عمق ۵ سانتی‌متر خاک کشت شد. قدره‌های سلفات نتایج، سلفات منکری و سلفات روی به مقدار توماری که به وسیله مسئولیت تحقیقات خاک و آب (به ترتیب معادل ۴۲ و ۶۵ میلی‌گرم در کیلوگرم خاک) به صورت محلول و بعد از کاشت به گلدان‌ها اضافه شد.

گلدان‌ها به فواصل زمانی مناسب توزین و رطوبت خاک به حدی ثابت می‌بودند که در مدت آزمایش میانگین دامپ رنگ‌گر و بیانات به ترتیب ۲۵ و ۱۸ درجه سانتی‌گراد و رطوبت نسبی حدود ۶۵ درصد بود. برای مبارزه با کرم کارادینا، ۳۵ روز از کاشت شیمیایی به وسیله اکامان ۱ درصد صورت گرفت. گیاهان در محله کل دی‌گر بردات‌سازی شدند. اتصال خاکی، ریشه و غده جدا شده، وزن خشک آنها پس از خشک کردن در مدت ۷۰ روز سانتی‌گراد به مدت ۳۸ ساعت، تعین شد (۲۸). قبل از خشک کردن، ریشه‌ها به روش‌های شناسایی، اندازه‌گیری از طرف دیگر و استفاده از انگل آموزنده از که و مواد آلی جدا شدند و تا قبل از اندازه‌گیری در انتخاب ۲۰ درصد و دمای ۴ درجه سانتی‌گراد

پیکرتور افزار به اسکایل نام‌نویسی شده با وسیله‌سنجی قدرت گرفته و وسیله‌سنجی نهایی حاصل از افزار جدیدی است. پس از حدود ۲۵۰۰۰ گرم که از طریق کاهش‌کننده استان اتصال به دهکده به استفاده از گردید و سپس برای شکستن خواب آنها گرفته و به‌دست داده شده در محلول ۱ میلی‌گرم در لیتر جریان سدیم قرار داده شد (۱) و تا شروع رشد جوان‌ها در گاز خشک و تارک تغذیه گردید. در هر گلدان به غده در عمق ۵ سانتی‌متر خاک کشت شد. قدره‌های سلفات نتایج، سلفات منکری و سلفات روی به مقدار توماری که به وسیله مسئولیت تحقیقات خاک و آب (به ترتیب معادل ۴۲ و ۶۵ میلی‌گرم در کیلوگرم خاک) به صورت محلول و بعد از کاشت به گلدان‌ها اضافه شد.

گلدان‌ها به فواصل زمانی مناسب توزین و رطوبت خاک به حدی ثابت می‌بودند که در مدت آزمایش میانگین دامپ رنگ‌گر و بیانات به ترتیب ۲۵ و ۱۸ درجه سانتی‌گراد و رطوبت نسبی حدود ۶۵ درصد بود. برای مبارزه با کرم کارادینا، ۳۵ روز از کاشت شیمیایی به وسیله اکامان ۱ درصد صورت گرفت. گیاهان در محله کل دی‌گر بردات‌سازی شدند. اتصال خاکی، ریشه و غده جدا شده، وزن خشک آنها پس از خشک کردن در مدت ۷۰ روز سانتی‌گراد به مدت ۳۸ ساعت، تعین شد (۲۸). قبل از خشک کردن، ریشه‌ها به روش‌های شناسایی، اندازه‌گیری از طرف دیگر و استفاده از انگل آموزنده از که و مواد آلی جدا شدند و تا قبل از اندازه‌گیری در انتخاب ۲۰ درصد و دمای ۴ درجه سانتی‌گراد
جدول ۱. برخی ویژگی‌های فیزیکوشیمیایی خاک مورد مطالعه قبل از کاشت

<table>
<thead>
<tr>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>۷/۴</td>
</tr>
<tr>
<td>شن</td>
<td>۴۰۰</td>
</tr>
<tr>
<td>سیلت</td>
<td>۲۳۰</td>
</tr>
<tr>
<td>رس</td>
<td>۲۸۰</td>
</tr>
<tr>
<td>مواد آلی</td>
<td>۱۷۱</td>
</tr>
<tr>
<td>پنسلین قابل دسترس</td>
<td>۸۰۰</td>
</tr>
<tr>
<td>فسفر قابل دسترس</td>
<td>۷۵</td>
</tr>
<tr>
<td>نیترات</td>
<td>۶/۹</td>
</tr>
<tr>
<td>آمونیوم</td>
<td>۳۴/۴</td>
</tr>
<tr>
<td>وزن مخصوص ظاهری</td>
<td>۱/۳۲</td>
</tr>
</tbody>
</table>

۱ در این پژوهش اجزای بافت خاک با روش هیدرومتر، مواد آلی به روش نیترات (۱۷) پنسلین قابل دسترس (۸/۵) pH مولار خشی (۲۴) و فسفر به روش عصاره‌گیری با بی‌کربنات میکرو‌مولار با استاندارد کیفیت شد.

جدول ۲. خلاصه تجزیه و اریان صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>منابع</th>
<th>تغییرات آزاید</th>
<th>درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃-N</td>
<td>۳۸/۹</td>
<td>۴/۹/۵</td>
</tr>
<tr>
<td>NO₃-N</td>
<td>۳۵/۹</td>
<td>۳/۴/۹</td>
</tr>
<tr>
<td>PNA</td>
<td>۲۵/۸</td>
<td>۹/۱۱</td>
</tr>
<tr>
<td>DMP</td>
<td>۹/۱۱</td>
<td>۶/۰</td>
</tr>
<tr>
<td>RAD</td>
<td>۸/۸/۸</td>
<td>۲/۶/۵</td>
</tr>
<tr>
<td>RDW</td>
<td>۱۲/۲</td>
<td>۷/۱۰/۲</td>
</tr>
<tr>
<td>RSA</td>
<td>۳۱/۵</td>
<td>۷/۳/۰</td>
</tr>
<tr>
<td>RLD</td>
<td>۱۸/۵</td>
<td>۷/۳/۰</td>
</tr>
<tr>
<td>RL</td>
<td>۲/۸/۸</td>
<td>۲/۶/۵</td>
</tr>
</tbody>
</table>

۴ و ***: به ترتیب نشانگر معنی دار بودن اختلاف در سطح ۰/۰۱ و ۰/۰۰۱ درصد. ۱ درصد و ۰/۰۰ درصد می‌باشد.

۱ اختلاف در سطح ۰/۰۵ معنی‌دار نمی‌باشد.

۲ در این پژوهش، ترکم طول ریشه (RLD) را به نسبت ریشه (RAD)، ریشه (RSA) و مواد خشک ریشه (RDW) در مجموع (R/S و (NO₃-N)، (DMN)، (PNA)، (RAD)، (RSA) و (RLD) و غلظت (NO₃-N) را اندازه‌گیری کردند. نتایج در خاک پس از برداشت (NH₃-N) مواد خشک تولیدی (R/S) آزمایشگاهی (۱۷) را افزایش دادند.

مکعب گزارش نمونه‌های همخطوی به مقاومت با داشتن ولای در مقایسه با نتایج استالهام و آلن (۲۳) برای تعدادی از رقم‌های سبب زمینی در آزمایش‌ها و نتایج (۱۳) برای رقم راست گروهک و اسکرفی و همکاران (۱) برای رقم ونکسا به تشریح درجه ۱۲ تا ۱۷ کیلوگرم بر متر مربع و ترکم ریشه ۱/۳ تا ۶ سانتی‌متر بر سانتی‌متر مکعب در تاریک و همکاران (۱۱) به حداکثر ترکم ریشه ۱۲ نمونه مشابه گلدایه ۱۵ سانتی‌متر بر سانتی‌متر

معادل ۱۰۴/۵ کیلوگرم بر متر مربع خاک و ترکم طول ریشه (RLD) بین ۸۷/۶ تا ۹۷/۸ سانتی‌متر بر سانتی‌متر مکعب خاک بود که پایینترین مقدار این دو صفت مربوط به رقم نوین و بالاترین مقدار مربوط به رقم مارفلو (بیوسورسب) این نتایج با یافته‌های کرخام و همکاران (۱۱) که حداکثر ترکم ریشه را در یک آزمایش گلدایه ۱۵ سانتی‌متر بر سانتی‌متر

۱۸۴
جدول ۳ میانگین ویژگی‌های تندبادگیری شده بهره‌مندی رقم سبب زمین

<table>
<thead>
<tr>
<th>رقم</th>
<th>ویژگی‌های اندودگیری شده</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
<td>۴۰/۱۲۶</td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td>۴۰/۱۳۶</td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td>۴۰/۱۴۶</td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td>۴۰/۱۵۶</td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td>۴۰/۱۶۶</td>
</tr>
<tr>
<td>۶</td>
<td></td>
<td>۴۰/۱۷۶</td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td>۴۰/۱۸۶</td>
</tr>
<tr>
<td>۸</td>
<td></td>
<td>۴۰/۱۹۶</td>
</tr>
<tr>
<td>۹</td>
<td></td>
<td>۴۰/۲۰۶</td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
<td>۴۰/۲۱۶</td>
</tr>
<tr>
<td>۱۱</td>
<td></td>
<td>۴۰/۲۲۶</td>
</tr>
<tr>
<td>۱۲</td>
<td></td>
<td>۴۰/۲۳۶</td>
</tr>
</tbody>
</table>

۱ دره میانگین مایی که دارای خلافی پیک خرچ مشابه هستند بر مبنای آزمون دلاک در سطح احتمال ۱/۰ با اختلاف معناداری ندارند.
۲ سطح بریش (RAD) منطقه فشرده (RDA) و سطح وارده (RDC) و نسبت بریش به عناصر هوای (O/S) پاده خشک تولیدی (DMF)، ماده خشک رنگ‌های (PNA) و ذوب خشک رنگ‌های (RDA) ترکیب مولی بریش (RLD) و فشار بریش (RSA).
۳ تجربه تریوز در کیا (PNA) جفت نیترات در خاک پس از برداشت (NO) و زمین‌آماده در خاک پس زمین‌آماده (N).
برای جذب مقدار کافی عنصر غذایی در شرایط کمبود، افزایش نسبت ریشه به اندام هوای می‌باشد. این نسبت بیانگر تنوانی گیاه در جذب عناصر غذایی در شرایط محدودیت عنصر غذایی در خاک می‌باشد (10). بنابراین در این برسی به ترتیب رقمهای ماروفنا، پریمر و کنکورد از نظر ارجاعی دارند.

بررسی همیستگی بین صفات اندازه‌گیری شده نشان داد که ضریب همیستگی بین طول و مقطع ریشه برای 0.95 و ضریب همیستگی بین وزن ریشه با طول و سطح ریشه به ترتیب 0.90 و 0.80 می‌باشد (جدول 2). همچنین یک رابطه خطی معنی‌دار بین وزن شکل و طول ریشه با ضریب 0.800 به دست آمد (شکل 1). بنابراین در مواردی که محدودیت و سایر انداده‌گیری نیروی کار و زمان به ما امکان اندام‌گیری طول ریشه را نمی‌دهد، وزن خشک ریشه تخمین مناسبی از طول ریشه به دست می‌دهد. استلالو و آل (23) نیز در تعدادی از رقمهای سبب زمینی اروپایی یک رابطه خطی با ضریب تبیین 0.94 بین وزن و طول ریشه کارکردند. همچنین لیزرینسکی و نانز (25) برای رقم راست بین‌بانک رابطه خطی با ضریب تبیین 0.93 بین وزن و طول ریشه به دست آوردند.

با در نظر گرفتن ویژگی‌های ریشه و نسبت ریشه به اندازه‌های ماروفنا، پریمر و کنکورد، دیانامیت‌داری سیستم ریشه‌ای قوی‌تری نسبت به سایر رقم‌ها به سیستم‌های هستند. بنابراین این رقم‌ها احتمالاً از نظر جذب عنصر غذایی و آب کارایی بوده و احتمالاً این حیکی از دلایل موافقت بیشتر رقم‌های ماروفنا، کنکورد و دیانامیت بسیار بالایی و سبب زمینی می‌رسد در دو که می‌باشد. این رقم‌ها باعث عملکردی از سطح زمین شک رقمهای می‌باشد سبب زمینی را به خود احتمالات داده‌اند.

جمع‌ماده خشک و نتروژن

بررسی بین کنکورد در رقم کنکورد با (DMP) 37/17 گرم در بونه و پس از در رقم ماروفنا به 32/23 گرم بوده و دیده شده که بر ترتیب معادم

جذب پیش‌تر در رقم‌های ماروفنا و نوتنی دیده شده که بر ترتیب معادم 31 و 0/1 کیلوگرم بر کارکرد. کلاسن (25) نیز در رقم‌های ماروفنا این رقم نمونه‌های 31 کیلوگرم بر گرم کارکرد کنند. یکی از موارد استفاده گیاهان

میانگین قطر ریشه (RADW) برای رقم‌های سرد مطالعه

برای رقم‌های سرد مطالعه (24) می‌باشد و تفاوت معناداری بین رقم‌های مورد مطالعه از نظر متوسط قطر ریشه دیده شد (جدول 3) مطالعات لیزرینسکی و نانز (25) نشان داد که بخش رقمهای سبب زمینی رقم راست بین‌بانک دارای متوسط قطری کمتر از 5/6 میلی‌متر و فقط 0/2 میلی‌متر شده است. در مطالعه‌ای روز سبب زمینی رقم بین‌بانک در هاند اظهار داشتند که بیشترین فراوانی ریشه نیز بر وزن‌ها و قطر به 0/2 میلی‌متر است. حداکثر و حداقل نسبت ریشه به اندازه‌های ماروفنا، پریمر و کنکورد به (R/S) ترتیب در رقم ماروفنا و نوتنی دیده شده که بر ترتیب معادم 31 و 0/1 کیلوگرم بر گرم کارکرد. کلاسن (25) نیز در رقم‌های ماروفنا این رقم نمونه‌های 31 کیلوگرم بر گرم کارکرد کنند. یکی از موارد استفاده گیاهان

سطح ریشه (RSA) به 0/3 میلی‌متر در بونه تغییر

یکی از مواردی که در این تحقیق به‌خلاقیت این مربوط به رقم نوتنی و بیشترین مقدار آن مربوط به رقم ماروفنا (جدول 3) این آمار به وسیله سیار پژوهشگران 27 تا 160 گرم بر متر مربع کارکرد به است. 123، 18 و 26 که این رقم‌ها احتمالاً مربوط به نوع رقم، نحوه کاشت و زمان نمونه برداری می‌باشد.
جدول 2. هم‌بینگی بین صفات اندازه‌گیری شده در 8 رقم سبیل زمینی

<table>
<thead>
<tr>
<th>RL</th>
<th>RSA</th>
<th>RAD</th>
<th>R/S</th>
<th>NO₃⁻</th>
<th>NO₂⁻</th>
<th>RDW</th>
<th>PNA</th>
<th>DMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/88***</td>
<td>1/58***</td>
<td>1/32***</td>
<td>1/61***</td>
<td>1/62***</td>
<td>1/89***</td>
<td>1/63***</td>
<td>1/64***</td>
</tr>
<tr>
<td>1</td>
<td>0/67*</td>
<td>0/68***</td>
<td>1/69***</td>
<td>1/70***</td>
<td>1/71***</td>
<td>1/72***</td>
<td>1/73***</td>
<td>1/74***</td>
</tr>
<tr>
<td>0/87**</td>
<td>0/88***</td>
<td>0/89***</td>
<td>0/90***</td>
<td>0/91***</td>
<td>0/92***</td>
<td>0/93***</td>
<td>0/94***</td>
<td>0/95***</td>
</tr>
<tr>
<td>0/87**</td>
<td>0/88***</td>
<td>0/89***</td>
<td>0/90***</td>
<td>0/91***</td>
<td>0/92***</td>
<td>0/93***</td>
<td>0/94***</td>
<td>0/95***</td>
</tr>
<tr>
<td>0/87**</td>
<td>0/88***</td>
<td>0/89***</td>
<td>0/90***</td>
<td>0/91***</td>
<td>0/92***</td>
<td>0/93***</td>
<td>0/94***</td>
<td>0/95***</td>
</tr>
<tr>
<td>0/87**</td>
<td>0/88***</td>
<td>0/89***</td>
<td>0/90***</td>
<td>0/91***</td>
<td>0/92***</td>
<td>0/93***</td>
<td>0/94***</td>
<td>0/95***</td>
</tr>
<tr>
<td>0/87**</td>
<td>0/88***</td>
<td>0/89***</td>
<td>0/90***</td>
<td>0/91***</td>
<td>0/92***</td>
<td>0/93***</td>
<td>0/94***</td>
<td>0/95***</td>
</tr>
<tr>
<td>0/87**</td>
<td>0/88***</td>
<td>0/89***</td>
<td>0/90***</td>
<td>0/91***</td>
<td>0/92***</td>
<td>0/93***</td>
<td>0/94***</td>
<td>0/95***</td>
</tr>
<tr>
<td>0/87**</td>
<td>0/88***</td>
<td>0/89***</td>
<td>0/90***</td>
<td>0/91***</td>
<td>0/92***</td>
<td>0/93***</td>
<td>0/94***</td>
<td>0/95***</td>
</tr>
</tbody>
</table>

*، ** و ***: به ترتیب نشانگر معنی‌دار بودن اختلاف در سطح 5 درصد، 1 درصد و 0.1 درصد می‌باشد.

 اختلاف در سطح 5 درصد معنی‌دار نمی‌باشد.

1. طول ریشه (RL) صلح ریشه (RSA)، وزن خشک ریشه (RAD)، متوسط قطر ریشه (R/S)، نسبت ریشه به اندام هواپیمای ماده خشک (NO₃⁻)، نسبت ریشه به اندام هواپیمای ماده خشک (NO₂⁻)، نسبت ریشه به اندام هواپیمای ماده خشک (PNA)، نسبت ریشه به اندام هواپیمای ماده خشک (DMP) تولیدی (R2 = 0.80)

شکل 1

رابطه بین وزن خشک ریشه و طول ریشه را نشان می‌دهد.

\[y = 1.988x - 0.582 \]

\[R^2 = 0.80 \]
مقدار نیترات باقی مانده در خاک مقدار نیترات باقی مانده پس از اکتشاف محصول یکی از شاخص‌های جذب نیترات از خاک بود. با این‌حال، در حالی که برای رقیم‌های پرپریم، آریما و مارداران مقدار نیترات باقی مانده در خاک پس از اکتشاف بالا بود (جدول 3)، زیبار و همکاران (29) در مقایسه گزارش نیترات نیترات باقی مانده در خاک پس از اکتشاف را کارا و بالاتر رقیم‌های درونپردازی، مانیثيرک، پیوندهای و شرایط این مطالعه همیستکی نتوانست باقی مانده در خاک نسبت دادند. در ضریب نسبی مطالعه اووله در خاک مورد بررسی بسیار بالا بود (جدول 4) که با دلیل مصرف بی‌روپه کودهای

در بیونه اندازه‌گیری شده (جدول 3). علل اصلی آن‌ها مانند این که این‌گونه درجه‌بندی با ۹۳/۸۳/۱۰ گرم در بیونه تجمع ماده خشک پایین‌تر داشته. به‌دنبال این دو، وزن و ضعیف تبعیض تجمع ماده خشک بنابراین، شکل کهبخشی از این اختلاف مربوط به ویژگی‌های مرحله‌گذاری ریشه. بودن سیستم ماده خشک و ویژگی‌های مرحله‌گذاری ریشه (طول، مساحت و وزن ریش) به دست آمد.

(جدول 4). گزارش‌های پیش‌بینی در انتقال با اهمیت کستشر سیستم ریشه دست‌پایسته باعث معمدیال و بالا در (۹) علاوه بر این، اختلالات یکنواختی از چکیده تجمع ماده خشک و ویژگی‌های مرحله‌گذاری ریشه (طول، مساحت و وزن ریش) به دست آمد. دست‌پایسته باعث معمدیال و بالا در (۹) علاوه بر این، اختلالات یکنواختی از چکیده تجمع ماده خشک و ویژگی‌های مرحله‌گذاری ریشه (طول، مساحت و وزن ریش) به دست آمد. دست‌پایسته باعث معمدیال و بالا در (۹) علاوه بر این، اختلالات یکنواختی از چکیده تجمع ماده خشک و ویژگی‌های مرحله‌گذاری ریشه (طول، مساحت و وزن ریش) به دست آمد.
نمودار ۲. رابطه بین تجفیض نیتروژن در گیاه (PNA) و تجفیض ماده خشک در گیاه (DMP)

نتیجه‌گیری مفهومیکی: بر اساس ۲صد فصل اصلی و طول ریشه، نسبت ریشه به اندام هواپیمایی، تجفیض ماده خشک و تجفیض نیتروژن در گیاه به اختلاف معنی‌داری با نشان داده. رقم‌های مورد مطالعه به چهار گروه مجزا در فاصله مقیاس تغییر یافته ۶/۲۸.
جدول ۵ مقایسه میانگین صفات اندازه‌گیری شده بین گروه‌ها

<table>
<thead>
<tr>
<th>گروه‌ها</th>
<th>نسبت ریشه به اندازه‌های تجمیع ماده خشک</th>
<th>تجمیع نیتروژن تسخیصی</th>
<th>طول ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه ۱</td>
<td>۱/۵۷۵</td>
<td>۰/۵۳۵</td>
<td>۰/۵۷۵</td>
</tr>
<tr>
<td>گروه ۲</td>
<td>۱/۶۵۰</td>
<td>۰/۵۲۵</td>
<td>۰/۶۵۰</td>
</tr>
<tr>
<td>گروه ۳</td>
<td>۱/۶۷۰</td>
<td>۰/۵۳۰</td>
<td>۰/۶۷۰</td>
</tr>
<tr>
<td>گروه ۴</td>
<td>۱/۶۸۰</td>
<td>۰/۵۴۰</td>
<td>۰/۶۸۰</td>
</tr>
<tr>
<td>گروه ۵</td>
<td>۱/۶۹۰</td>
<td>۰/۵۴۵</td>
<td>۰/۶۹۰</td>
</tr>
</tbody>
</table>

۱. در هر ستون برای گروه‌های ۱ تا ۵ اعداد که دارای جرخی که می‌تواند از نظر آماری در سطح احتمال ۵/۰ بر اساس آزمون LSD تفاوتی ندارند.

شکل ۳: دندروگرام گروه‌های حاصل از تجزیه‌خوشه‌ای رقم‌ها سبيب زمینی مورد مطالعه با استفاده از روش وارد

نتیجه‌گیری

۱. نتایج به دست آمده بانک و جدول تنوغ قابل ملاحظه رقم‌ها از لحاظ ویژگی‌های مقول‌وزت ریشه به جز متوسط قطر ریشه و همچنین تجمیع ماده خشک و نیتروژن در گیاه است. رابطه به دست آمده بین تجمیع نیتروژن و ویژگی‌های ریشه نشانگر اهمیت سیستم ریشه در جذب نیتروژن از خاک است. همچنین تجمیع نیتروژن در گیاه دارای رابطه مثبت و قوی با تجمیع ماده خشک بود. بنابراین احتمال جذب نیتروژن تحت تأثیر اندازه سیستم ریشه، سرعت رشد و تجمیع ماده خشک بوده است.

۲. با توجه به ویژگی‌های اندازه‌گیری شده از جمله تولید ماده خشک، جذب نیتروژن و مقول‌وزت ریشه مبارز و فارونان و
Manuscript submitted for publication

