استفاده از کروماتوگرافی مایع فاز معکوس با کارایی بالا (RP-HPLC) در بررسی نوع زنیکی گند نان

رضایت سیب، عبدالﺟدید رضایت، محمد شاهدی، و شهرام دخانی

چکیده
این مطالعه با منظور ارزیابی قابلیت روش کروماتوگرافی مایع فاز معکوس با کارایی بالا (RP-HPLC) در بررسی پروتئین‌های ذخیره‌ای و تنوع زنیکی آن در ایزوله‌ی نان بهاره و یاپی‌زه، اراق زراعی و بومی گند نان اجرای گردید. پروتئین‌های گلپایگان حاصل از آرد 5 بذر تصادفی و یک ستون محفظ و حلال محرک Nucleosil C18 300A تجزیه شدند. در این روش از ستون RP-HPLC از هر زنیکی با روش تجزیه شدند. این روش از قابلیت بررسی تنوع زنیکی گند نان استخوانی حاوی TFA استفاده شد.

کلمات کلیدی: انتخاب شده برای تجزیه پروتئین‌های ذخیره‌ای، اهداف ان و مطالعه، با منظور تخمین تعداد انژیزی حاصل از تجزیه گلپایگان با مشترک از زنیکی گند نان. نتایج همچنین تجزیه پروتئین‌های با روش RP-HPLC حاصل از تجزیه، تحلیل آماری داده‌ها را آسان نمود. همچنین تجزیه پروتئین‌های با روش RP-HPLC در شناسایی این نوع کار ثابت شد، به طوری که به همراه حضور سکالی‌های ای امکان داشت. توانایی تجزیه‌گری پروتئین‌های گلپایگان می‌تواند کارآمد روش الکتروفورز را در اثر پوشش و حتی در موارد جایگزین آن شود. تاثیر تجزیه خوشه‌ای پلو پیش‌دهی گلپایگان بایگان افزایش تدریجی تنوع زنیکی از ایزوله‌ی نان آراق بومی تا آراق بومی بود. در مجموع، در بررسی اراک، گند نان، سه‌گانه‌ای علاه، خواص، ضریب بافتی، ضریب بافتی، شرکتی و سرخه از نوع زنیکی پیش‌دهی برخورد در بودن.

واژه‌های کلیدی - اراق بومی، ایزوله‌ی نان، تجزیه خوشه‌ای، زیراوه‌های پروتئین، گلپایگان، مرحله‌های اصلی

مقدمه
گوناگون کروماتوگرافی با زن شناسی وا پیل آکریل آمید (PAGE) برای استفاده از بافت اسیدی با قدرت بی‌پروئی، به طور گسترده‌ی مورد استفاده قرار گرفته‌است. منظور از روش‌های پروتئین‌ها به طور عمده بر اساس پار شده کروماتوگرافی و اندازه‌گیری انجامده.

سال‌های زیادی است که روش الکتروفورز برای مطالعه
پروتئین‌های ذخیره‌ای گند و سایر غلات، جداسازی زیر واچه‌های گلپایگان با منظور برآورد کیفیت آرد و شناسایی زنیکی‌ها استفاده می‌گردد (11 و 12). روش‌های

1- Polycrystal Gel Electrophoresis

2- دانشیار صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

3- دانشجو دانشگاه صنعتی اصفهان

Downloaded from ipcp.iut.ac.ir at 6:18 IRDT on Monday March 30th 2020
جنسیتی می‌شوند. (3)

از کروماتوگرافی غیربال موکولول (یا کروماتوگرافی غیربال زلی) نیز برای جداسازی بروتئین‌ها و تعیین وزن موکولول آنها استفاده شده است. کروماتوگرافی تبادل جیوئی (4) اصل بر اساس انواع و مقادیر اسیدهای عصار و وکس (آنتیجیوهای آپ گریزها) پروتئین‌ها را طبق اثر متقابل جریان بکری دوستانه به فاصله می‌آورد. این روش توسط کروماتوگرافی آبی فاز یکی ساخته می‌شود. (5)

پروتئین‌ها با مکانیسم متوازی از دو روش قبل جدا می‌گردند. اما فاصله جداسازی آن کامل پایین است. (6) بایا هنال کروماتوگرافی آبی فاز (RP-HPLC) معمولاً اکثریت پلاک‌ها بر پرینامه‌های اصلاح‌گذار و مطالعات زنگی شده استفاده نمود.

RP-HPLC با توجه به اینکه در چند سال اخیر روش اهمیت فراوانی در مطالعات، زنگی اصلاح‌گذار و سایر لیبترا و پاساژ استفاده نموده است. بررسی حاضر رفع تعدادی زنگی بسیار ناحیه‌گرفت. فهمیده این مطالعه تعیین شرایط مطلوب پروتئین‌های خاصی گذار و بررسی تجربیات پرینامه‌های مختلف به بهبود آنها کمک می‌کند. روش برای تجزیه و سطح‌مطالعه پرینامه‌های غلافی می‌باشد. (7)

امروز معرفی سنتنیونی با تخلخل بالا (A +) مبتنی بر گردان جداسازی پروتئین‌های با وزن موکولول بالا مستند، انقلابی در بسیاری از تردمولزی‌های تجزیه‌یافته قبیل به وجود آورده است. روش پرینامه‌های روش پرینامه‌های کروماتوگرافی RP-HPLC و آنتیجیوهای آپ گریز با روش دیگر آگزورکا کروماتوگرافی قبیل واکنش در ناحیه اسمت پروتئین‌ها بر اساس اختلاف در سطح آپ گریزی جداسازی می‌نماید، با این تفاوت که قدرت جداسازی آن بسیار بالاتر است. (9)

مواد‌ورش‌ها

تومر های چگالی

اگر آزمایش بر روی نمونه‌های گذار نان در آزمایشگاه‌های علوم و صنایع غذایی و اصلاح نانات دانشگاه کشاورزی دانشگاه صنعت اصلاح انجام شد. مواد مورد بررسی شامل 10 رقم بیوم، مشمل مشابی فایتی، قیمت باقی، سرخه احتمالی، مروری، بیوم تغذیه، بیوم عقیده، بیوم عادی، کراس سرخ تخم و جامعیت از استان بزرگ، شهدا سریه صفات از استان چهار محل و بختیاری، کرگ-1، و شاهرود و هاشوقت (گذار دوره) از بانک دانشگاه اسلام و تهیه نهال و باز کرگ و ابتلا‌های بهرلو حاکم و پاییزه

1- Size Exclusion Chromatography (SEC)
2- Gel Permeation Chromatography
3- Ion Exchange Chromatography (IEC)
4- Hydrophobic Interaction Chromatography (HIC)
5- Reversed-Phase High Performance Liquid Chromatography
استفاده از کروماتوگرافی ماشین فاز معکوس با کارایی بالا...

بیدست دانشگاه، که با توجه به نیاز به آرد کمتر و ارتفاع پیک‌ها، از روش هاینر و بیتس (15) با تغییر چرخ جزئی شرایط سبک استفاده گردید.

پس از چند روز نیمه چین ۵ پذیر تصادفی، پیش آنلام شد که جنگلی آب گرفتن آب در لوله‌های الپاسستیک در ۱۱ میلی لیتر ریخته شد. آنگاه ۱/۴ میلی لیتر اسید (۷۵ سدگ) به هر لوله اضافه گردید و نمونه‌ها پس از چند ثانیه به هم زدن با شیکر لوله ۱۲، به متند ۳۰ دقیقه در دمای اطاق نگهداری شدند. متعاقباً نمونه‌ها به متند ۱۵ دقیقه در ۱۵ هزار دور در دقیقه سانتریفیوژ شدند. پس از سانتریفیوژانداه میکرو‌های ۲۵۰ میکرو‌متر RP-HPLC (میکرو‌پر، روز ۱۷) چرخش روزی به همراه مدل ۱۷ میکرو‌متر (پس از چند روز میکرو‌متر) مورد استفاده گردید. نمونه‌های استخراج شده در یخچال دمای ۲ درجه سانتیگراد نگهداری و در کمتر از ۱۰ تا ۱۵ روز از استخراج تجزیه شدند. هریک به پیش‌نظام هاینر و بیتس (۱۶) ابتدا A و B نسبت‌های ۶/۵ درصد TFA به مولکول در حاله‌های بین آزمون گردید که در این حالت انحراف خط پایه بهبود یافت، اما جامدیزان نیز کاهش پیدا کردند. لذا نسبت‌های ۱/۸ و ۲/۵ درصد انتخاب شد.

HPLC شرایط تجزیه و استهلاک فاز متحرک شامل آب و بار ترکیب شده حاوی (۴۸/۱۰) TFA درصد به عنوان حلال A و استاندارد حاوی (۱۰/۵۰) TFA درصد به عنوان حلال B (یک درصد از استفاده تحت حلال B و در مدت زمان ۴۵ دقیقه، تحت نسبت‌های مختلف ترکیب شده آب و دو نسخه مختلف سانتریفیوژ استخراج و تجزیه گردید. نوشته‌های آزمون شده عبارت بودند از هابرت و بیتس (۱۵)، ولوری و همکاران (۲۵ و ۲۶) در تیجی روشن‌های هابرت و بیتس (۱۷ و ۲۰) هابرت (۳۱)، اپنس و گینیه (۲۱) و در همکاران (۲۵ و ۲۶) در تیجی روشن‌های هابرت و بیتس (۱۷ و ۲۰) هابرت (۳۱) نتایج خوبی

1- Anza, 2- Portola, 3- Siete Cerros, 4- Tanori 71, 5- Pitic, 6- Inia, 7- Marquis, 8- Merk, 9- Buchi 011 RE 121, Switzerland, 10- Sporian 30/B or EP 030/20 from Schleicher & Schull, Germany, 12- Vortex, 13- Supernatant, 14- Vacuum filtration.
کوفنتیک، برای تعیین تکمیل بر اثر آنها و تجزیه
مولفه‌های اصلی بر روی ماتریس ضرایب همبستگی انجام شد.
در هر مورد از 10 سانتی‌متر سلول‌ها بر روی مدت 60 دقیقه T (پنجره‌های HPLC و HPLC) از نظر آماری باعث ایجاد گردید.
برای اندازه‌گیری تجزیه خوشه‌ای در نسخه نسیم (NTSYS)
و جهت ارزیابی قابلیت روش تجزیه خوشه‌ای در نسخه نسیم (NTSYS) استفاده به عمل آمده.
پس از انجام تجزیه و تحلیل آماری از نتایج نتیجه گیری گردید. در ترکیب
در حال B به ترتیب در مقایسه صفر، ۸ و ۱۶ از همکنونه با ۷۲.۲۵ درصد
نظر شناخته شد. همچنین ۱۷ دیقت برای تعادل مجدد ستوین در نظر گرفته شد.
کل زمان اجرا ۳۱ دقیقه بود.
۱- VDS optiab chromatographic teknik GmbH, Berlin, Germany
2- Shimadzu LC-6A
3- LC-6A
4- Mix chamber
6- Spectrophotometric Detector UV-VIS
8- Chromatocap C-R4A
9- Cephenic coefficient correlation coefficient
10- Statistical Program for Social Science (SPSS for windows, Ver 6.)
11- Numerical Taxonomy System (NTSYS)
12- Statistical Analysis System(SAS), 1993
13- Quatro pro
14- پیامدهای نتایج تجزیه خوشه‌ای بر روی UPGMA (متوسط همبستگی) و با
استفاده از Faselle افیدسی (۱۲۳) و محاسبه ضرایب همبستگی
15- کلیه مولکول‌های سلولی در گروه شده، عبارت از مایه‌های زمان ماندگاری در نتیجه‌های واحدی گردید.
16- با ابعاد 6/4 mm L D.
17- عناصر مایه‌های سلول‌ها به شرح ذیل است: A، B، C و D.
شکل ۱ کروماتوگرام تاپیمیده‌ای گلیادین در:
الف - لاین سیت سروس بیانر، ب - لاین سیت سروس پاییز و ج - لاین تانوری بیانر
با وجود این، توان تغییر بازی پایه سازنده کیفیت نزدیکی که از جمله وجود پیش‌پیوندی به بازی مانندگاری 8/27 و 10/15 در توان روی بهبود امتیاز مهیج سمت سروس بهبود مقدار بیشتری از پیش‌پیوند به بازوی مانندگاری 15/12 و 7/15/8/9 را نسبت به پاییز دارا بود. این نتایج همراه با نتایج حاصل از مقایسه سایر کروماتوگراف‌های ایزوزولن‌ها (ساز شکلگذاری شده‌اند) با فرضی‌های ایرانه توسط سیستم 5) که مقدار پیش‌پیوند دیگر مشاهده شده، را در تحقیق‌های بهره‌برداری می‌دانست مطالب از دستور مقدار آماری داده‌های RP-HPLC می‌سازد. مشاهده توضیحات فوق، در کروماتوگراف‌های ارقام سردایی و فلات (شکل‌های 2 و 3-C) و سایر کروماتوگراف‌ها (گزارت نشان‌داد) نژاد نهایی کیفی و کمی قابل تصفیه بود. اما چنانچه گزارش شد. بر اساس تجزیه‌های بهبود شتاب در رابطه با مقیاس‌های کروماتوگراف‌ها می‌توان به استفاده گردد. با این حال با مقایسه کروماتوگراف‌ها می‌توان به مطالبات نهایی نیز دست دهد. در این رابطه، که می‌توان توجه حالت غیر اعمال کروماتوگراف‌فلات در ناحیه بازی مانندگاری 11 دقیقه 9999 می‌باشد، که در این ناحیه سطح کروماتوگرام افزایش یافته است. بر اساس گزارش ویژه و همکاران (۲۳) افزایش مقداری نهایی بهبود گلی‌های امگا (امگا) نتایج از حضور سکالین‌های امگا می‌باشد. این حضور به گرایش زیادی داده می‌شود. در حالی که در این مورد طبیعی و گلی‌های امگا باعث شده است که سطح کروماتوگرام در اثر حضور چند پیچیده ندیده باشد. همچنین این موضوع به گلی‌های امگا و آلما اختلاف ایجاد نموده است. با این وجود، برای

1- Veery -2
شکل 2- کروماتوگرام پاییزی‌پیته‌های گلیایه‌ای در:الف-لاین یا بی‌پی، ب-رقم سوداری و ج-رقم فلات
شکل 3- نمودار خوشه‌های حاصل از تجزیه پلیپپتیدهای گلیبدین در ایزولاین‌های بهره و پاییزه

مشاهده‌شده در از زمینه زنتیکی محدودی برخوردارند. به علواه اندور و همکاران (13) و لوخارت و همکاران (25) از ارقام تجارتی تولید شده در بهره و پاییزه استفاده نمودند. اما بیشتر از ایزولاین‌های این مطالعه همگی حاصل کشت پاییزه هستند. از آن جایی که صرف نظر از زمینه زنتیکی، شرایط محیطی نیز بر ترکیب پروتئین‌ها (به صورت کمی) موثر است (19)، این نتایج در تماشای ارقام بهره و پاییزه می‌تواند از اهمیت کم توجه به پرورش‌داراپیوند، همچنین این موضوع را می‌توان به موقعیت کم برناه، اصل‌الخصوصی این ایزولاین‌ها نسبت داد. در روزبهای نظر می‌رسد در صورت انتخاب ارقام تجارتی بهره و پاییزه و یا زمینه‌های نسبتاً متنوع بتوان گروه پدید مطابقی از آنها به‌صورت آزاد ت廉价ی تجزیه مؤلفه‌ای اصلی بر روی ۱۷ متفی مورد نظر (جدول ۱) بایک، ایده‌کاری به جهت درصد از تغییرات ورودی‌گلیبدین، به ترتیب تغییر مؤلفه اصلی اول نا چهارم باشد، بنابراین سه مؤلفه اصلی اول تغییرات مکان ژنی -۱ و ۲- در از ایزولاین‌ها توجهه Gli-1 ۱ ۰/۲۰۳، ۱۱ هر سه مطلق متفی‌ها ژنتیکی بر اساس همبستگی تغییرهای مؤلفه، مؤلفه اصلی اول پلیپپتیدهای با زمان ماندگاری ۱/۰۲۰، ۹/۹۹/۹/۱۱۵، ۱۰/۱۰۲/۹/۵۸۰ و ۱۱/۱۶ و با پلیپپتیدهای با زمان متفی مدت لازم، اما این موضوع به طوری که

۱۵/۱، سایر ارقام و ارقام بومی را به گروه‌های ژئیدی تقسیم می‌کنند. البته این فضا بر اساس پلیپپتیدهای بازیوی کرموزومی است، اما از آن جایی که گزارش‌های موجود (۸) و (۱۰) بیانگر حساسیت و دقت فوق‌العاده این شاخصه‌ای زنتیکی می‌باشد، چند شکل آن را از می‌توان نمودی از کل نژاد هستند. در حیطه ایزولاین‌های این مطالعه حاصل تالایی والدین آنها یافتن‌کننده (والد غیر دوراهی) و انجام دور تلافی برگنگی با والد خود مستند بودند، سپس در نتیجه در حالت تفکیک بیرای خصوصیات بهره و پاییزه انتخاب صورت گرفته است. این موضوع می‌تواند علت بر شاهه‌های این زنتیکی‌ها باشد.

شکل ۳- چند استاندارد مفاهیمواراپلیپپتیدهای بهره و پاییزه ارائه نموده که این موضوع بر خلاف تابیت اندور و همکاران (۱۳) و لوخارت و همکاران (۲۵) می‌باشد. هاکی و نیکز (۱۹) معتقدند که ارتباطات مشاهده شده بیانقابی، اندور و همکاران (۱۳) ممکن است اشتیاق‌پیوسته باشد، با وجود این، عدم امکان تکنیکی زنتیکی‌های بهره و پاییزه در این مطالعه، بر حالت تفکیک بی‌خودی در ازویی دیر و مشاهده آنها مشذده گردید، می‌تواند داخل تریگر نیز داشته باشد. اول اینکه زمینه‌های ایزولاین‌های این مطالعه (۱۲) و (۱۳) بسیار متنوع بوده است، اما این موضوع به طوری که
جدول 1- ترتیب تجهیزه‌های اصلی برای پیشنهاد کلیاتی در این پروژه های پایه‌ریزه برای پرداختهای بر اساس مجموعه‌های پیش‌بینی خاص

<table>
<thead>
<tr>
<th>نرخ تجهیزه‌های اصلی در هر دو مرحله</th>
<th>مقدار پرداخت (درصد)</th>
<th>مقدار پرداخت (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بر اساس پرداخت اصلی سوم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بر اساس پرداخت اصلی دوم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بر اساس پرداخت اصلی نهایی</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

توجه: مقدار پرداخت بر اساس تعداد هر یک از تجهیزات در هر مرحله.
روی داده‌های مقدار نسبی بی‌پیت‌ها با هدف امرادی که در آنها اثرات کمی در داده‌های پرتوپین تحقیقات مستقیم است، در داده‌های پرتوپین تعیین چنین گروهی‌ها از نوع نیازمندی باشد. بنابراین ترتیب یک یا شناسایی بی‌پیت‌ها مطلق می‌توان جهت اخذ نتایج از آنها در زنده‌بسته خاص، تا تقاضای ارقام مختلف اقدام نمود. با یکوجه به بحث راه‌حل ۱ در م.clean.png مقدار نسبی بی‌پیت‌ها با هدف امرادی که در آنها اثرات کمی در داده‌های پرتوپین تحقیقات مستقیم است، در داده‌های پرتوپین تعیین چنین گروهی‌ها از نوع نیازمندی باشد. بنابراین ترتیب یک یا شناسایی بی‌پیت‌ها مطلق می‌توان جهت اخذ نتایج از آنها در زنده‌بسته خاص، تا تقاضای ارقام مختلف اقدام نمود. با یکوجه به بحث راه‌حل ۱ در م.clean.png
شکل 4- نمودار حاصل از رسم مولفه اصلی اول و دوم درایه‌بندی‌های بیمار و پایبین. زنونیها عبارتند از: 1- انزای پهاره، 2- انزای پاییزه، 3- پورپولیه پهاره، 4- پورپولیه پاییزه، 5- تانوری پهاره، 6- تانوری پاییزه، 7- سیت سروس پهاره، 8- سیت سروس پاییزه، 9- پیپک پهاره و 10- مارکوپس

فاصله تشابه

شکل 5- نمودار خوش‌های حاصل از تجزیه بیلی پیپی‌های گلیادین در برخی از ارقام زراعی ایران. کرج 1- دو مرتبه تکرار شدست.

مریخی باشد. شاهیوندی (گندم دوروم) فقط دارای 14 پیک از سرداری، و اینن (۲ امید و خلیج؛ و ۵) ارونیدولیف تشکیل می‌گردد. رقم کرج-۱، که از تلشی‌های روشن و رقی عمدی باه‌هدست آمده است، با روشن و مارکوپس دریک گروه فراگرفته. با تنارتی‌های کرج-۱ و روشن با شجره آنها مطابقت دارد و مارکوپس، که گندمی کانادایی است، شاه‌های قابل ملاحظه‌ای با دو رقم ایرانی نشان می‌دهد. شاید این موضوع به تلاش انی‌های کرج-۱ از آن به‌هدست آمده است.
درگروه سوم، ناز و اینیا هر دو گونه‌های مکزیکی هستند که در یک گروه قرار گرفتند و سردایی که از توده‌های بومی غرب کشور انتخاب شده است، شیب‌های زینیکی با این دو کمیک (به‌خصوص ناز) دارد. شیب‌های امید و خلیج که از جوهر محلی ساوه و زابل و منطقه‌ای یاد شده‌اند، با پراکنش گرافیایی آنها مطابقت ندارد. از این دو گونه رونش و گونه‌های مکزیکی به‌ست آمده است و فلاته نیز یکی از مشتق‌های جنگلی مکزیکی ویره-2-می‌باشد. با یادداشت بین‌شیب‌های این دو رقیم احتمالاً با شجره آنها در ارتباط است.

نتایج مؤلفه‌های اصلی بر روی 24 متغیرشان داد که به ترتیب 1-2-3-4 و 5 درصد از تغییرات مکانیکی-1 و 2 در این ارقام توسط مؤلفه‌های اصلی اول تا چهارم توجیه می‌گردد (جدول 2). این نتیجه در مقایسه با نتایج تجزیه ایزولات‌ها (جدول 1) و گزارش لواهرت و همکاران (25) ضمن تایید تجزیه خوشه‌ای، بیانگر نوع زنینیکی بیشتر بین ارقام زراعی تست به ایزولات‌های مورد پرسی می‌باشد. به عبارت دیگر، گاهی شباه‌های همین‌گونه بین قطعه‌های اندام زنینیکی گیاه‌های کاشت یافته و در نتیجه مؤلفه‌ها درصد کمتری از تغییرات کل را توجیه می‌کنند. نتایج قبلی که در مورد ایزولات‌ها برابر
جدول ۲- نتایج تجزیه مؤلفه‌های اصلی برای پلی‌پیپ‌های سلامتی در برخی از ارتفاع‌های ایران

<table>
<thead>
<tr>
<th>نام محیط</th>
<th>بردارهای سه‌بعدی</th>
<th>بردارهای دو بعدی</th>
<th>بردارهای یک بعدی</th>
<th>بردارهای صفر بعدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
</tr>
<tr>
<td>مرکز</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
</tr>
<tr>
<td>بیشتر</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
</tr>
<tr>
<td>کمتر</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
</tr>
</tbody>
</table>

مقدار پیش‌بینی (درصد)

<table>
<thead>
<tr>
<th>نام محیط</th>
<th>بردارهای سه‌بعدی</th>
<th>بردارهای دو بعدی</th>
<th>بردارهای یک بعدی</th>
<th>بردارهای صفر بعدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
<td>مؤلفه اصلی</td>
</tr>
<tr>
<td>مرکز</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
</tr>
<tr>
<td>بیشتر</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
</tr>
<tr>
<td>کمتر</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
<td>۱۱۳/۵۵</td>
</tr>
</tbody>
</table>

مقدار پیش‌بینی (درصد)
همیستگی کوئنتیک برای این نمودار برابر با ۹۵/۰۰ بود. پنتایپین قابلیت تجزیه خوشه‌های بسیار خوب بوده است. بنا توجه به مقایس فاصله نشان می‌دهد که بین روز اول و دوم گندم سفید بانفی در فاصله اقلیدسی ۸/۱۱ بین روز اول و دوم گندم قرمز بانفی در فاصله اقلیدسی ۷/۸۵ بین یک گروه قرار گرفته. این فاصله تقریباً ۴ برای فاصله سیست مسور پیامدهای برای پایه‌ها و ۲ برای فاصله انتزاعی پایه‌ها و پرتوپریپرازی نیازهای پایه‌ها و پایه‌های به شکل ۳ و تقریباً ۲ برای فاصله انتزاعی ناز و سرداری در شکل ۴ می‌باشد. بنابراین نتایج مقادیری از مقادیر پایه‌ها احتمال وجود تنویع در دامنه گونه‌های سفید و قرمز بانفی می‌باشد. اگر به رای مطابعه تنویع در ارقام به حداکثر باید ۱۰ تا ۱۲ بذر را تجویز نمود.

بر اساس بررسی مقادیر D، تعداد مطلوب گروه‌ها برای این دسته از انتخاب داشته باشد. پیرامون پایه‌ها در انتخاب تقریباً معادل فاصله اقلیدسی ۷/۱۹ تا ۲۹ می‌باشد. در حالی که در ارقام زراعی با انتخاب فاصله اقلیدسی ۱۳/۲۷ تا ۱۷ پنج گروه تشکیل می‌گردد. برای مقایسه این دو گروه از انتخاب دسته این جا نیز فاصله اقلیدسی ۱۵ تا ۱۹ معادل فاصله شناخته شده با ۲۰ تا ۲۳ است. بر اساس شش گروه شامل: (۱) دو نمونه سفید بانفی، (۲) دو نمونه قرمز بانفی، (۳) مرور و سرب‌ارم، (۴) سفید بانفی، (۵) ماهوتی، (۶) سفیدصالحات و کراس سرخ تخم، (۷) عقاعد.
جدول ۳-نتایج تجزیه مؤلفه‌های اصلی برای یک پیش‌دهای گلیانی در ارقام بومی

<table>
<thead>
<tr>
<th>ضریب همبستگی مانیفسترا با مؤلفه‌ها</th>
<th>برای مدل‌های چهارم</th>
<th>برای مدل‌های سوم</th>
<th>برای مدل‌های دوم</th>
<th>برای مدل‌های اصلی</th>
<th>نوع پیشنهاد</th>
<th>میانگین زمان انتقال</th>
<th>(دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل‌های اصلی اول</td>
<td>مدل‌های اصلی دوم</td>
<td>مدل‌های اصلی سوم</td>
<td>مدل‌های اصلی چهارم</td>
<td>مدل‌های اصلی اول</td>
<td>مدل‌های اصلی دوم</td>
<td>مدل‌های اصلی سوم</td>
<td>مدل‌های اصلی چهارم</td>
</tr>
<tr>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
</tr>
<tr>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
<td>ارقام</td>
</tr>
</tbody>
</table>

* ۲۰۰ و ۲۰۲ به ترتیب معنی دار در سطوح احتمال ۰.۰۵ و ۱ درصد.
شکل 8- نمودار خوشه‌ای حاصل از تجزیه پلی‌پپتیدهای مورد مطالعه

در کلیه پپتیدهای مورد مطالعه بومی برخی از پلی‌پپتیدهای قابل سهم مکانهای Zn۲⁺ و Gd۳⁺ در زیرگیر‌های داده‌ها تقسیم به‌کمک سه‌گانه‌ای با توجه به سه کوتپپتیدهای قابل، سهم مولفه‌های اصلی اول و دوم و سوم با تایپ تجزیه خوشه‌ای مطابقت‌دار (شکل‌ها گزارش نشده‌اند).

شکل 8 نمودار خوشه‌ای حاصل از تجزیه پلی‌پپتیدهای گلیانی در کلیه پپتیدهای کنار می‌دهند. این شکل حاصل تجزیه ۴۷ پلی‌پپتید می‌باشد که از این تعداد ۱۲ پلی‌پپتید در سه گروه، ۲۵ پلی‌پپتید دردوسی و ۲۷ پلی‌پپتیدی که فرض یک گروه از پپتیدهای (ازو-لی‌اکس) ارقام زراعی با بومی) وجود داشتند، در این سه شکل نیز نمونه‌های تکراری سفید و قرمز بافتی و
استفاده از کرومانتوگرافی ماش فاز معکوس با کارایی بالا

تزئین مجدد کرچ 1- (به منظور کنترل) به طور مجزا درجه آورد شد. ضریب همبستگی کوارتیک در آب این نمونه برای 26/11 بود که بیانگر کارایی خوب روش تجزیه خوشه‌ای می‌باشد. با انتخاب فواصل اقلیدسی ذکر شده در شکل 5 و 7 توجه به مقایسه واقع نمونه (فواصل اقلیدسی، 32/6 و 7/8) به همانگونه قابل تشخیص هستند. در مجموع با انتخاب فواصل اقلیدسی 15، تعداد 11 گروه به شرح زیر تشکیل شد: 1- ایزولات (۲۲) ماموتی، سردی، ناز، انتفاش سفید صالحات و 2- کرات سرخ تخم (۲۳) کرچ (۱۱، ۶- ۱۲) گروه و فلزات (۹، ۶- ۱۰) شاهرونده (۴) امید خلیجی (۹) و فلزات (۸، ۶- ۱۰) سفید (۵) مبتنی بر قدرت خلاصه، مرور و سرخه (۵) آزاد و (۱۰) بیان یاد شده در پی نمونه‌های ۱۹۸۵ و ۱۹۸۶ و ۱۱۵ نمونه‌های قابلیت روش کرومانتوگرافی می‌باشد.

سیاستگزایی هزینه‌های انجام این مطالعه توسط دانشگاه کشاورزی دانشگاه صنعتی اصفهان و سازمان تائید آزمایش شده است که بسیاری از محققین سپارسیسی گردید. از پرنده‌های بزرگی بین یوز و کشاورزی آمریکا به‌واسطه راهنمایی‌های ارزشمند ایجاد در زمینه موضع تحقیق و ارسال مقالات کاربردی قدردانی می‌شود. همچنین از آقای دکتر زین العابدین شیرین صدر عضو هیئت علمی سازمان پژوهش‌های علمی و صنعتی ایران، پژوهشکده عمر اقلام نهان و آقایان دکتر انصافی و دکتر قاضی عضو انجمن همایش علوم دانشگاه شیمی دانشگاه HPLC صنعتی اصفهان به خاطر راهنمایی‌ها آنها در زمینه سیاستگزایی می‌گردد.

منابع مورد استفاده

1- رضایی، ع.م. ۱۳۵۵. رابطه بین کیفیت آرد و زیر واحدهای گلوتئین با وزن مولکولی بالا در کندم. مجله علم کشاورزی ایران. جلد ۲۲، شماره ۱۲، صفحه ۵۱-۶۲.
2- رضایی، ع.م. ۱۳۷۸. رابطه بین زیر واحدهای گلوتئین با وزن مولکولی بالا با خصوصیات کیفی آرد. مجله علم کشاورزی و منابع طبیعی. جلد ۱، شماره ۱، صفحه ۱۹-۲۸.
J. Chromatogr. 255:219-238.

