اثر سطوح مختلف گلوکوسیبولات‌های جیره غذایی بر عملکرد جوجه‌های گوشتخوری

سیدمحمدعلی جلالی حاجی آبادی، سیدعبدالحسین ابوالقاسمی، غلیرضا جعفری صیادی،
محمد روستایی علی‌هرم و محمود حقیقی رودسری

چکیده
تعداد 200 چوبه جوجه گوشتخوری سویه آرین در طرحی کاملاً تصادفی به منظور برآورده اثر تعداد گلوکوسیبولات‌های جیره بر عملکرد جوجه‌های گوشتخوری در دوره آغازین Colonel (0-20 روز) و رشد (21-50 روز)، مورد آزمون قرار گرفتند. مقادیر گلوکوسیبولات‌های جیره در دوره آغازین ضربه 7/0/7 و/0/7 و 30 میکرومول در گرم (به ترتیب تعداد گلوکوسیبولات‌های مصرف خوراک جوجه‌ها در دوره رشد تحت تأثیر سطح گلوکوسیبولات‌های جیره قرار گرفت (P<0/005) و کمترین مصرف خوراک در تیمار رشد دیده شد. کمترین اضافه وزن جوجه‌ها در دوره آغازین و رشد، به ترتیب در تیمار آغازین و تیمار رشد مشاهده شد (P<0/05). ضریب تبدیل غذایی تیمار آغازین با تیمار رشد مشابه بود (P>0/05). در دوره آغازین بین اضافه وزن و سطح گلوکوسیبولات‌های جیره و گلوکوسیبولات‌های مصرفی میکروگسی منفی بود (P<0/05/0/49-0/49)، در دوره رشد، همبستگی منفی با اضافه وزن مشاهده شد (P<0/05/0/49-0/49). وجود داشت. این پژوهش نشان داد که سطح گلوکوسیبولات‌های جیره در دوره آغازین و رشد، به ترتیب نباید بیش از 17/8/11 میکرومول در گرم جیره باشد. حمایتی بیشتری مقدار کنترل کلبی که در دوره آغازین و رشد می‌توانند در جیره جوجه‌های گوشتخوری به کار برده شود به ترتیب 12 و 8 رصد جیره است.

واژه‌های کلیدی: گلوکوسیبولات‌ها، کنترل کل، عملکرد و جوجه‌های گوشتخوری

مقدمه
گلوکوسیبولات‌ها (Glucosinolates) ترکیبات طبیعی ضد تغذیهای مشتق شده از اسیدهای آمینه هستند که فقط در گیاهان

1. به ترتیب دانشجوی سایق کارشناس ارشد، مربی و استادکار علوم دامی، دانشکده کشاورزی، دانشگاه گیلان
2. دکتری دامپزشکی، دانشکده کشاورزی، دانشگاه گیلان

111
گل‌کوپروتئین‌ها مشابه بوده و از گل‌کوپر، گوگرد، از و یک
زنجبیلی جانانی شکل شده است که تفاوت انواع مختلف آن در
زنجبیلی جانانی است (شکل ۱). این ترکیبات در مجاورت آنزیم
می‌رونزیاز (Myrosinase) که در بخش‌های مشابه گلیا و نیز توسط
برخی باکتری‌های دستگاه گوارش توانسته‌شده می‌شود (۱۲).
هدی‌های این دارو به گل‌یکر و الکینوکن
(Agycone) ناباید تبدیل می‌کنند. آلکنیکون تحت شرایط مختلف همچنین
تغییرات با pH و عوامل دیگر در حفظ برای ترکیبات مانند
بیوپتاسین، بیوپتاسین‌ها، نیتریل یا بیوپتیرن و گلکوپروتئین‌ها
(Goitrin 5-Venyl,2-thio oxazolidinione) (Progoitrin)
(۲-Hydroxy,3-butenyl-glucosinolate)
(نوعی گل‌کوپروتئین) در اثر هیدرولیز، یک ترکیب حفظ که
گوگرد نامیده می‌شود، تولید می‌کند که این ماده آنتی‌اکسیدانی
پسرترین داراد همچنین مایور تولیدات هیدرولیزی
گل‌کوپروتئین‌ها مانند ترکیبات و اکتیو‌سیانات دارای
فعالیت ضد تربوتدی بوده و نیز تومور آنها فقط در دود و
مکانیسم ارتشان است (۱۳). اکتیو‌سیانات مانع ایجاد بالی
به دلیل غلبه تروتونیت می‌شود (۲،۳). همچنین گزارش شده است
که اکتیو‌سیانات در محیط میکروویولی های غلبه تروتویت در
انصاف به الکنیکون با یک یا دو دفعه می‌نیماید و در نتیجه باعث
کاهش سایر گل‌کوپروتئین می‌شود. بیョپتازین‌های نیز می‌توانند در
بیوروزا یک داروی را به صورت رقابتی محدود می‌نماید (۴)
در جوهرهایی که از این کنعان کا استفاده کرده‌اند. خوراکی
کبدی، افزایش وزن کبد و تغییر در فعالیت آنزیم‌های کبدی
مانند آسپاریتاس ترنس آمینا و لاکتی هیدروژن‌زای شده است
که این ترکیبات به مقدار کل گل‌کوپروتئین‌ها جهیز
و ترکیبات ناشی از هیدرولیز آنها است (۱۶). کنعان کا به
عنوان یک کنعان برخور برتریکنی که برای جهیز اسراری
طریق قابل استفاده است (۱۳) ولی گل‌کوپروتئین‌ها موجود
در آن به صورت مستقیم و غیر مستقیم معمولاً در
تولیدی می‌گذرند. محققین به بیان تأثیر مقدار گل‌کوپروتئین‌ها

مواد و روش‌ها

تعداد ۱۰۰۰ جوجه یک رژیم غذایی آمیز در طرحی کامل
تصادفی شامل ۵ گروه درآموز شده که از گروه اول ۱۰
جوجه در دو گروه غذایی دروی و غرا (۲۰-۲۱) روی
پرورش داده شدند. از رانندگی کل گل‌کوپروتئین‌ها ۰/۰۰
می‌بایست در مقدار بخض بود و مقدار آن با استفاده از روش کروماتوگرافی مایع با باره با

علوم و فنون کشاورزی و منابع طبیعی / سال هشت-همای چهارم / زمستان ۱۳۸۳

۱۱۲
طرح سطح مختلف گلوکوسبیوتول‌های جیره غذایی بر عملکرد جیره‌های گوشتی

شکل 1. ساختار عمومی گلوکوسبیوتول‌ها با زنجیره جانبی R

متناوی (High performance liquid chromatography (HPLC)) اندوزه‌گیری کردن. در ۱۹۹۳، جیره‌های غذایی‌ها استفاده و مقدار کل گلوکوسبیوتول‌های جیره محاسبه شد. به طوری که جیره سه تیمارهای ۰.۲ و ۰.۵ در دوره آغاز و در دوره حاصل در ۱۵، ۱۷ و ۱۹ میکرومول در گرم غذای در دوره ۱۱/۵، ۲۳/۲۱ و ۲۴/۸ میکرومول در گرم غذایی جیره‌ها در دوره از نظر رنگ و ضریب توده و همچنین مقدار مواد مغذی جیره مورد عرضه به آن متغیر گردید (جدول ۱). برای تعیین نیاز غذایی جیره‌ها در دوره آغازین و رشد و همچنین مقدار مواد مغذی اجزای جیره از جدیدی تعیین نیاز جیره (۱۵) در پایان هر دوره از ترکیب مواد غذایی مصرف‌های مصرفی در سالانه یک روز (Gram chick's day) و اضافه وزن هر تکرار گجوه در روز (1) نیز به صورت گرم اضافه وزن برای هر گجوه در روژ با ترزاک دیجینال با دقت ± گرم اندازه‌گیری و ضریب تقسیم جیره‌ها در دوره آغازین به تیمار بود (شکل ۲ لف) ولی بر مصرف جیره‌ها در دوره رشد بعد معادل دار (۰/۱۵/۰۵) داشت (شکل ۳ لف) به طوری که جیره‌هایی که از تیمار حاوی ۲۲/۸ میکرومول گلوکوسبیوتول در گرم جیره (تیمار رشد) استفاده کردن کمترین مصرف خوراک را نشان دادند. به جز

نتایج

مصرف خوراک

طرح مختلف گلوکوسبیوتول‌های جیره بر مصرف خوراک جیره‌ها در دوره آغازین به تیمار بود (شکل ۲ لف) ولی بر مصرف خوراک در دوره رشد بعد معادل دار (۰/۱۵/۰۵) داشت (شکل ۳ لف) به طوری که جیره‌هایی که از تیمار حاوی ۲۲/۸ میکرومول گلوکوسبیوتول در گرم جیره (تیمار رشد) استفاده کردن کمترین مصرف خوراک را نشان دادند. به جز

۱۱۳
جدول 1. ترکیب مقدار مذیب تأمین شده و مقدار گلوکوسبیولات های جیره‌ی آزمایش آماده‌های مختلف در دوره‌های آغازین (۰-۱۲ روز) و رشد (۱۳-۲۷ روز)

<table>
<thead>
<tr>
<th>ترکیب گلوکوسبیولات های جیره‌ی آزمایش آماده‌های مختلف</th>
<th>۰-۱۲ روز</th>
<th>۱۳-۲۷ روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار گلوکوسبیولات های جیره‌ی آزمایش آماده‌های مختلف</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. نسبت وزن رشد آفت‌های گلدن به اسید چرب ژوری و آفتاب گریزان به ۱۵
2. هر ۱۲ کیلوگرم کلم مکمل ریانی مصرف ۱۲۰۰ کیلو ژوری و ۱۲۰۰ کیلو پپتامین (۱۲۰۰ کیلو پپتامین و ۱۲۰۰ کیلو ژوری) می‌باشد.
3. هر ۱۵۰ کیلو ژوری و ۱۲۰۰ کیلو پپتامین کمک می‌کند که میزان گلدن به اسید چرب ژوری و آفتاب گریزان به ۱۵.
شکل ۲ اثر سطح مختلف گلوكوژوئولات های جیره بر مصرف خوراک (الف)، اضافه وزن (ب) و ضرب تبیید غذایی (ج) جوجه‌ها در دوره آغازین. (حراف متناوی بر روی ستون‌های هر نمودار نشان دهنده نتایج معدود (0/050< و 0/000< است).}

تیمار رشد ۱، با افزایش سطح گلوكوژوئولات در جیره، مصرف خوراک با روندی تقریباً یکنواخت کاهش نشان داده شکل ۲ الف. بین مصرف خوراک جوجه‌های هر نفس و گلوكوژوئولات های جیره و گلوكوژوئولات های خوراک هند در دوره آغازین روندی زیادی نشان داده (جدول ۲)، حداکثر مقدار گلوكوژوئولات های خوراک هند و جیره بدون

شکل ۳ اثر سطح مختلف گلوكوژوئولات های جیره بر مصرف خوراک (الف)، اضافه وزن (ب) و ضرب تبیید غذایی (ج) جوجه‌ها در دوره رشد. (حراف متناوی بر روی ستون‌های هر نمودار نشان دهنده نتایج معدود (0/050< و 0/000< است).}

تیمار رشد ۱، با افزایش سطح گلوكوژوئولات در جیره، مصرف خوراک با روندی تقریباً یکنواخت کاهش نشان داده شکل ۲ الف. بین مصرف خوراک جوجه‌های هر نفس و گلوكوژوئولات های جیره و گلوكوژوئولات های خوراک هند در دوره آغازین روندی زیادی نشان داده (جدول ۲)، حداکثر مقدار گلوكوژوئولات های خوراک هند و جیره بدون
جدول ۲: معادلات و ضرایب همبستگی اضافه وزن (Y)، مصرف خوراک (X) و ضریب تبیلد غذایی (V) جویاها با مقدار گلوکسیولاتهای جیره (X) و خورده (X) در دوره‌های آغازین (۰–۲۱ روز) و رشد (۲۲–۴۸ روز).

<table>
<thead>
<tr>
<th>ضرایب همبستگی (درصد)</th>
<th>دوده</th>
<th>پورش</th>
<th>اضافه وزن</th>
<th>مصرف خوراک</th>
<th>ضریب تبیلد غذایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰۰٪</td>
<td>۸۰۰٪</td>
<td>۹۰۰٪</td>
<td>۷۰۰٪</td>
<td>۶۰۰٪</td>
<td>۵۰۰٪</td>
</tr>
<tr>
<td>۶۵۰٪</td>
<td>۷۵۰٪</td>
<td>۸۵۰٪</td>
<td>۷۵۰٪</td>
<td>۶۵۰٪</td>
<td>۵۵۰٪</td>
</tr>
<tr>
<td>۷۰۰٪</td>
<td>۸۰۰٪</td>
<td>۹۰۰٪</td>
<td>۸۰۰٪</td>
<td>۷۰۰٪</td>
<td>۶۰۰٪</td>
</tr>
<tr>
<td>۷۵۰٪</td>
<td>۸۵۰٪</td>
<td>۹۵۰٪</td>
<td>۸۵۰٪</td>
<td>۷۵۰٪</td>
<td>۶۵۰٪</td>
</tr>
<tr>
<td>۷۹۰٪</td>
<td>۸۹۰٪</td>
<td>۹۹۰٪</td>
<td>۸۹۰٪</td>
<td>۷۹۰٪</td>
<td>۷۴۰٪</td>
</tr>
<tr>
<td>۸۳۰٪</td>
<td>۹۳۰٪</td>
<td>۹۹۰٪</td>
<td>۹۳۰٪</td>
<td>۸۳۰٪</td>
<td>۷۹۰٪</td>
</tr>
</tbody>
</table>

تاثیر معنی‌دار بر مصرف خوراک بر این دوره مورد مانند بود. تکثیر (جدول ۳). در دوره رشد نیز به همین دلیل، داده‌گذاری گلکسیولاتهای خورده شده دندان تأثیر معنی‌دار بر مصرف خوراک جویاها بر اکثر تعداد. در (جدول ۳) روند کاهش مصرف خوراک در دوره رشد ۷ میکرومول گلکسیولاتهای در گرم جیره آغاز می‌گردد (جدول ۳) که این سطح برای ۲/۶/۸۹% کنگاله کلزا در جیره است.

اضافه وزن

اضافه وزن جویاها در دوره‌های آغازین و رشد تحت تأثیر گلکسیولاتهای کنکاله کلزا گرفت به طوری که در دوره آغازین با افزایش معادل گلکسیولاتهای جیره، اضافه وزن جویاها کاهش یافت (P<۰/۰۵). در این دوره جویاها که از جیره فاقد گلکسیولاتهای (تیمار آغازین) و ۵/۵ میکرومول گلکسیولاتهای در گرم جیره (تیمار آغازین) استفاده کردند، بیشترین اضافه وزن را داشتند که تفاوت معنی‌داری بین آنها دیده نشد (P>۰/۰۵). کمترین اضافه وزن در تیمار آغازین دیده شد که نسبت به سایر تیمارها تفاوت معنی‌دار داشت (P<۰/۰۵). (شکل ۲ ب). در دوره آغازین، اضافه وزن جویاها در نکران با سطح گلکسیولاتهای جیره آنها و مقدار خورده شده این ماده در تغذیه‌ای توسط جویاها همان بسیاری.
ايل سطح مختلف غلوكوسيدولات هاي جيزة غديه بر ملكرد جوبوره بيه

جدول 3: حداكتر مقدار غلوكوسيدولات هاي خورده شده و جيزة بدون تأثير معناني بير مصير خواراب. اضافه وزن و ضريب تبديل غذيي

<table>
<thead>
<tr>
<th>دوره</th>
<th>مقادير</th>
<th>تأثير معناني دار داشن (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اضافه وزن (الذهبوروز)</td>
<td>11/75</td>
<td>0/207</td>
</tr>
<tr>
<td>مصير خورابات (الذهبوروز)</td>
<td>7/99</td>
<td></td>
</tr>
</tbody>
</table>

ضروب تبديل (الذهبوروز) (%1)

رشده | 11/36 | 0/98 |
| اضافه وزن (الذهبوروز) | 0/11 |

مصير خورابات (الذهبوروز) (%1)

رشده | 7/00 | 9/99 |
| ضروب تبديل (الذهبوروز) (%1) |

مصرف غذوي (ميكرومول/جواه) | روز | 0/82 |
| مصرف غذوي (ميكرومول/جواه) | دارد | 0/82 |

تأثير معناني دار داشن (P) (P<0.0075)

طبق تبديل غذيي

ضروب تبديل غذيي جوجهها دار اسيرة (P<0.0001) به طوري كه دين دوره (شكل 3) بين خورابات ضروب تبديل غذيي، جوجهها دار تياراغازين ريد شده كه بسابر تيارما تفاوت معه دار داشن (P<0.0075). تياراغازين دين ريد (P<0.0075) مصرف غذوي (ميكرومول/جواه) دار گرم جيزة كمترین مقادير ضروب تبديل غذيي گرم جيزة به نظر آماري تفاوت بين أنها معنی دار نبوده (P>0.05). در اين دوره همچنین بالابي بین ضروب تبديل غذيي و سطح غلوكوسيدولات هاي جيزة و غلوكوسيدولات هاي خورده شده (P<0.02) دسته شده كه با انوان 10 واحد به سطح غلوكوسيدولات هاي گرم جيزة به نبات 0/8 و به ازاي مصرف 1000 ميكرومول غلوكوسيدولات توسط جوجهها مقدار 0 به ضروب تبديل غذيي جوجهها گاز.

بحث

مصرف خواراب

بطرط كلي غلوكوسيدولات هاي كنجاله كزلا و كانون مصرف خواراب جوجهها دار اسيرة دويراين (دوره اسيرة) تحت تأثير ضروب نمي دهد. با افزشي سن جوجهها و استفاده از مقاير زياد غلوكوسيدولات ها دار جيزة. خورشخوراکي جيزة هاي حاوي اين
کنجه‌های بامی‌ای و مصرف خروار جوی‌ها در دوره رشد تحت تأثیر گلکوسیلون‌های کنجه‌های کلازی قرار می‌گیرد. هرچند در مقایسه با خانواده‌های طویضی مثل نشخواردنگان، در طیور طعم خوراکی در نتیجه بر مصرف آن دارد، زیرا در این گروه از حیوانات حل‌های چشما و بویایی به خورشی سالمین تکامل نیافته است(۱۲ و ۱۳). با وجود این، مدارکی وجود دارد که نشان می‌دهد خوش‌خوراکی جهیزه‌ها با افزودن کنجه‌های کلازی تحت تأثیر قرار می‌گیرد و مقدار گلکوسیلون‌های کنجه‌های کلازی به عنوان بارون ترکیبات فنلی و ایجاد مرده و گنسی عاملی در جهت کاهش خوش‌خوراکی جهیزه‌های این این کنجه‌های است(۱۹).

۱۰۰۰ میکرومول درکرام و بسیار (۱–۵ میکرومول در گرم) گلکوسیلون‌های میوه، بهتر می‌باشد(۱۴). مشخص شده است که سطح پایین کنجه‌ها (۶/۲–۲/۴درصد جهیزه) با مقدار گلکوسیلون‌های زیاد (۴/۵ میکرومول در گرم) می‌تواند کنجه‌های کلازا (کنجه‌های کلازا با گلکوسیلون‌های زیاد می‌باشد) بر خوش‌خوراکی جهیزه‌ها لذت بخش و بر تبیعی مصرف خوراکی تأثیر گذاری ندارد(۵) در این پژوهش نیز کنجه‌های کلازا در سطح/جهیزه ۸/۸۹ جهیزه تأثیری بر مصرف خوراک جهیزه دارد رشد نداشته است. چون مصرف خوراک جهیزه‌های حاوی کنجه‌های کلازا در گلکوسیلون‌های کلازا احتمالاً به سطح بالایی گلکوسیلون‌های کلازا نیز کنجه‌های گرم‌های گلکوسیلون‌ها (۲/۱) نسبت به کنجه‌های کلازا با دفع کلسمیسم فایشی از دستگاه گوارش و ادرار می‌گردد. کنجه‌های سالم و گرم‌های گلکوسیلون‌های موجود در جهیزه مصرف خوراک را تحت تأثیر قرار می‌دهد.

اضافه وزن
کنجه‌ها اضافه وزن جوجه‌ها در تیمارهای اضافه کنجه‌های کلازا استفاده می‌کند تا حدی که کنجه‌های بامی‌ای و مصرف خروار جوی‌ها اضافه وزن کنجه‌های بامی‌ای و مصرف خروار جوی‌ها به‌طور کامل بر رشد و دفع کلسمیسم افزایش می‌یابد. چون گوارش کلازا در جهیزه بر خوش‌خوراکی و جذب کلسمیسم تأثیر دارد. بنا برای این نتیجه می‌تواند کنجه‌های کلازا تأثیر قرار می‌دهد.

۱۱۸
جدول ۲: معدلات تشکیل محققین برای سطح گلکوسیترول‌ها و کنجاله کلزاژ چربی غذایی جوجه‌های گوشتی

<table>
<thead>
<tr>
<th>محققین</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>زب (1998)</td>
<td>33</td>
<td>اضافه وزن (کیلوگرم)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کولکس و همکاران (1994)</td>
<td>10</td>
<td>پی‌هده وزن در هفته دوم (گرم)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کارنیژیوا و همکاران (1993)</td>
<td>8</td>
<td>اضافه وزن در دوره آغازین (گرم‌کیلوگرم)</td>
</tr>
</tbody>
</table>

۱۹: ضریب همبستگی بر حسب درصد.

اضرب تبدیل غذایی

سطح بالای گلکوسیترول‌های کنجاله کلزاژ چربی غذایی باعث افزایش در ضریب تبدیل غذایی شده که این افزایش ناشی از کاهش شدید در اضافه وزن جوجه‌ها بخصوص در نیمه‌هایی که از سطح بالای گلکوسیترول‌های چربی استفاده کرده‌اند، است. در نتیجه، سریع‌تر مصرف خوراک نسبت به سایری‌ها کاهش یافته (شکل ۳). اما مقدار اضافه وزن این نیمه در هر دو دوره آغازین و رشد نسبت به سایر تیمارها کاهشی بیشتری نداشت (شکل ۲). در نتیجه، مقدار گلکوسیترول‌های کنجاله کلزاژ چربی غذایی جوجه‌های گوشتی که می‌توانند در دوره آغازین و رشد جوجه‌ها استفاده کرده به ترتیب ۱۳/۴۷ و ۱۰/۴۱ درصد جوجه است. نتایج این پژوهش با ناشی‌پذیری نیم‌تانی (۱۱) که سطح مصرف ۲۰۰ درصد از کنجاله کنوزا در چربی غذایی جوجه‌های گوشتی و مرغان نخست یک دلال به جای کنجاله سویا چربی‌گوشتی تایم‌دی زده، مغالبیتری شده که علت این نتایج احتمالاً مربوط به استفاده این محققین از کنجاله کنوزا در چربی‌های گوشتی بوده است.
سپاسگزاری

از آقایان دکتر جاواد پوررضا و دکتر علی‌اصغر علی‌بکر رضایی و نیز به خاطر
زمین‌های تل‌لی‌هایی که در انجام این پژوهش شرکت
دستگاه‌های محموزدزه‌های گردو گرامی و
روحش قربان رحمت الهه باد.

oxazolidinithione, a goitrigen in rapeseed meal, on the rate of growth and thyroid function in chicks. Poult. Sci. 45:833-838.