تأثیر دبی جرمی هوای ورودی و زمان تخلیه محصول بر روند کاهش رطوبت شلتوک در یک خشکانه نیمه پیوسته خورشیدی

داراتش زارع، علی زمردیان و حمید قاسم خانی

پیش نمایه

استفاده از انرژی خورشیدی امروزه به منظور خشک کردن غلات و سایر محصولات کشاورزی چون به افزایش است. از لحاظ این امر، می‌توان به تجدیدپذیر بودن، پایدار ناهنجاری و اهمیت چندانی ندارد. واکنش خالص، چنین به طور کلی به عنوان انرژی خشککننده می‌باشد که در آن خشککن خورشیدی، طراحی ساخته و مورد انرژی به پرداز کرده است. ان و انرژی خشککنی در ان نیمه قطعات محصولات و مختلط بوده که در آن جریان هوا به صورت جابجایی اجباری برقرار می‌گردد. دستگاه مذکور از ۶ عدد جرم کمی هوای خشککنی، کنار حالتی مکانیکی، خشککنی. سیستم‌های تأمین و آنتیاک هوا تکنولوژی شده است. از اهداف مهم این تحقیق انرژی به دسته‌بندی، حاصل محصول درون و روند خشک کردن است. بررسی تأثیر دبی جرمی هوای خشککن، وزن تخلیه محصول و روند شلتوک در خشککنی، بررسی واقع شده. بسیاری از آزمایش‌ها اجرای بیشتر در قالب طرح کلاً تصادفی در سه تکرار استفاده شد. فاکتور اول دبی جرمی هوای خشککن در دستگاه ۵۰ و ۳۰ دفه به. همیشه نظرات قطعات خشککن، مقدار انرژی مصرف شده (شامل انرژی الکتریکی و خورشیدی) در تاریک خشک کردن شلتوک و بارده جرم خشک کنند. هدایت داده شده است. تاین خشکت داده دبی جرمی هوای خشک کنند. فاصله زمانی محلول اثر مبینی دار بر کاهش رطوبت شلتوک خرجی

و از نظر دکتری مکانیک مهندسی اساتید، دانشکده کشاورزی، دانشگاه تربیت مدرس. تهران

1. دانشجوی دکتری مکانیک مهندسی کشاورزی، دانشگاه تربیت مدرس. تهران

2. استادان مکانیک، دانشکده کشاورزی، دانشگاه تربیت مدرس. تهران

3. مربی مکانیک و مهندسی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس. تهران

واژه‌های کلیدی: جابجایی اجباری، جرم کنند. هوای خشککنی، خشک کردن محصولات کشاورزی.
مقدمه
کشور ما ایران به دلیل واقع صندان در منطقه نیمه گرم‌سری و خشک از ناحیه‌های ناب ایرانی گرادی که برخوردار است. همچنین به دلیل افزایش چشم‌پوشی‌های فیزیکی و نیز آب‌زایی‌های شدید و مخرب زیست محیطی ناشی از مصرف آنها می‌باشد. این آزمایشگاه‌های ایرانی، تجربیات و ارزیابی از نگهداری آب‌زایی‌ها را در دسترس می‌باشد که توسط کشاورزان کشاورزی‌های دیگر به کار گرفته شود.

امکان استفاده از آن‌زی خشک‌شده بر مبنای خصوصی نموده محصولات کشاورزی نخستین بین تومه‌ی ایرانی‌شامه (۱۷) در این‌شماره می‌باشد. در سال ۱۹۶۰ سولو و سولو طراحی‌های دیگر جمع‌آوری کود خشک‌شده توانسته به جهت انتقال کشاورزی به همراهی دوباره در محل‌های تهیه‌داری دام و طبیع ماهی‌های زمان و بالا (۱۴) یک سری عناوین تجربی برای خشک کردن خشک‌شده شاتوک ارائه دادند. آنها از سه نوع خشک‌کننده استفاده کردند که عبارت از خشک‌کن غیر فعال مخلوط، خشک کن غیر فعال مسئولیت و خشک‌کن غیر فعال مسئولیت به شیوه سنتی بودند. تاها آزمایش‌های آنها نشان داد که بالاترین سرعت خشک کردن غیر فعال مسئولیت به دست می‌آید. این خشک‌کن که می‌تواند به‌طور دیگر در اختیار داشته باشد. خشک‌کن غیر فعال مسئولیت دارای دوگانه اثرات به‌صورت دست‌بکاری و فیزیکی، خشک‌کن غیر فعال مسئولیت بر اثر محصولات کشاورزی به همراهی دوباره در محل‌های تهیه‌داری دام و طبیع ماهی‌های زمان و بالا (۱۴) یک سری عناوین تجربی برای خشک کردن خشک‌شده شاتوک ارائه دادند. آنها از سه نوع خشک‌کننده استفاده کردند که عبارت از خشک‌کن غیر فعال مخلوط، خشک کن غیر فعال مسئولیت و خشک‌کن غیر فعال مسئولیت به شیوه سنتی بودند. تاها آزمایش‌های آنها نشان داد که بالاترین سرعت خشک کردن غیر فعال مسئولیت به دست می‌آید. این خشک‌کن که می‌تواند به‌طور دیگر در اختیار داشته باشد. خشک‌کن غیر فعال مسئولیت دارای دوگانه اثرات به‌صورت دست‌بکاری و فیزیکی، خشک‌کن غیر فعال مسئولیت بر اثر محصولات کشاورزی به همراهی دوباره در محل‌های تهیه‌داری دام و طبیع ماهی‌های زمان و بالا (۱۴) یک سری عناوین تجربی برای خشک کردن خشک‌شده شاتوک ارائه دادند. آنها از سه نوع خشک‌کننده استفاده کردند که عبارت از خشک‌کن غیر فعال مخلوط، خشک کن غیر فعال مسئولیت و خشک‌کن غیر فعال مسئولیت به شیوه سنتی بودند. تاها آزمایش‌های آنها نشان داد که بالاترین سرعت خشک کردن غیر فعال مسئولیت به دست می‌آید. این خشک‌کن که می‌تواند به‌طور دیگر در اختیار داشته باشد. خشک‌کن غیر فعال مسئولیت دارای دوگانه اثرات به‌صورت دست‌بکاری و فیزیکی،
مواد و روش‌ها

از اهداف این پژوهش ارزیابی دستگاه خشک‌کن خورشیدی جدید بود که در آن جریان‌ها به روش جای‌گاهی انجام بیان استفاده از مکان‌های برق و مصرف از انرژی خورشیدی از منظر اقتصادی باید به جریان اندام‌ها، چرخ دنیای الکترونیکی و همچنین راه‌اندازی کن کانال حرارتی (Heating channel) در صورت نیاز استفاده شده است.

خشک‌کن نیمه پوسته خورشیدی که در بخش ماکی‌ونک مانند: یا کشورزی دانشگاه شیراز طراحی و ساخته شده، از ماشین‌های الکتریکی تشکیل شده است. (3): جمع کننده‌ها، کانال حرارتی، خشک‌کن، سیستم‌های تأمین و اندازه‌گیری هوا، لوله‌های راپید و سیستم کنترل.

جمع کننده‌های خورشیدی

در این قسمت برای بیان انرژی نانو‌سیستم خورشیدی به انرژی گرم‌سازی از صفحه ناحیه جمع‌کننده از نوع جداگانه تخت به مناسب کرده‌ایم. رابطه هم‌بینی با توجه به عرض جغرافیایی محل (۳۰ درجه) زاویه مناسب جمع‌کننده‌ها ۵ درجه در نظر گرفت شد. نمایی طرح‌هایی از جمع کننده‌های خورشیدی ساخته شده، در شکل ۱ نشان داده شده است.

کانال حرارتی

این خشک‌کن علاوه بر استفاده از انرژی خورشیدی مجهز به یک کانال حرارتی با قدرت ۴ کیلووات می‌باشد. هدف از به کار بردن این کانال حالت خنک کننده از دمای هوا ورودی به محفظه خشک‌کن است. در مواردی که انرژی خورشیدی برای گرم کردن هوا کافی نمی‌باشد، این کانال حرارتی به صورت خودکار توسط ورودی‌های که حسابی آن به صورت شیب‌دار ساخته شده که شبیه فراغت‌گیری یا نسبت به افق زاویه ثابت ۵ درجه‌ای می‌باشد. مثلاً در حالت کاملاً بزرگ برای ۱۴۰ کیلوگرم شلوکو و ضخامت بست خشک شونده در...
نمودار ۱. طرح‌هایی از مجموعه دستگاه خشک‌کن

حدود ۱۰ سانتی‌متری مابین دبایه‌گیری بستر خشک‌کن از جنس هوایی به وسیله سنسورهای تنش عبوری کالوژیره با نرخ عبور ۱/۵ میلی‌متر در هر زمینه از بین ۱/۵ به ضخامت ۴ میلی‌متر ساخته شده است. در این خشک‌کن برای دیدن هوای بارندگی در داخل خشک‌کن از یک محظفه آرام کننده (Plenum chamber) استفاده شده است. محظفه آرام کننده خشک‌کن طراحی شده است که به صورت یک‌نواخت بستر خشک‌کن را قطع کند و به‌عبارت این‌ها از شکاف‌های تعیین شده در جوانب یا خشک‌کن خارج کرده. این توزیع هوا در محظفه آرام کننده به این‌ها مانند عمودی می‌باشد که محصول به طور یک‌نواخت خشک‌کن شده است. در قسمت تحتانی خشک‌کن قبل از مخازن خروجی، دریچه‌های دوار الکترومکانیکی قرار گرفته که توسط یک زمان‌سنج و یک

میکروسیستم کنترل فرمان داده می‌شود که می‌تواند به فواصل زمانی ۲ سانتی‌متر به مدت ۲ ساعت خروجی خشک‌کن را کشود و مقداری از محصول را که به قسمت تحتانی خشک‌کن رسیده و رطوبت آن در حد دلخواه است (توصیه آزمایش دستگاه خشک‌کن زمان مناسب تبخیر محصول به مدت رصدی به رطوبت دلخواه تشخیص داده شده) به محفظ خروجی منتقل می‌شود. نمای شماتیکی از دستگاه خشک‌کن در شکل ۱ نشان داده شده است.

سمپست‌های تأمین و انتقال هوا

برای انتقال هوا برای کمر شده توسط جمع کننده‌ها به محفظه آرام کننده خشک‌کن احترام به سیستم‌های هواپردازی است. سیستم‌های مهم در طراحی این سیستم هواپردازی به حداکثر رساندن طول
لوله‌های رابط به منظور جلوگیری از اتلاف حرارتی و اصطکاکی در حین انتقال هواست. برای انتخاب مکانده جهت عبور دادن هوا به صورت عمودی از بستر خشک‌کن باید در نظر گرفت سطح خشک‌کن 182 متر و عمق محصول موجود در خشک‌کن در حدود 10 سانتی‌متر و همچنین افت فشار هوا در

\[
SP = \frac{aQ^T}{\ln(1 + bQ)}
\]
روش انجام آزمایش‌ها

به منظور انجام آزمایش دستگاه شکشکن در محوطه آفتابگیری قرار داده شد. ذخیره آزمایش‌ها در مهر و آبان ماه ۱۳۹۸ بود. سعی شد شرایط اولیه محصول از لحاظ رطوبتی در تمام آزمایش‌ها یکسان نگه داشته شود. بین ترتیب که در هر روز آزمایش ۳۰۰/۰ کیلو بالدار را به رطوبت بین ۲۴/۹-۲۷/۰(% d.b.) می‌فرستیم.

از مزرعه‌های منطقه زیست درود از ۵۰ کیلو متری شمال به صورت تازه توسط کمپاپین درو کرده و برای آزمایش استفاده شد. در آزمایش‌های انتقال داده شد. لازم به ذکر است که نرخ شکشی شدن محصول به سرعت عبوری از مقطع محصول، رطوبت نسبی هوای شکشکن، دمای هوای شکشکن به‌گونه‌ای دارد که رطوبت نسبی محصول اولیه محصول نیز ممکن است. در طی آزمایش‌ها رطوبت نسبی محیط و دمای هوای شکشکن و رطوبت اولیه محصول شکشکن که تقریباً یکسان بوده به همین دلیل سرعت جریان‌ها (دبی جرمی‌ها) نشان دهنده دستگاه شکشکن است. برای بررسی تأثیر درب جرمی‌های روزنه و شکشکن کن و زمان تخلیه محصول روي درصد کاهش رطوبت محصول شکشکن آزمایش‌ها از داده‌گر Orifice برای اندازه‌گیری (فکتور A)، دبی جرمی‌های روزنه و روزنه به شکشکن کن در سطح سطح ۱۰۰/۰۰۷ و ۸ و ۷۸/۰۰۷ کیلوگرم بر متر مربع تهیه شده، بودند.

اندازه‌گیری اندازه‌گیری از شکشکن‌ها از صفحه روزنه (plate) استفاده شد.

مطابق با استاندارد ISO 5167 (11) ساختمان و مورد استفاده قرار گرفت. از کمیته‌های مهم دیگر جهت محاسبه باره حزاران

مطالعه و بررسی کشاورزی و منابع طبیعی / سال نهم / شماره اول / بهار ۱۳۹۸

۲۵۶
تأثیر دی جرمی هواي و رودي و زمان تخلیه محصول بر روند کاهش رطوبت شلوک....

زمان تخلیه محصول (زمان باز و بسته شدن درجه الكتروماتیکی) در دو سطح ۱۵ و ۳۰ دقیقه با استفاده از آزمون ترمال و همگن بودن خطای میانگین‌های آزمایشی مقایسه آثار اصلی و برهمکنش فاکتورهای آزمایشی توسط آزمون F و مقایسه

میانگین‌ها توسط آزمون دالکن در سطح ۰/۱ با درصد شد.

آزمایش‌ها ساعت ۱۱ صبح شروع و ساعت ۲ بعد از ظهر خانمه می‌باشت. برای رسیدن به ظرف‌دار دستگاه، حدود یک ساعت قبل از شروع آزمایش و داد رباری سیستم فن روش می‌شد. بدن ترکیب ترموکوپل‌ها و سایر ماسنی‌های اندازه‌گیری دستگاه به تعداد رشد و دستگاه جهت انجم آزمایش‌ها آمدید می‌شود.

سپس کدهای می‌شود به محل آزمایش‌ها وارد شده بود و با تیم توسط دستگاه خشک گردید از قسمت محور ورودی به داخل محیط خشکشkom ریخته‌ناست. سپس خشکشکندن و مخزن کاملاً در شروع آزمایش. برخی از این‌ها دیگر نیز انجام می‌شد تا تغییرات دما مدت زمان انجام آزمایش ضبط گردید. داره حرارت مانشین‌ها مختلف دستگاه در ۱۵ تقلید در فواصل زمانی ۳ دقیقه خوانیده شده و در قابل‌های مشخص جهت تجزیه و تحلیل نتیجه‌بری می‌شود. همچنین دمای دامن‌ها نیز ۱۵ دقیقه یکبار ثبت گردیدند.

زمان باز شدن دریچه الکتروماتیکی به وسیله زمان سنج روی ۱۵ و ۳۰ دقیقه و دیگر هوای توسط دیگر دستگاه مختلف فن روی یکی از دو دیه ۱۲۰ و ۲۴۰ درجه سانتی‌گراد بر

برای ترکیب دیگر نیز انجام می‌شد. بعد از هزار باند دریچه، برای تغییرات دمای محصول ۱ نمونه ۱۵ تا ۱۰۰ کرمی از حاصل ورودی و خروجی نهایی رطوبت آنها محاسبه می‌شد.

برای محاسبه تغییرات باند گرمایی جمع کندن‌ها برای حر

دبی خاص در طول روز، میانگین دمای محیط و دمای خروجی از جمع کندن‌ها در فواصل زمانی ۱۵ دقیقه و همچنین متوسط تابش انرژی خورشیدی محاسبه شدند. پس از محاسبه گرمای

می‌شود به دست آمد و تفسیر آن بر میزان تابش نابحی
نتایج و بحث
با توجه به بدنه تجزیه واریانس (جدول ۱) نتیجه می‌شود که
دبی هوا با قابلیت زمانی تخلیه محصول و اثر به‌هم‌کشش آنها با
احتمال ۹۹٪ تأثیر معنی‌داری بر میانگین کاهش درصد رطوبت
محصول خروجی از خشک‌کن داشته‌اند. با توجه به معنی‌دار
بودن به‌هم‌کشش دبی هوا و زمان تخلیه محصول، از شکل
۲ مشخص است که در هر مقدار دبی هوا و رطوبت، اکتشاف
معنی‌داری بین این دو سطح زمان‌های بر میانگین کاهش درصد
رطوبت محصول خروجی وجود دارد. همچنین از شکل
۱ مشخص است که در تمام سطح دبی هوا، زمان تخلیه
دقایق رطوبت محصول خروجی را بیشتر از زمان ۱۵ دقیقه
کاهش داده است که شکل آن را چنین می‌توان توجه کرد که در
به دبی ثابت هوا و رطوبت بر حسب کن، هر چه مدت زمان
تخلیه محصول افزایش یابد، محصول مدت بیشتری در بستر
خشک گذر می‌گیرد و رطوبت بیشتری از دست داده
می‌شود. با توجه به معنی‌دار بودن به‌هم‌کشش زمان تخلیه
محصول و دبی هوا، از شکل ۲ مشخص است که در هر سطح
زمان تخلیه محصول، اختلاف معنی‌داری بین اثر سطح مختلف
دبی هوا بر میانگین کاهش درصد رطوبت محصول خروجی
وجود دارد. همچنین از شکل ۲ مشخص است که در هر دو
زمان تخلیه محصول با افزایش دبی، مقدار میانگین کاهش
درصد رطوبت محصول خروجی نیز افزایش می‌یابد که علت
آن را می‌توان چنین توجه کرد که در زمان ثابت تخلیه، با
افزایش دبی هوا خشک کننده، اختلاف شار جرمی بیشتر از
محصول داخل بستر و هوا خشک کننده افزایش می‌یابد و در
نتیجه سرعت انقلاب جرمی بیشتر از محصول داخل بستر به هوا
خشک افزایش یافته و کاهش درصد رطوبت افزایش می‌یابد.

در طول آزمایش شده است: محاسبه می‌شود (5).

\[W = \frac{\phi_{VS}}{P} \]

\[h = \frac{1}{P} \]

\[\Delta h = \frac{h_1 - h_2}{h_1} \]

\[q_{drying} = q_{drying} \]
جدول 1. تجزیه واریانس اثرات اصلی و برهمکنش دیبی هوا و زمان تخلیه محصول بر کاهش درصد رطوبت محصول خروجی

<table>
<thead>
<tr>
<th>FS (MS)</th>
<th>مجموع مربعات (SS)</th>
<th>درجه آزادی</th>
<th>متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>147/13</td>
<td>318/18</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>226/12</td>
<td>25/9</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>69/8</td>
<td>08/8</td>
<td>2</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>خطای آزمایش</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>کل</td>
</tr>
</tbody>
</table>

A: دیبی جرمی هوا و رودی B: زمان تخلیه محصول

علامت **نشان گر می‌گردد در بودن آزمون F در سطح 0.01 باشد.

** شکل 3. بررسی آثار برهمکنش دیبی هوا و مدت زمان تخلیه محصول بر کاهش درصد رطوبت محصول خروجی (داکن در سطح 0.1)**

** شکل 4. تغییرات رطوبت محصول خروجی بر حسب گذشت زمان در سه دیبی هوا و زمان تخلیه محصول برای 15 دقیقه.**
تغییرات رطوبت محصول خروجی خشک‌کن

در شکل 2 تغییرات رطوبت محصول خروجی از خشک‌کن بر حسب گذاشتن زمان تحت تأثیر سه دم جرمی هوا، 7/4000 و 7/400 کیلوگرم بر متر مربع در ثانیه و زمان 15 دقیقه تخلیه صدها داده شده است. با توجه به این شکل بدیهی است که علت آمده در جدول 2 نتایج زیر را می‌توان بدهد: افزایش زمان تخلیه به صورت قابل پذیرشی به طور متوسط برابر 37/4000 کیلوگرم بر متر مربع و زمان 15 دقیقه، زمان تخلیه به طور متوسط برابر 37/4000 کیلوگرم بر متر مربع و زمان 15 دقیقه، زمان تخلیه به طور متوسط برابر 37/4000 کیلوگرم بر متر مربع و زمان 15 دقیقه نشان می‌دهد که ضرورت تغییرات محصول خروجی قابل قبولی دارد.

از جدول تجزیه و آماری (جدول 1) و همچنین از نمودار مقایسه میانگین‌های برهمکنش دبی هوا و زمان تخلیه محصول (شکل 3) مشخص است که افزایش هوا از اثر مطلوب تخلیه بر خشک‌کردن فرصت رطوبت محصول خروجی بیان‌کننده بوده است. این نتایج در این آزمایش‌ها چالش فناوری را به عنوان فناوری غلبه می‌‌تواند مرجع نماید. از نمودار برهمکنش دبی هوا و زمان تخلیه محصول (شکل 3) مشخص است که افزایش مقدار خشک‌کردن رطوبت محصول داخل است. با توجه به اینکه خشک‌کردن درصد رطوبت محصول معرفی می‌شود.

بازه حارطی جمع کندنهای خورشیدی با افزایش دبی جرمی هوا افزایش می‌یابد و در بافت‌گذاری به طور متوسط برابر 1/37/4000 کیلوگرم بر متر مربع و زمان 15 دقیقه تخلیه دامنه دهانی توسط هموتراکه خشک‌کن، به روی شباهت تغییرات رطوبت محصول محصول دبی و زمان تخلیه رابطه از حاصل این درک آمده است. بنابراین تکیه این دو سطح از فناوری‌های دبی هوا و زمان تخلیه به عنوان بهترین تیمار جهت بافت‌گذاری می‌تواند درصد رطوبت محصول پذیرفته شود.

شکل 2 تغییرات رطوبت محصول خروجی از خشک‌کن بر حسب گذاشتن زمان تحت تأثیر سه دم جرمی هوا، 7/4000 و 7/400 کیلوگرم بر متر مربع در ثانیه و زمان 15 دقیقه تخلیه صدها داده شده است. با توجه به این شکل بدیهی است که علت آمده در جدول 2 نتایج زیر را می‌توان بدهد: افزایش زمان تخلیه به صورت قابل پذیرشی به طور متوسط برابر 37/4000 کیلوگرم بر متر مربع و زمان 15 دقیقه تخلیه به طور متوسط برابر 37/4000 کیلوگرم بر متر مربع و زمان 15 دقیقه نشان می‌دهد که ضرورت تغییرات محصول خروجی قابل قبولی دارد.

از جدول تجزیه و آماری (جدول 1) و همچنین از نمودار مقایسه میانگین‌های برهمکنش دبی هوا و زمان تخلیه محصول (شکل 3) مشخص است که افزایش هوا از اثر مطلوب تخلیه بر خشک‌کردن فرصت رطوبت محصول خروجی بیان‌کننده بوده است. این نتایج در این آزمایش‌ها چالش فناوری را به عنوان فناوری غلبه می‌‌تواند مرجع نماید. از نمودار برهمکنش دبی هوا و زمان تخلیه محصول (شکل 3) مشخص است که افزایش مقدار خشک‌کردن رطوبت محصول داخل است. با توجه به اینکه خشک‌کردن درصد رطوبت محصول معرفی می‌شود.
تأثیر دیب جرمی هوا بربلاد و زمان تخلیه محصول بر روی کاهش رطوبت شلتوک...

![グラフ]

زمان (دقیقه)

شکل 5. تغییرات رطوبت محصول خروجی نسبت به زمان در دیب هوا 1110/0 کیلوگرم بر مترمربع در تنابه و زمان‌های تخلیه 15 و 30 دقیقه

جدول 2. مقدار انرژی مصرف شده و بازده مجموعه خشک کن در فرآیند خشک کردن شلتوک در ترکیب‌های مختلف دیب و زمان تخلیه محصول

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>MC(d.b): %</th>
<th>M_H2O(kg)</th>
<th>F_W%</th>
<th>η_%</th>
<th>q_L(MJ)</th>
<th>q_H(MJ)</th>
<th>q_f(MJ)</th>
<th>q_d(MJ)</th>
<th>η_%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>14/2</td>
<td>126</td>
<td>8/15</td>
<td>11/43</td>
<td>78</td>
<td>9/07</td>
<td>12</td>
<td>3/6</td>
<td>15/13</td>
</tr>
<tr>
<td>T2</td>
<td>13</td>
<td>122</td>
<td>8/15</td>
<td>18/23</td>
<td>9/2</td>
<td>9/07</td>
<td>12</td>
<td>3/6</td>
<td>30/15</td>
</tr>
<tr>
<td>T3</td>
<td>17</td>
<td>126</td>
<td>7/7</td>
<td>19/7</td>
<td>7/32</td>
<td>7/03</td>
<td>2/5</td>
<td>2/5</td>
<td>47/5</td>
</tr>
<tr>
<td>T4</td>
<td>18</td>
<td>126</td>
<td>7/7</td>
<td>18/7</td>
<td>7/32</td>
<td>7/03</td>
<td>2/5</td>
<td>2/5</td>
<td>47/5</td>
</tr>
<tr>
<td>T5</td>
<td>20</td>
<td>60</td>
<td>4/6</td>
<td>15/91</td>
<td>4/24</td>
<td>4/03</td>
<td>1/5</td>
<td>1/5</td>
<td>21/4</td>
</tr>
<tr>
<td>T6</td>
<td>20</td>
<td>60</td>
<td>4/6</td>
<td>13/66</td>
<td>3/82</td>
<td>6/03</td>
<td>3/3</td>
<td>4/3</td>
<td>24/1</td>
</tr>
</tbody>
</table>

Q_T1=0/111 kg/m^3/s
Q_T2=0/046 kg/m^3/s
Q_T3=0/028 kg/m^3/s

درصد انرژی الکتریکی مصرف شده توسط کانال حرارتی نسبت به انرژی تولیدی جمع کندندها: F_W
بازده جمع کندندها: η_W
مقدار انرژی حرارتی خروجی از جمع کندندها: q_L
مقدار انرژی حرارتی خروجی از جمع کندندها: q_H
بازده انرژی حرارتی از جمع کندندها به شکل کن: η_L
مقدار انرژی الکتریکی مصرف شده از کانال حرارتی: q_d
مقدار انرژی الکتریکی مصرف شده از کانال حرارتی: q_f
مقدار انرژی الکتریکی مصرف شده در فرآیند خشک کردن: q_D
مقدار انرژی الکتریکی مصرف شده در فرآیند خشک کردن: q_F
بازده کل مجموعه دستگاه در مصرف انرژی: η_D
مقدار محصول شلتوک شده با رطوبت مشخص: M_H2O
مقدار محصول شلتوک بر پایه شلتوک: MC(d.b)

261
توسط سیستم کانال حارتفی در دو های جرمی مختلف هواهای ورودی به خشک کن حدود ۴۰ تا ۶۰٪ بوده، به همراه مشخص است که در دو های جرمی بالاتر هوا سهم انتزاع تأمین شده در کاهش بوده‌ی معیار تغییرات است. درجه حرارت خروجی از جمع کننده‌ها با کاهش روی است و سیستم نرم‌سازی درون محفظه خشک کن توسط کانال حارتفی سعی بر ثابت نگه داشتن درجه حرارت ورودی به خشک کن دارد که در تبیین میزان معیار انرژی الکتریکی تلفات حرارتی خط انتقال گرم مشخص می‌شود که اکثر تلفات حرارتی خط انتقال گرم را با کار بردن عایق با کیفیت بالا کاهش دهنده، در سیستم خود بدان‌شده، بودن نیاز به کانال حارتفی می‌تواند با استفاده از انرژی خورشیدی فرآیند خشک کردن محصول را با موفقیت انجام شود.

خشک کن به علت افزایش دبی جرمی محصول از سیستم خشک کن افزایش می‌یابد و انرژی مصرفی به ازای واحد جرم رطوبت از دست داده می‌شود.

به نتیجه انتقال انرژی حرارتی از جمع کننده‌ها به خشک کن مربوط به دو های جرمی بالاتر هوا می‌باشد. به مرحله در دو های جرمی باعث افزایش انرژی حرارتی گمی‌کن و در نتیجه افزایش می‌یابد: اولین که همان‌طور که قبلاً ذکر شد در دو های جرمی باعث افزایش حرارت هواهای که در خط انتقال جریان دارد کمتر است در تبیین انتقال حرارت از لوله‌های رطوبت با محیط اطراف کمتر می‌شود و دوم اینکه در دو های جرمی به نتیجه انتقال انرژی گرمی تلف شده از طریق لوله‌های رطوبت نسبت به جرمی گرمی انتقال یافته در مقایسه با دو های جرمی هواهای کمتر، کاهش می‌یابد. به طور کلی تابع ارزیابی نشان داد که این خشک کن در دو های جرمی هواهای ۲۱/۰ کیلوگرم بر متر مربع و زمان تخلیه محصول ۱۵ دقیقه بالاتر به دو های جرمی هواهای ۲۱/۰ کیلوگرم بر متر مربع در دو های جرمی کمتر تخلیه محصول (۱۵ دقیقه) بود. زیرا هر چه دو های جرمی هوا زیادتر شود پتانسیل برداشت رطوبت بهینه می‌شود در برابر این می‌پردازد. خشک کن در طول حداقل زمان تخلیه، بازده سیستم

منابع مورد استفاده

۱. خوشحال، م. و. س. مینایی. ۱۳۸۰. تعبیری روابط بین پارامترهای مؤثر در فرایند خشکاندن شلتوک (برنج) به روش مداوم. علوم کشاورزی منابع طبیعی (۲): ۱۲۳-۱۳۹.
۲. زمربیان، ع. و. علامه. ۱۳۸۱. بررسی خشک کردن شلتوک به روش لایه‌نامه و تعبیری ضخامت بهینه با به کارگیری یک خشک کن خورشیدی با جریان جابجای آزاد. علوم و فنون کشاورزی و منابع طبیعی (۴): ۲۱۸-۲۰۹.
۳. قاسم‌خانی، ح. ۱۳۸۰. طراحی، ساخت و ارزیابی یک خشک کن نیمه پیوسته خورشیدی غلات (درخت، برقی و ...). پایان‌نامه کارشناسی ارشد مکانیک شیمی کشاورزی، دانشگاه شیراز.