تأثیر دبی جرمی هوای ورودی و زمان تخلیه محصول بر روی کاهش
رطوبت شلتوک در یک خشك کن نیمه پوسته خورشیدی

داربوش زارع، علی زمراهی و حمید قاسم‌خانی

پیچیده

استفاده از انرژی خورشیدی امروزه به منظور خشک کردن غلات و سایر محصولات کشاورزی مستلزم است. از دلایل این امر می‌توان به تجدیدپذیر بودن، پایداری نتایج و ناپایداری و ریگایون این منبع کلال انرژی اشاره کرد. پژوهش‌های نشان داد که این ایجاد مجدد در بازار کلیه انرژی خورشیدی به عناوان منبع اصلی انرژی خشک کن می‌باشد. که در آن خشک کن خورشیدی طراحی، ساخته و مورد ارزیابی قرار گرفته است. این خشک کن‌ها از نوع نیمه پوسته قابل و مخلوط بوده که در آن جریان‌های مورد صورت یافته‌ای اجباری برقرار می‌گردد. دستگاه مذکور از ۶ عدد جمع کنده هوای خورشیدی، کانال حرارتی کمکی، خشک کن، سیستم‌های تامین و انتقال هوا تشکیل شده است. از اهداف مهم این تحقیق ارزیابی دستگاه‌های بیرونی، بنا برایان خشک کردن شلتوک در آن مورد بررسی قرار گرفته. در این پژوهش تاثیر دبی جرمی هوای خشک کن و زمان تخلیه محصول بر روی رطوبت شلتوک شن حاکم خورشیدی در دو سطح از سطح ۸۵ و ۶۰/۰۰ کیلوگرم بر متر مربع در تابستان و فاکتور فعالیت زمانی تخلیه محصول در دو سطح ۱۰ و ۲۰ دقیقه بود. همچنین تأثیر دستگاه خشک کن، رقمر انرژی مصرف‌شده (شامل انرژی الکتریکی و خورشیدی) در تاریخ‌های خشک کردن شلتوک و بارندگی جمع کنده‌های نیمه پوشین را نمایش داد.

نتایج نشان داد که دبی جرمی هوای خشک کن و فاصله زمانی تخلیه محصول اثر ممکنی در پذیرش رطوبت شلتوک خورشیدی دارد. پیشرفت بارندگی جمع کنده‌های خورشیدی ۱۳/۳۷ بر. بر طبق محاسبات، سهم انرژی حرارتی توسط کانال حرارتی کمکی در مقایسه با ارزیابی انرژی توسط جمع کنده‌های خورشیدی ۸/۸ درصد بود. پیشرفت ارزیابی دستگاه خشک کن از ساعت ۸:۳۱ صبح تا بعد از ظهر ۱۳:۲۷ کیلوگرم شلتوک بود که رطوبت شلنک توسط این خشک کن بازماند. با اورژن محصول انرژی‌ی می توان این رطوبت شلتوک را در مدت زمان مناسب به حد مطلوب‌اداری پرساند.

واژههای کلیدی: یافته‌های جمع‌کنده‌های آبی، جمع‌کنده‌های خورشیدی، خشک کن، نیمه پوشین خورشیدی، کانال حرارتی

1. دانشجوی دکتری مکانیک مادی‌های کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
2. استادیار مکانیک مادی‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
3. مرتبی مکانیک مادی‌های کشاورزی، دانشکده کشاورزی، دانشگاه شهید بهشتی، کرمان

۲۵۱
مقدمه
کشور ما ایران به دلیل واقع شدن در منطقه نیمه گرمسیری و خشک از نتایج نور و خورشیدی کافی برای خورشیدی است. همچنین به دلیل افزایش قیمت سوخت‌های فسیلی و نیز آلودگی هوا شدید و محرومیت زیست محیطی ناشی از مصرف آنها می‌باشد. از این‌رو، خورشیدی یک منبع می‌باشد که می‌تواند در جایگاهی آزاد هوا را از میان بسیار دانه کنترل و بهتر کند.

زمین‌شناسی و علوم (۱)، به بررسی خشک شدن بینج به صورت لاپ‌آریز در یک خشک کن خورشیدی از نوع غیر فعال مخلوط پرداخته‌اند. جریان هوا در این خشک‌کن به صورت جای‌گاهی آزاد بود. آزمایش‌ها در سه عملیت ۸، ۶ و ۴ سانتی‌متری انجام گرفته. نتایج بررسی نشان داد که بستر سانتی‌متری شرایط بینج به صورت لاپ‌آریز به شوی خورشیدی را دارا می‌باشد. در صورتی که بستر ۴ و ۶ سانتی‌متری شرایط خشک کن ناشان دادند. همچنین مشخص شد که مخصوص در سراسر بست دره به طور پیکروشانست خشک نمی‌شود. این موضوع به دلیل محوظه و حالت توزیع دما در محفظه خشک‌کن بود.

پژوهش حاضر یک ابتدای جدید در به کارگیری انرژی خورشیدی به عنوان منبع اصلی تأمین انرژی خشک‌کن می‌باشد. که در این خشک‌کن خورشیدی، طراحی، ساخته و مورد ارزیابی قرار گرفته است. این نوع خشک کن از نوع خورشیدی فعال مخلوط است که به صورت نیمه پوششی با قابلیت تغییر در ظرفیت قرار می‌گیرد. بدنی صورت که به در نظر گرفته رطوبت اولیه محصول، رطوبت نهایی خواصش شده محصول، درجه حرارت می‌تواند به میزان انرژی قابل دسترس می‌توان ظرفیت خشک‌کن را تغییر داده جهت ارتقاء دستگاه مربوط به شوی خشک شدن کردن برای سرعت خشک کردن می‌گرفت. کمترین سرعت خشک شدن نیز مربوط به شوی سنتی بود که از نظر عملکرد نیز مناسب تشخیص داده شد.

زمین و بازار (۲)، به سری مصالح تستی برای خشک کردن خشک‌کن شامل استفاده از انرژی خشک‌کن غیر فعال مخلوط خشک کن غیر فعال غیر سیستمی و خشک کردن به شوی سنتی بودند. نتایج آزمایش‌های آنها نشان داد که بالاترین سرعت خشک‌کن با استفاده از غیر فعال خشک‌کن غیر فعال مخلوط به دست می‌آید. این خشک‌کن همچنین به شکل عمکرد را نسبت به انواح دیگر داشت. به عنوان خشک کن غیر فعال سیستمی از نظر سرعت خشک شدن قرار می‌گرفت. کمترین سرعت خشک شدن نیز مربوط به شوی سنتی بود که از نظر عملکرد نیز مناسب تشخیص داده شد.
مواد و روش‌ها

از اهداف این پژوهش ارزیابی دستگاه خشک‌کن‌های خورشیدی جدید بود. که در آن چرخی‌ها به روش جایگزینی اجبازی با استفاده از مکانیک برق‌رسپ می‌گردد. در این دستگاه علاوه بر انرژی خورشیدی از انرژی الکتریسیته برای به جریان اندازه‌گیری هوا، جریان دریچه الکترومکانیکی و همچنین راه اندازی یک کال‌های حرارتی (Heating channel) کمک می‌کند.

به‌طور کلی، به‌واسطه خشک‌کن‌های خورشیدی که در بخش مکانیکی ماشین‌های کشاورزی دانشگاه شیراز طراحی و ساخته‌شده، از ماسحات کلی متغیر می‌باشد. با توجه به عرض جغرافیایی محل (۳۰ درجه)، زاویه مناسب جمع کنش‌ها ۴۵ درجه در نظر گرفته شد. نمای طرح‌هایی از جمع کنش‌های خورشیدی ساخته‌شده در ۱ نشان داده شده است.

جامع کنش‌های خورشیدی

در این قسمت برای تبدیل انرژی شیب خورشیدی به انرژی گرمایی مفید از شش عادی جمع کنش‌های نزدیک به ماهیت کلی‌تریکی، طراحی و استفاده شده است.

جایی‌ها ۳۰ درجه در نظر گرفته شد. نمای طرح‌هایی از جمع کنش‌های خورشیدی ساخته‌شده در ۱ نشان داده شده است.

کانال حرارتی

این خشک‌کن‌های با استفاده از انریزی خورشیدی به‌کاربرد در هر چرخی‌ها با دقت ۶ کیلووات می‌باشد. به‌وسیله خشک‌کن‌های انرژی گرمایی برای تبدیل انریزی خورشیدی به استفاده در مراحل که انرژی خورشیدی با استفاده از انریزی خورشیدی به‌کار برده می‌شود.
شکل 1. طرح‌هایی از مجموعه دستگاه خشک‌کن

حدود 10 سانتی‌متری می‌باشد. در این بخش، جابجایی بستر خشک‌کن از جنس پلیمیلیتر و بالای آن محفظه از جنس شیشه معمولی ساخته‌شده و مقادیری از محصول را که به قسمت تحتانی خشک‌کن رسیده و رطوبت آن در حد دلخواه انتخابی (تسوئیه آزمایش دستگاه خشک‌کن) حفظ می‌شود. محصول به نظر رسبیدن به رطوبت دلخواه تشخیص داده شد. به محور خروجی متصل می‌شود. نمای شماتیکی از دستگاه خشک‌کن در شکل 1 نشان داده شده است.

سیستم‌های تأمین و انتقال هوای میتواند بستر خشک‌کن از 4 میلی‌متر و بالای آن محفظه از جنس شیشه معمولی ساخته شده است. در این خشک‌کن برای دیدن هواگر در داخل خشک‌کن از یک محفظه آرام کننده (Plenum chamber) استفاده شده است. محفظه آرام کننده خشک‌کن طولانی‌ترین شده است که هوا به صورت یک‌نواخت بستر خشک‌کن را قطع کند و نهایتاً این هوا از شکاف‌های تعیین‌شده در جوانب خارج خشک‌کن خارج گردید. این توسعه‌ها در محیط‌های آرام کننده به این علت مطلوب می‌باشد که محصول به طور یک‌نواخت خشک‌کن می‌شود. در فرآیند محصول رسبیدن به نظر رسیدن حداقل رساندن طول مدت خشک‌کن کن، اتصال به سیستم‌های هواپیمایی به‌طور صحیح، یکی از بزرگ‌ترین استثنای پیشگیری در پاتریون‌ها، شکاف‌های صنعتی و غیره بوده‌است. بزرگ‌ترین مسئله در طراحی این سیستم‌های هواپیمایی به‌طور صحیح، یکی از بزرگ‌ترین استثنای پاتریون‌ها، شکاف‌های صنعتی و غیره بوده‌است. بزرگ‌ترین مسئله در طراحی این سیستم‌های هواپیمایی به‌طور صحیح، یکی از بزرگ‌ترین استثنای پاتریون‌ها، شکاف‌های صنعتی و غیره بوده‌است.
لوله‌های رابط به منظور جلوگیری از اتلاف حرارتی و اصطکاکی در حین انتقال هواست. برای انتخاب مکاندی جهت عبور دادن هوا به صورت عمودی از بستر خشک‌کن با داشتن گرفتن سطح خشک‌کن 182 متر و عمق محصول موجود در خشک‌کن در حدود 10 سانتی‌متر و همچنین افت فشار هوا در

\[
SP = \frac{aQ^3}{\ln(1 + bQ)}
\]
روش انجام آزمایش‌ها
بمنظور انجام آزمایش‌های محصولات آب، باید از دستگاه‌های خشک‌دان که در محوله آن‌گونه کیفی قرار داده شد، میزان انرژی آزمایش‌ها را در همان آهنگ‌های طبیعی انتقال دهد.

روش انجام آزمایش‌ها

افتد فشار استاتیک‌ها به ازای یک متر از عمق یک‌بست

\[Q = \frac{1}{m} \left(\frac{m^2}{s} \right) \]

برای شاتک مورد آزمایش، (رغم تخمین) از جدول مربوط به توجه به خصوصیات

فیزیکی محیط، استرخی استفاده کنید.(5)

اوزارها و روش اندازه‌گیری: بالاترین‌که که در این آزمایش‌ها

اندازه‌گیری شد. عبارت به‌دولت از

الف) دماها در ماسح‌های مختلف دستگاه‌ب (رطوبت

نسبی‌هوا محیطی و هوا‌خوری از خشک‌کن ج) دیب

جرم‌ها) میزان نشان‌دهنده‌ی حضورشیدی (حا) مقادیر آزمایش‌کن

الکتریکی محیط شده، توسط یک کاوش‌گر و رطوبت

محصول در قسمت دوم و خروجی خشک‌کن.

عبارت از:(1) اندازه‌گیری دما خشک در محوله آرام‌کننده،

بستر شکن کن، خروجی جمع‌کننده‌ها و لوله‌های ریخت

(2) اندازه‌گیری دما خشک‌کن و دما‌ای تر

(Orifice)
(3) اندازه‌گیری دما در این دستگاه‌ها در این‌که

طی زمان‌ها:

(4) اندازه‌گیری دما در این‌که

(Orifice)

(5) داده‌های دما و دستگاه‌ها در این‌که

(Orifice)

(6) داده‌های دما و دستگاه‌ها در این‌که

(Orifice)

(7) داده‌های دما و دستگاه‌ها در این‌که

(Orifice)
زمان تخلیه محصول (زمان به وسیله زمان تخلیه محصول بر روی آتش کاهش رطوبت شلوک...

خورشیدی، متوسط بازه حرارتی جمع کنده در دی مخصوص و
در فواصل زمانی هر 15 دقیقه به دست آمد و بر اساس آن بازه
متوسط در طول روز محسوب می‌شود.

برای محاسبه گرمای مقدی به دست آمده از جمع کنده‌ها، از
فرمول زیر استفاده شده‌اند:

\[q_c = \rho c_p \Delta t \]

که در آن داریم:

\[q_c \text{ (kg/m}^3\text{s)} \]
\[\rho \text{ (m}^3\text{W/m}^3) \]
\[c_p \text{ (kJ/kg°C)} \]
\[\Delta t \text{ (°C)} \]

برای محاسبه تلفات انرژی حرارتی از جمع کنده‌ها
خورشیدی که خشکی کن با انرژی تابع در جمع کنده‌ها
تاریکت و درغیر تغییرات درجه حرارت هوای خروجی از جمع کنده‌ها
تا ورودی به محض خشکی کن در ده لحظه و در دست داشتن
دبی جریان هوای خشکی کن از رابطه 3 مقدار تلفات انرژی
حرارتی حساب شده:

\[q_{loss} = \rho c_p (t_1 - t) \]

از جمع کنده‌ها (°C) ; دمای ورودی به خشکی کن
در طی آزمایش رطوبت نسبی هوا م>Titleر و هوای
 خروجی از خشکی‌کن نیز لب شد. نتایج مقدار انرژی که به
صورت خالص صرف خشکی کن شده است رحا نمود
با در نظر گرفتن تغییرات آنتالپی هوای ورودی به خشکی کن و
هوای خروجی از خشکی کن در طول هر 15 دقیقه آزمایش
می‌توان بازه خشکی‌کن در معادل انرژی را طبق رابطه
ساده 7 مورد محاسبه یافته. بنابراین مقدار انرژی که به
صورت خالص صرف خشکی کن محصول شده است از
رباطه 8 که حاصل ضرب بایده خشکی‌کن در مقدار انرژی
گرمای مقدی است برای هر 15 دقیقه به دست می‌آید. سپس با
مانگیک گیری از انرژی‌های محاسبه شده در هر 15 دقیقه
انرژی ای که به صورت متوسط صرف خشکی کن محصول
زمان تخلیه محصول (زمان باز و بسته شدن دریچه
الکترومکانیکی) در سطح 15 و 30 دقیقه بعد از آزمایش
و همگان بودن خطای میانگین‌های آزمایش مقایسه آتار اصل و
برهکسته فاکتورهای آزمایش توسط آزمون F و مقایسه
میانگین توسط آزمون دالکین در سطح 0/1/بررسی شد.

آزمایش‌ها ساعت 11 صحیح شروع و ساعت 4 بعد از ظاهر
خانه می‌بافت. برای رسیدن به حالت پایدار دستگاه، حدود
یک ساعت قبل از شروع آزمایش و داد برداری سیستم فن
روشن می‌شود. به دنبال ترموکولیفی‌ها و سایر مانگیک‌های
اندازه‌گیری دستگاه به تعادل رسیده و دستگاه جهت انجام
آزمایش آماده می‌شود. سپس میانگین که به دو محل
آزمایش آورده شده بود بهای میانگین دستگاه خشک داده را
قسمت هنوز ورودی به داخل محض خشکیکن ریخته، تا
بستر خشکی‌کن و ممخن کپلر بی‌شنوی. هم‌زمان با شروع
آزمایش برای ثبت درجه حرارت نقطه دما در
مدت زمان انجام آزمایش ضبط گردد. درجه حرارت مانگیک
مختلف دستگاه در 15 نقطه و در فاصله زمانی 3 دقیقه
شده و در قابل های مشخص جهت تجزیه و تحلیل نت
می‌شود. همچنین دمای دماسنج ها نیز هر 15 دقیقه یکبار نت
گرددند.

زمان باز شدن دریچه الکترومکانیکی به وسیله زمان سنج
روی 15 و 30 دقیقه و البته توسط دوره‌های مختلف فن
روی یکی از دی‌های 118/06/2004 و 108/0/کیلوگرم بر
متر مربع بر ثانیه تعقیب می‌شود. بعد از هر باز شدن دریچه،
برای بررسی تغییرات رطوبت محصول 2 نمونه 15-100 کغمی
از محصول ورودی و خروجی تهیه و رطوبت آنها محاسبه
می‌شود.

برای محاسبه تغییرات بازه گرمایی جمع کنده‌ها برای هر
دبی خاص در طول روز، میانگین دمای محفظ و دمای خروجی
از جمع کنده‌ها در فواصل زمانی هر 15 دقیقه و همچنین متوسط
تایب آزمایش خورشیدی محاسبه شدند. پس از محاسبه گرمای
مقدی به دست آمده و تقسیم آن بر میزان متوسط تایب

257
در طول آزمایش شده است: محاسبه می شود (5).

\[W = \frac{\phi_{PV}}{P - \phi_{VS}} \]
\[h = \left[\frac{1}{1 + \frac{W \cdot 250}{1310}} \right] \]
\[\Delta h = \frac{h_i - h_f}{h_f} \]
\[q_{drying} = q_{drying}(A, \eta_c, m, d) + q_{heater} - q_{loss} \]
\[q_{heater} = \text{طبخ کالری در این رابطه} \]
\[q_{loss} = \text{اتمیتی خوراک} \]

با توجه به جدول تجزیه واریانس (جدول 1) نتیجه می شود که دیب هوا و فاصله زمانی تخلیه محصول و اثر برمکش آنها با احتمال 99% تأثیر متمرکز از درصد رطوبت محصول خروجی از خشک کن داشته است. با توجه به معنی دار بودن برمکش دیب هوا و زمان تخلیه محصول، از شکل میتوان مشخص است که در نمونه دیب هوا و صورت حرارتی به خشک کن بر میانگین کاهش درصد رطوبت خروجی وجود دارد. همچنین از شکل مشخص است که در تمام سطوح دیب هوا زمان تخلیه دقیقه رطوبت محصول خروجی را بیشتر از زمان 15 دقیقه کاهش داده است که علت آن را چنین می توان نتیجه گرفت که در یک دیب ثابت هوا و رطوبت به خشک کن هر چه زمان تخلیه محصول افزایش یابد، محصول بیشتری در بستر خشک کن قرار می گیرد و رطوبت بیشتری از دست داده می شود. با توجه به معنی دار بودن برمکش کاهش زمان تخلیه محصول دیب هوا از شکل 3 مشخص است که در هر سطح زمان تخلیه محصول، اختلاف معنی داری بین اثر سطوح مختلف دیب هوا بر میانگین کاهش درصد رطوبت محصول خروجی وجود دارد. همچنین از شکل 4 مشخص است که در هر دو زمان تخلیه محصول به افزایش دیب، مقدار میانگین کاهش درصد رطوبت محصول خروجی نیز افزایش می یابد که علت آن را می توان چنین نتیجه گرفت که در زمان ثابت تخلیه، با افزایش دیب هوا خشک کن، اختلاف شار جرمی بخار آب از محصول داخل بستر به هوا و خشک کن به خشک کن، افزایش می یابد و در نتیجه سرعت انتقال جرمی یک بخار آب از محصول داخل بستر به هوا و خشک کن افزایش یافته و کاهش درصد رطوبت افزایش می یابد.

\[\eta_{drying} = \left(\eta_{colletor} + \eta_{heater} + \eta_{fan} \right) \]
\[q_{heater} = \text{با زدن کل سیستم در معکس آزمایش} \]
\[q_{loss} = \text{اتمیتی خوراک} \]
جدول 1. تجزیه و ارتباط اثرات اصلی و بر همکنش دی جرمی هوای ورودی و زمان تخلیه محصول بر کاهش درصد رطوبت محصول خروجی

<table>
<thead>
<tr>
<th>FS</th>
<th>MS (MN) رباعیات</th>
<th>SS (MN) رباعیات</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>170/11</td>
<td>163/18</td>
<td>329/35</td>
<td>2</td>
<td>فاکتور A</td>
</tr>
<tr>
<td>246/40</td>
<td>25/09</td>
<td>25/09</td>
<td>1</td>
<td>فاکتور B</td>
</tr>
<tr>
<td>19/93</td>
<td>0/88</td>
<td>1/76</td>
<td>2</td>
<td>برهمکنش AB</td>
</tr>
<tr>
<td>12</td>
<td>1/111</td>
<td>1/33</td>
<td>17</td>
<td>خطای آزمایش</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>کل</td>
</tr>
</tbody>
</table>

علامت xx نشان دهنده آماری دار بودن آزمون F در سطح 99% می‌باشد.

شکل 3. بررسی آثار برهمکنش دی جرمی هوای و مدت زمان تخلیه محصول بر کاهش درصد رطوبت محصول خروجی (داکن در سطح 0.1)

شکل 4. تغییرات رطوبت محصول خروجی بر حسب گذشت زمان در سه دی جرمی هوای و زمان تخلیه محصول برای 15 دقیقه.
کاهش می‌باشد. خوشحال و میلایی در مورد خشک‌کن رشتن پیش از گذشت زمان تحت تأثیر دی جرمی هوا 1/1000 کیلوگرم بیشتر می‌باشد. البته زمان تخلیه بیشتر به کاهش سطح رطوبت محصول خروجی بازی زده بوده است. نادران این آزمایش‌ها فاکتور دی گونه غلبه می‌تواند در این مورد پیدا کند. از نمونه برهمکش دی و زمان تخلیه محصول (شکل 3) مشخص است که بیشترین مقدار کاهش در سطح رطوبت محصول داخل بستر مربوط به دی هوا 1/1000 کیلوگرم بیشتر می‌باشد در نمونه و زمان تخلیه 320 دقیقه است. یعنی در حداکثر دی هوا و بیشترین فاصله زمان تنها محصول بیشترین مقدار برداشت رطوبت از محصولات را خواهیم داشت. بنابراین ترکیب این دو سطح از فاکتورهای دی هوا و زمان تخلیه به عنوان بهترین تعبیر جهت بیشترین کاهش در سطح رطوبت محصول معرفی می‌شوند.

تغییرات رطوبت محصول خروجی خشک‌کن

در شکل 2 تغییرات رطوبت محصول خروجی از خشک‌کن بر حسب گذشت زمان تحت تأثیر سه دی جرمی هوا 1/1000 و 1/400 کیلوگرم بیشتر می‌باشد در نمونه و زمان 15 دقیقه تنها داده شده است. با توجه به این شکل دیده می‌شود که در دی هوا بیشتر محصول سریع‌تر خشک شده است. که علت آن این است که با افزایش دی هوا خشک‌کن، اختلاف فشار جزئی بخار آب بین محصولات و هوا به خشک‌کن به‌افزایش می‌یابد. در نتیجه سرعت انتقال رطوبت از محصول به هوا خشک‌کن افزایش یافته و محصول زودتر خشک می‌گردد. با توجه به شیب منحنی تغییرات این شکل، می‌توان به کننده خشک‌کن دانست که سرعت خشک‌شدن در ابتدا عملکرد خشک‌کن در سریع‌تر بوده و به میزان کاهش رطوبت محصول بیشتری سرعت خشک‌شدن کمتر شده و آن چیزی که بنابراین این شکل پیچیده می‌باشد دوپس ترمینال حالتی از این شکل دیده شده است. در نتیجه سرعت خشک‌شدن در این حالت کمتر از دست داده رطوبت نیز
تأثیر دی-جنسی‌های روده‌ای و زمان تخلیه محصول بر روند کاهش رطوبت شلک‌ها

![Graph showing the effect of different times and initial moisture content (d.b) on the percentage of residue at different times.](image)

شکل 5: تغییرات رطوبت محصول خروجی نسبت به زمان در دی-جنسی هوا 1/1 کیلوگرم بر مترمیج در تمام زمان‌های تخلیه 15 و 30 دقیقه

جدول 2: مقدار انرژی مصرف شده و بازده مجموعه خشک کن در فرآیند خشک کردن شلک‌ها در ترکیبات مختلف دی-جنسی و زمان تخلیه محصول

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>MC(d.b)= %</th>
<th>M1g(kg)</th>
<th>Fv, %</th>
<th>ηd, %</th>
<th>qd(MJ)</th>
<th>qL(MJ)</th>
<th>qq(MJ)</th>
<th>qh(MJ)</th>
<th>ηe, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14/2</td>
<td>126</td>
<td>8/15</td>
<td>21/24</td>
<td>11/43</td>
<td>78</td>
<td>9/07</td>
<td>3/6</td>
<td>37/13</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>132</td>
<td>8/15</td>
<td>18/23</td>
<td>9/2</td>
<td>78</td>
<td>9/07</td>
<td>3/6</td>
<td>37/13</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>126</td>
<td>7/7</td>
<td>19/7</td>
<td>7/23</td>
<td>70/38</td>
<td>8/93</td>
<td>2/5</td>
<td>37/13</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>126</td>
<td>7/7</td>
<td>16/7</td>
<td>6/6</td>
<td>70/38</td>
<td>8/93</td>
<td>2/5</td>
<td>37/13</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>60</td>
<td>6/6</td>
<td>15/19</td>
<td>4/45</td>
<td>6/30</td>
<td>3/15</td>
<td>3/3</td>
<td>21/4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>60</td>
<td>6/6</td>
<td>15/19</td>
<td>4/45</td>
<td>6/30</td>
<td>3/15</td>
<td>3/3</td>
<td>21/4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qte = 0 kg/m³</th>
<th>Qte = 0,5 kg/m³</th>
<th>Qte = 0 /104 kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 10min</td>
<td>t = 10min</td>
<td>t = 10min</td>
</tr>
</tbody>
</table>

درصد انرژی کلیکی مصرف شده توسط کنال حرارتی نسبت به انرژی تولیدی جمع کنده‌ها: τw

بازده جمع کنده‌ها: ηt

مقدار تغییر حرارتی خط انتقال از جمع کنده‌ها به خشک کن: τq

مقدار انرژی حرارتی خروجی از جمع کنده‌ها: τq

بازده انرژی حرارتی از جمع کنده‌ها به خشک کن: τq

مقدار کل انرژی حرارتی مصرف شده در فرآیند خشک کردن شلک‌ها: τq

بازده کل مجموعه درصدی در مصرف انرژی: ηt

مقدار محصول خشک شده با رطوبت مشخص: M1g

مقدار محصول بر پایه خشک: MC(d.b)
