بررسی آثار سرباره کنترل‌ور بر خصوصیات شیمیایی خاک‌های اسیدی

علی محمدی ترکاشوند، محمود کلابیسی و حسین شریعتمداری

چکیده

سرباره کنترل‌ور LD فرآورده‌دنسی صنایع آلی و انواع است که به مقدار زیاد در اصفهان تولید می‌شود. سرباره به کاربردهایی مانند بازیابی MgO و CuO در حاوی ۵۱.۷٪ و ۳۸.۷٪ درصد است. برای تهیه اثر سرباره LD بخصوص شیمیایی خاک، هر آماسیون اکتوپاسیون با استفاده از سه حاکم به سه‌گیلان انجام گرفت. نمونه‌های خاک از عمق ۳۰-۲۰ سانتی‌متر سطح مزرعه شرود و تتوین و با ورید کردن شده بود. نمونه‌های مشخص شدند. روش‌های حاکمی در ۷۰٪ نمونه‌ها برای مدت در ماه نهایی نگهداری شد و در زمان‌های ۱، ۱۰، ۳۰ و ۶۰ روز پس از شروع آزمایش از نمونه‌ها، نمونه‌های فرعی برای بررسی نیازهای شرود و گل‌گذاری خاک‌های LD با تکنیک استخراج با AB-DTPA، Fe، Mn، EC، pH و غلظت Fe داشتند.

рез‌پذیری نانه‌دار pH خاک باین‌آسیش نسبت سرباره به کاربردهای انرژی‌پذیرا کرده. سرباره مقدار p و P با AB-DTPA فایل استخراج با Mn قابل ملاحظه نیست. با آن زمان کاهش بافت، اثر زمان انرژی‌پذیرا بالا می‌باشد. شیمیایی خاک اثر تأثیر آن زمان، مقیاس زمان‌های اسیدی کاهش دارد. با AB-DTPA بازیابی با توجه به تعیین نسبت آن زمان به دست آمده به نظر می‌رسد سرباره LD اثر به شیمیایی خاک‌های اسیدی بیشتر نسبت به SH را به صورت کلی حاکم‌زای خاک‌های LD اسیدی. لازم است نشان داد که خاک‌های LD اسیدی، اصلاح کننده سرباره LD کنترل‌ور، این روش‌های می‌تواند به حاکم‌زایی خاک‌های اسیدی سرباره LD کنترل‌ور می‌تواند به حاکم‌زایی خاک‌های اسیدی سرباره LD

مقدمه

می‌رسد این تیمار برای پذیرش مؤثر در کشاورزی مناطق مرطوب ضروری بوده و منجر به بهره‌وری عملکرد محصولات می‌شود (6). آمک دهی برای خشک کردن حالت اسیدی خاک‌های یکی از استفاده از مواد آهکی در حاکم‌زایی اسیدی نسبتاً گران است. روش‌های معمول در مدیریت خاک‌های اسیدی است. به نظر

1. به ترتیب دانشجوی سابق کارشناسی ارشد، استاد و استادیار، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

47
خشنگ گیاهی شده و در مجموع موجب بهره‌گیری جذب عناصر غذایی به وسیله گیاهان می‌شود. در تحقیقات استفاده از سرباره LD ملاحظه خصوصیات میکرو‌افزایی - شیمیایی خاک‌های است. LD همچنین سرباره LD رشد درختن کاج و نیز افزایش LD به علت نشان داده است (18). در ضمن همکاری (9) اثر سرباره و سطح آهک را در خاک‌های آئی سبزی بررسی کرده‌اند. آنها نتیجه‌گیری کرده که خاک‌های کنترل هر دو به ماهه آهک در اصلاح خصوصیات شیمیایی خاک‌های اسیدی شمال کشور است.

مواد و روش‌ها

نتایج تحقیق شیمیایی سرباره LD مورد استفاده‌اش توسط آزمایشگاه در آهن اصلی تهیه شده‌بود (جدول 1) و نشان داد که سرباره حاوی 5/8 درصد اکسید کلسیم و 2/2 درصد اکسید مینزیم است.همچنین سرباره دارای مقدار زیادی آهن، فسفر، منگنز و پیله‌سیم است که می‌تواند به‌عنوان افزایش محصولات زراعی شود. محیط شرایط خاک در خاک‌های اسیدی به‌میزان مصرف سرباره LD می‌باشد.

امکاناتی برای مصرف سرباره LD در خاک‌های اسیدی عضوی از تحقیقاتی به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف سرباره LD می‌تواند به‌عنوان روش‌هایی برای بهبود کیفیت در سرباره LD نیز وجود دارد. مصرف S...
پرسی آثار سرباره کوتور بر خصوصیات شیمیایی خاکهای استان

جدول 1. نتایج تجزیه شیمیایی سرباره کوتور LD

<table>
<thead>
<tr>
<th>نوع آنالیز</th>
<th>مقدار (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFe</td>
<td>16/82</td>
</tr>
<tr>
<td>FeO</td>
<td>7/87</td>
</tr>
<tr>
<td>MnO</td>
<td>4/26</td>
</tr>
<tr>
<td>SiO2</td>
<td>8/92</td>
</tr>
<tr>
<td>CuO</td>
<td>35/85</td>
</tr>
<tr>
<td>MgO</td>
<td>2/22</td>
</tr>
<tr>
<td>V2O5</td>
<td>3/31</td>
</tr>
<tr>
<td>P2O5</td>
<td>4/67</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0/88</td>
</tr>
<tr>
<td>ZnO</td>
<td>0/57</td>
</tr>
<tr>
<td>Na2O</td>
<td>0/15</td>
</tr>
<tr>
<td>K2O</td>
<td>0/32</td>
</tr>
</tbody>
</table>

ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد استفاده در جدول 2 دیده می‌شود. در این پژوهش سرباره در سطوح 1، 2، 4، 6، 8 و 16 درصد در 3 تکرار در قالب یک طرح کامل تصادفی با 500 گرم خاک مخلوط شد. در این مقاله به این سرطاره‌های S16 و S8، S2، S1، S0.5، S0.1 و S0.05 اشاره می‌شود. نمونه‌های تیمار‌شده به قوتوئی‌های بالاپارستیک گنجایش 700 گرم منسق و رطوبت آن‌ها در حد طرفی مزرعه‌های نگهداری شد. سپس درب قوطی‌ها بسته و روز 34 هر قوطی 3 سوراخ به فضای تقریبی یک میلی‌متر برای تبادل هوا ایجاد شد. در طول در نگهداری آزمایش (دو ماه) رطوبت نمونه‌های خاک با توزیع مربوط قوطی‌ها ثابت نگه داشته شد. در فاصله‌های زمانی 24 ساعت، 48 ساعت، 72 ساعت و 120 ساعت مراحل نگهداری شدند. در این نمونه‌ها پس از هوا خشک‌سازی شده و قابلیت هایات الکتریکی در pH استفاده گردید. عصاره 1/2 یک خاک به آب و غلافت سفره، فسپر، نسبت آهک، مگنزیم و AB-DTPA عصاره‌گیری (14 و 21) و سپس روا به وسیله

نتیجه‌گیری و بحث

pH

در جدول 3 تأثیر سطوح مختلف سرباره و زمان نگهداری بر خاک‌های شماره 2 و 3 نشان داده شده است. آنالیز واریانس نشان داد که اثر تیمارها و زمان انکوباسیون بر pH خاک‌های اسپیدی در سطح احتمال یک درصد معنی‌دار است (جدول 4). هر سه خاک به‌طور میانگین افزایش یافت. نتیجه‌گیری (15) در مراتع یک هزار LD، 29 درصد کلسیم و 5 درصد نیترات به میزان 7/5 در هکتار برای گرفتن که pH خاک در منطقه دریو از (Derio) و Abadiano (15/63) به 0/56 و در منطقه آبادانو از (Abadiano) به 0/57 افزایش یافت. این نتایج در قطعاتی به خاک در منطقه دریو از (Abadiano) بیش از 20 خاک به آب و غلافت سفره، نسبت آهک، مگنزیم و AB-DTPA عصاره‌گیری (14 و 21) و سپس روا به وسیله
جدول 2. برخی خصوصیات فیزیکی-شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شماره</th>
<th>شماره</th>
<th>لو مرن</th>
<th>لو سنی</th>
<th>باتفن</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquic Hapludalfs</td>
<td>Typic Homuaquepts</td>
<td>Typic Hapludalfs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/7</td>
<td>5/5</td>
<td>2/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>1/3</td>
<td>0/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/2/8</td>
<td>3/1/6</td>
<td>6/1/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/7/9</td>
<td>1/2/2</td>
<td>2/8/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/0/3</td>
<td>1/0/7</td>
<td>0/2/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>1/2/6</td>
<td>1/0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>115</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/21</td>
<td>3/7</td>
<td>3/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2/4</td>
<td>12/4</td>
<td>1/7/8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. اثر تیمارهای سرباره و زمان نگهداری بر pH خاک

<table>
<thead>
<tr>
<th>شماره</th>
<th>تیمار</th>
<th>زمان نگهداری</th>
<th>S16</th>
<th>S8</th>
<th>S4</th>
<th>S2</th>
<th>S1</th>
<th>S0.5</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/5</td>
<td>a</td>
<td>v/7/3</td>
<td>c</td>
<td>v/3</td>
<td>f</td>
<td>v/3</td>
<td>5/20</td>
<td>g</td>
<td>5/64</td>
</tr>
<tr>
<td>1/0</td>
<td>b</td>
<td>v/82</td>
<td>d</td>
<td>v/3</td>
<td>f</td>
<td>v/3</td>
<td>5/64</td>
<td>g</td>
<td>5/20</td>
</tr>
<tr>
<td>9/4</td>
<td>c</td>
<td>v/8</td>
<td>d</td>
<td>v/3</td>
<td>f</td>
<td>v/3</td>
<td>5/64</td>
<td>g</td>
<td>5/20</td>
</tr>
<tr>
<td>835</td>
<td>a</td>
<td>v/80</td>
<td>d</td>
<td>v/20</td>
<td>f</td>
<td>v/20</td>
<td>5/64</td>
<td>g</td>
<td>5/20</td>
</tr>
<tr>
<td>3/77</td>
<td>a</td>
<td>v/1</td>
<td>c</td>
<td>v/1</td>
<td>f</td>
<td>v/1</td>
<td>5/64</td>
<td>g</td>
<td>5/20</td>
</tr>
</tbody>
</table>

جعبه حساب‌رسی آیپد. دیگران نیز نتایج مشابهی را گزارش کرده‌اند (7, 69, 91). استفاده از 5/3 گرم سرباره کوره بلند در مرغ گلدن pH خاک را افزایش داده و این آبادیات از 4/7 به 8/7 افزایش داد. به گزارش داده و این آبادیات از 4/7 به 8/7 افزایش داد. به گزارش داده و این آبادیات از 4/7 به 8/7 افزایش داد.
جدول ۲، تجزیه وارونی بی‌هار تیمارها و زمان بگذاری بر pH و مقدار فسفر و آهن

<table>
<thead>
<tr>
<th>مایعات مروبیات</th>
<th>فسفر</th>
<th>pH</th>
<th>فسفر</th>
<th>pH</th>
<th>فسفر</th>
<th>pH</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاک شماره ۱</td>
<td>۱۸۱۴**</td>
<td>۱۸۸۱**</td>
<td>۱۸۱۰**</td>
<td>۱۸۸۴**</td>
<td>۱۸۸۱**</td>
<td>۱۸۸۴**</td>
<td>۶</td>
<td>چماح</td>
</tr>
<tr>
<td>شاک شماره ۲</td>
<td>۱۹۰۲**</td>
<td>۱۹۰۴**</td>
<td>۱۹۰۴**</td>
<td>۱۹۰۲**</td>
<td>۱۹۰۴**</td>
<td>۱۹۰۴**</td>
<td>۳</td>
<td>زمان</td>
</tr>
<tr>
<td>برهمکنش تیماره زمان</td>
<td>۲۱۵۳**</td>
<td>۲۱۸۹**</td>
<td>۲۱۸۸**</td>
<td>۲۱۵۳**</td>
<td>۲۱۸۸**</td>
<td>۲۱۸۹**</td>
<td>۱۸</td>
<td>برهمکنش زمان</td>
</tr>
</tbody>
</table>

** در سطح احتمال ۰.۰۵، مجموع دارای است
ns: معنی‌دار نیست

\\
\[AB-DTPA (mg/kg)\] قابل استخراج با در خاک‌ها
وجود ندادار، اما تیمارهای S2 و S8 در سطح pH 7.0 در بدو شروع کار شده است. در تیمار 0.5 درصد سربارهای بین زمانهای بک و دو روز با زمانهای بک و دو ماه اختلاف معنی دار وجود دارد. در تیمار S4 تأثیر pH گاهی در مقدار سربارهای کار رفته افزایش یافته است (جدول 3). ولی در سطح 0.1 درصد سربارهای این افزایش بسیار زیادی و با شاهد اختلاف معنی دار ندادار که احتمالاً با توجه به قدرت بینهای این رس در این زمان (بافت لوم رسی) به خاطر قدرت بینهای این pH سربارهای است. در تیمارهای S4 و S6 در طول زمان از میزان pH گاهی نداشته است. به نظر می‌رسد در این تیمارهای مقدار pH گاهی اضافه شده بیشتر از قدرت کندگی خاک در طول زمان آزمایش بوده است. در مجموع می‌توان گفت که خاک pH گاهی نداشته است. با توجه به تأثیر نامطلوب pH سطح بالای سربارهای بر pH 4.5 می‌تواند به شماره 1 تیمارهای معنی دار AB-DTPA قابل استخراج باشد.

فسفر

اثر سربارهای بر مقدار فسفر در جدول 5 می‌شود. تأثیر تیمارها و زمان و بره‌کشی بر فسفر قابل استخراج با AB-DTPA در سطح pH 7.0 در واقع معنی‌دار است (جدول 3). با توجه به نتایج به دست آمده می‌توان گفت که یکی از پتانسیلهای مهم سربارهای در خاک‌های اسیدی، افزایش مقدار فسفر قابل جذب خاک می‌باشد که این امر، با توجه به مقدار زیاد فسفر در سربارهای در انتظار تهیه است. در خاک شماره 1 بین تیمارهای S1 و S0.5 با شاهد اختلاف معنی دار
جدول 2. اثر سریاره و زمان نگهداری بر فسفر قابل استخراج (mg/kg) با AB-DTPA

<table>
<thead>
<tr>
<th>نیمبار</th>
<th>شماره زمان</th>
<th>غاک</th>
<th>S16</th>
<th>S8</th>
<th>S4</th>
<th>S2</th>
<th>S1</th>
<th>S0.5</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/81</td>
<td>1</td>
<td>10</td>
<td>10.81</td>
<td>10.81</td>
<td>8.95</td>
<td>8.95</td>
<td>8.95</td>
<td>8.95</td>
<td>8.95</td>
</tr>
<tr>
<td>15/81</td>
<td>1</td>
<td>10</td>
<td>10.81</td>
<td>10.81</td>
<td>8.95</td>
<td>8.95</td>
<td>8.95</td>
<td>8.95</td>
<td>8.95</td>
</tr>
<tr>
<td>16/81</td>
<td>2</td>
<td>10</td>
<td>11.81</td>
<td>11.81</td>
<td>9.75</td>
<td>9.75</td>
<td>9.75</td>
<td>9.75</td>
<td>9.75</td>
</tr>
<tr>
<td>27/81</td>
<td>2</td>
<td>10</td>
<td>11.81</td>
<td>11.81</td>
<td>9.75</td>
<td>9.75</td>
<td>9.75</td>
<td>9.75</td>
<td>9.75</td>
</tr>
<tr>
<td>20/59</td>
<td>3</td>
<td>10</td>
<td>10.20</td>
<td>10.20</td>
<td>8.68</td>
<td>8.68</td>
<td>8.68</td>
<td>8.68</td>
<td>8.68</td>
</tr>
<tr>
<td>28/59</td>
<td>3</td>
<td>10</td>
<td>10.20</td>
<td>10.20</td>
<td>8.68</td>
<td>8.68</td>
<td>8.68</td>
<td>8.68</td>
<td>8.68</td>
</tr>
</tbody>
</table>

* برای هر سریاری داده‌هایی که در یک جریه مشترک بیشترین ضعف آزمون دانکن در سطح یک درصد معنی‌دار نمی‌باشد.
مقادیر زیادی فسفر به خاک اضافه شده و غلظت فسفر قابل جذب خاک افزایش یافته است و می‌توان افراشیت به فسفر کربنیک کننده شده و فسفر خاک به صورت سفته‌های کم محلول را کره‌ای نامید.

در خاک شماره ٣ نیز سبب افزایش فسفر قابل جذب خاک شده است. استفاده از سبزه‌بره به بیان مقداری افزایش ملاحه‌ی محلولی فسفر در طول زمان در تیمار‌های S1، S2، S3، S4 و S5 در نسبت به دیگر نتایج مشاهده گردیده که تکمیل آن به ترتیب گاهی در زمان آماده می‌شود. استفاده از سبزه‌بره، افزایش ملاحه‌ی محلولی فسفر و افزایش تعداد تراکم‌های فسفر وجود داشته است.

مقدار سبزه‌بره افزایش آن در خاک وجود دارد و به این معنی در طول زمان گزارش گردید که کم‌ترین کمترین ذرات از این فاصله‌های سه طرفی آمیزه در خاک وجود دارد و این مقدار مستقیماً به بعد افزایش مقدار سبزه‌بره در دو ماه نسبت به ١ روز در تیمار‌های S1، S2، S3، S4 و S5 در محلول به صورت تراکم‌های محلولی تر است (١١). فسفر (٣) نیز در بکار آزمایش ایکتیوسایس به این شکل از متابولیسم یک قابل فعالیت شکل صحیح آن به روش مصروفی سبزه‌بره و به سطح بی‌فسفر خاک‌های مصلح مورد استخراج با AB-DTPA در کشور آن افزایش ملاحه‌ی محلولی به ترتیب گاهی در زمان آماده می‌شود.

آهن

تجلیه و ارایانه داده‌ها نشان داد که اثر تهیه‌ران‌های بسیار کم از pH خاک یکی از عواملی است که به تغییرات pH خاک می‌تواند بر این گروه تأثیر بگذارد. pH خاک ملاحظه‌ی محلولی هیچ‌گونه خاصی از هیچ‌چیزی آن‌ها نشان می‌دهد. در تیمار S1 و S2 در خاک pH خاک مقدار محلولی افزایش انجام شده است.

مقدار آهن قابل افزایش مقدار سبزه‌بره تا سه ماه در سطح احتمال یک درصد معنی‌دار است (جدول ۴). جدول ۴ تأثیر تهیه‌ران و زمان تهیه‌ران بر این قابل جذب را در این سه خاک نشان می‌دهد.

مقدار آهن قابل افزایش مقدار سبزه‌بره تا سه ماه در سطح احتمال یک درصد معنی‌دار است (جدول ۴). جدول ۴ تأثیر تهیه‌ران و زمان تهیه‌ران بر این قابل جذب را در این سه خاک نشان می‌دهد.

مقدار آهن قابل افزایش مقدار سبزه‌بره تا سه ماه در سطح احتمال یک درصد معنی‌دار است (جدول ۴). جدول ۴ تأثیر تهیه‌ران و زمان تهیه‌ران بر این قابل جذب را در این سه خاک نشان می‌دهد.
جدول ۱. اثر سریاره و زمان نگهداری بر آمذان قابل استخراج (mg/kg)

<table>
<thead>
<tr>
<th>شماره</th>
<th>اثر</th>
<th>زمان نگهداری</th>
<th>تیمار</th>
<th>زمان نگهداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>S16</td>
<td>۲۲۷/۷</td>
<td>۲۴۳/۳</td>
<td>۲۸۷/۳</td>
<td>۳۰۸/۳</td>
</tr>
<tr>
<td>S8</td>
<td>۲۴۳/۳</td>
<td>۲۵۸/۳</td>
<td>۲۷۸/۳</td>
<td>۳۰۸/۳</td>
</tr>
<tr>
<td>S4</td>
<td>۱۹۸/۳</td>
<td>۲۱۳/۳</td>
<td>۲۴۳/۳</td>
<td>۲۶۸/۳</td>
</tr>
<tr>
<td>S2</td>
<td>۱۳۸/۳</td>
<td>۱۵۳/۳</td>
<td>۱۶۳/۳</td>
<td>۱۸۸/۳</td>
</tr>
<tr>
<td>S1</td>
<td>۱۳۸/۳</td>
<td>۱۵۳/۳</td>
<td>۱۶۳/۳</td>
<td>۱۸۸/۳</td>
</tr>
<tr>
<td>S0.۵</td>
<td>۱۳۸/۳</td>
<td>۱۵۳/۳</td>
<td>۱۶۳/۳</td>
<td>۱۸۸/۳</td>
</tr>
<tr>
<td>S0</td>
<td>۱۳۸/۳</td>
<td>۱۵۳/۳</td>
<td>۱۶۳/۳</td>
<td>۱۸۸/۳</td>
</tr>
</tbody>
</table>

* برای هر خانه، داده‌هایی که در یک حرف مشترک مستند طبق آزمون دانکن در مسطح یک دارن معمول معتبر نمی‌باشند.
جدول 7: تجزیه و تحلیل مرتبط به اثر تیمارها و زمان تغییرات بر مقدار میکرو و نتایج

<table>
<thead>
<tr>
<th>منابع نگیرنده</th>
<th>درجه آزادی</th>
<th>مقدار</th>
<th>پناسیم</th>
<th>هدایت الکتریکی</th>
<th>پناسیم</th>
<th>هدایت الکتریکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمار</td>
<td>2</td>
<td>0.1765</td>
<td>0.0591</td>
<td>17.7</td>
<td>0.273</td>
<td>0.2173</td>
</tr>
<tr>
<td>زمان</td>
<td>2</td>
<td>0.1765</td>
<td>0.0591</td>
<td>17.7</td>
<td>0.273</td>
<td>0.2173</td>
</tr>
<tr>
<td>برهمکنش نیمار و زمان</td>
<td>1</td>
<td>0.1765</td>
<td>0.0591</td>
<td>17.7</td>
<td>0.273</td>
<td>0.2173</td>
</tr>
</tbody>
</table>

** **: در سطح احتمال 0.01 و 0.05 معنی‌دار است.
* **: معنی‌دار نیست.
جدول 8. اثر سریاره و زمان نگهداری بر منگنز قابل استخراج (mg/kg)

<table>
<thead>
<tr>
<th>شماره</th>
<th>نیمیجار</th>
<th>رمان</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>S16</td>
<td>S8</td>
<td>S4</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2116</td>
<td>2104</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1577</td>
<td>1741</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1597</td>
<td>1629</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1156</td>
<td>1276</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1672</td>
<td>1419</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1569</td>
<td>1420</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1169</td>
<td>1274</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1378</td>
<td>1408</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1478</td>
<td>1420</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1779</td>
<td>1741</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1789</td>
<td>1741</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1879</td>
<td>1891</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1979</td>
<td>1981</td>
<td>375</td>
<td>342</td>
</tr>
<tr>
<td>1107</td>
<td>1110</td>
<td>375</td>
<td>342</td>
</tr>
</tbody>
</table>

* برای هر خاک، داده‌هایی که در یک حرف مشترک هستند، طبق آزمون دانک در سطح ۰/۰۵ معنی‌دار نیستند.
جدول 2. اثر سرباره و زمان نگهداری بر پناسیم قابل استخراج (\(\text{mg/kg}\) با AB-DTPA

<table>
<thead>
<tr>
<th>سیلیکا</th>
<th>زمان</th>
<th>شماره 1</th>
<th>شماره 2</th>
<th>شماره 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S16</td>
<td>1</td>
<td>122.1</td>
<td>106.2</td>
<td>124.3</td>
</tr>
<tr>
<td>S8</td>
<td>2</td>
<td>112.1</td>
<td>101.7</td>
<td>122.2</td>
</tr>
<tr>
<td>S4</td>
<td>3</td>
<td>124.1</td>
<td>105.2</td>
<td>124.2</td>
</tr>
<tr>
<td>S2</td>
<td>4</td>
<td>134.1</td>
<td>104.2</td>
<td>124.2</td>
</tr>
<tr>
<td>S1</td>
<td>5</td>
<td>145.1</td>
<td>104.2</td>
<td>124.2</td>
</tr>
<tr>
<td>S0.5</td>
<td>6</td>
<td>135.1</td>
<td>104.2</td>
<td>124.2</td>
</tr>
<tr>
<td>S0</td>
<td>7</td>
<td>135.1</td>
<td>104.2</td>
<td>124.2</td>
</tr>
</tbody>
</table>

باید هر خانه داده هپتیک که در یک طرف مشترک هستند قبل آزمون دانست در سطح یک درصد معنی‌دار نشان دهد.
در نتیجه تنبیه پتانسیم افزایش می‌یابد. از عوامل مؤثر دیگر در تنبیه پتانسیم تشکیل ترکیبات نامخلول پتانسیم به ویژه آلومنیوم سیلیکات‌های پتانسیم در pH بالای سیروار است (5). در خاک شماره 2 برهمکنش تیمار و زمان در سطح 5 درصد معنی دارد (جدول 8). تنبیه همانند ذکرشده در مورد خاک شماره 1 را انجام می‌کند. به طور کلی در خاک شماره 1 میانگین پتانسیم عصاره‌گیری شده از خاک تیمار شده با 16 درصد سربره کاهشی معادل 57 درصد نسبت به شاهده نشان می‌دهد. حال این چین که تیمار و زمان در خاک شماره 3 معنی‌دار نیست و اثر تیمارها نیز قابل ملاحظه نیست.

مکانیسم

تجزیه واریانس داده‌ها (جدول 8) اثر تیمارها و زمان تگذاری AB-DTPA پر می‌گردد. کلیه بر اساس نتایج در سطح احتمال 1 درصد معنی دارد. با افزایش سطح سرب‌راه، غلظت میکنگ زیاد شده است (جدول 8) که این در نتیجه حضور 2/4 درصد سرب‌راه است. این ۰/۹۵ نیز در سال ۱۹۹۳ با استفاده از سرب‌راه در سیستم اصلاح کننده خاک تنبیه گرفته که غلظت متنگر محلول در خاک تیمار شده افزایش یافته است. تأثیر زمان تگذاری بر میکنگ قابل جذب بالایی که احتمالاً به دلیل روابط بی‌ثباتی در صورت ترکیبات با حل‌خوردگی کم است.

پتانسیم

اثر تیمارها بر پتانسیم قابل عصاره‌گیری با AB-DTPA در خاک‌ها در سطح 1 درصد معنی دارد (جدول 9). نکته مهم در مورد پتانسیم این است که با افزایش مقدار سرب‌راه در خاک شماره 1 از میان پتانسیم قابل عصاره‌گیری کاهش دیده است (جدول 9). علت کاهش در این خاک تنبیه پتانسیم است. افزایش pH افزایش пp به دلیل افزودن سرب‌راه سبب حذف پیلیمرهای هیدروکسی آهون و آلومنیوم به فضای بین لایه‌ها شده.

منابع

1. افلاک: ع. ۱۳۳۷. تحقیق درباره پارامترهای مؤثر در پژوهش‌های ترکیبات و اندازه‌گیری از سرب‌راه. پایان نامه کارشناسی ارشد شیمی تجربی، دانشگاه شیمی، دانشگاه صنعتی اصفهان.
3. زرین کلشی. م. ۱۳۷۸. تاثیرهای کربناته، اندازه‌گیری. انتشارات انتشارات تهران.
4. فرهنگ. م. ۱۳۷۸. بررسی امکان استفاده از پودر اسیده آلی فرآیند اسید شوی فولاد به عنوان کود آلی. پایان نامه کارشناسی ارشد خاک شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.