اثر مکمل فیتابز و مس مازاد جیره بر رشد و تركيب لاشه

کپر معمولی (Cyprinus carpio L.

فاطمه‌شیرمحمد، نصرالله محبوبی سقیانی و جواد پورضا

چکیده

به منظور بررسی اثر مکمل لیتایز و مس بر رشد و ترکیب لاشه کپر معمولی، جیره‌های آزمایشی شامل 3 سطح لیتایز، صفر، 500 و 1000 واحد در کیلوگرم جیره و 2 سطح مس صفر و 10 میلی گرم در کیلوگرم جیره در قالب ترکیب کامل تغذیه‌ای بر روی روش کاکتوسیما 203 در 3 تکرار مورد استفاده قرار گرفتند. مقادیر فسفر کل جیره 0.72 درصد بود. برای این منظور 144 قطعه ماهی کپر معمولی با میانگین وزنی مقادیری شکل و اندازه شد. مکمل لیتایز و مس باعث افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه، نسبت بزیده پروتئین و ترکیب کبدی لاشه و خون نشده ولی قابلیت هضم فسفر را به طور معنی‌داری (P<0.01) افزایش داد. همچنین مکمل مس سبب افزایش قابلیت هضم فسفر و ترکیب نسبی ناشسته که در موارد مس و پروتئین لاشه کپر معمولی داشته است، بر طبق دسترسی‌هایی، کاست بدن. این آزمایش شامل داد که اثرات آن‌گونه‌ی میگرسیدید و فسفر خون نشده و خون به طور معنی‌داری چربی کبد را کاهش (P<0.01) داد. آثار HDL خون را افزایش (P<0.01) و (P<0.01) و (P<0.01) و (P<0.01) نسبت بزیده پروتئین (P<0.01) و (P<0.01) در تری گلیسرید خون (P<0.01) معنی‌دار دارد.

واژه‌های کلیدی: کپر، لیتایز، مس، رشد، ترکیب لاشه

پاسخ‌گویی به این تنبیه، تولید ماهیان پروشی و استفاده از جیره‌های دستی که سبب رشد سریع می‌شود، معنی‌دار است. کپر معمولی یکی از نمونه‌های مهم‌ترین ماهیان پروشی در مناطق مختلف می‌باشد.

مقدمه

به مواد افزایش آگاهی از ارزش غذایی و بهداشتی ماهی، امروزه تفاعل برای مصرف ماهی فروشی پیشنهاد می‌شود. به منظور

1. به ترتیب دانشجوی دکتری و استاد علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار شیلات، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

33
برخی مطالعات، اثر کمپتون متسا بهترین رادکس در مطالعه بیان نوع و حدیچه ای برای یک جریان به یک ماده طبیعی (دایر مشهور به 3 میلی‌گرم متسا در کل و 9 میلی‌گرم جریه برای نشان‌داده به 4 میلی‌گرم متسا در جریه بر کمک مکمل متسا به اثر کمپتون متسا در جریه بر کمک مکمل متسا تا کمک مکمل در جریه بر کمک مکمل متسا است. در این مطالعه، اثر کمپتون متسا در جریه بر کمک مکمل متسا در جریه بر کمک مکمل متسا در جریه بر کمک مکمل متسا است.
نیاز به اکسیژن و تهویه آب را تأمین می‌کرد. جایی گرفته. نخت کردن
چرخه پایه (جدول 1) اقتباسی‌گذاری ماهی‌گیری گرمایی (NRC 1989) نسبت‌شماره شد و سپس ۴ چرخه آزمایشی در قالب طرح
کامل تصادفی به روش فاکتوریل ۳ × ۳ صفحه نازلی‌فیتناز (FYT/kg)
(200 و ۱۰۰۰) واحد در دیدهگی کلوگرم (Rozonzyme PM).
چرخه ۲ صفحه مس (سولفات مس) صفر و ۱۵ میلی‌گرم در کلوگرم
با (Cold extruded moist pellet)
چرخه به صورت یک سرد قطر ۱ میلی‌متر تهیه و در محلی هما خشک و در ۴ چرخه
سانتی‌گراد تا زمان غذاهی گردیده شدند. نر جیره آزمایشی
به طور تصادفی در خاک ترارا، روزانه دو بار حداکثر به
میزان (20 پ/کیلوگرم xW/۱۰ کیلوگرم/۱۰۰ کیلوگرم ده گرم. هر دور هفته
یک بار ماهی‌ها توپیزد و میزان غذایی تحقیقی شد. مدت
آزمایش ۱۰ هفته بود که ۳ هفته اول یا سازگاری در نظر
گرفته شد. طی آزمایش درجه حرارت آب ۱۲۰±۳ درجه سانتی
گراد، طول نور طبیعی بود و مقدار اکسیژن محلول ۳±۰/۸
میلی‌گرم در لیتر بود.

با پایان آزمایش نمونه‌های خون از رک دمی ۵ ماهی
به‌وسیله بیهوشی شده به سیستم MS-۲۲۲۲ به طور تصادفی از هفس
صد شده بودند و مخلوط شد و پس از منعقد
شدن در چرخه ۱۰۰۰ به مدت ۲۰ دقیقه سانتی‌فیوز شد تا
سرم آن جهاد شده و تا زمان آزمایش در دمای ۱۷-۱۷ درجه
سانتی‌گراد نگهداری شدند. نمونه‌های مدولار نیز از کالبد
شکافی شکمی از پنجم انتهای روده و نمونه‌های کبد نیز از ۵
ماهی در هفس جمع آوری و مخلوط شد. نمونه‌های لاغری نیز از
۵ ماهی پس از تخليل اما و احتمالاً به طور کامل چرب و مخاطو
شد و در ۱۷-۱۷ درجه سانتی‌گراد تا زمان آزمایش نگهداری شد.

فسفر جیره‌ها، مدولار و لاغری به وسیله روش AOAC(2).
مواد شکمی در یک آن در ۱۰۰ درجه سانتی‌گراد به مدت
ساعت، مقداری خاکستر در یک کوره در ۵۵ درجه سانتی‌گراد
به مدت ۱۲ ساعت، پروتئین خام به روش كلاسار (N × ۶/۲)
چربی خام بعد از عصاره‌گیری با ایل ات برحسب وسیله روش
سوكسلا تبعین شد. غلظت کلسترول و تری‌گلیسرید با استفاده

135
جدول 1. ترکیب شیمیایی و اجزای تشکیل دهنده چربی یا به

<table>
<thead>
<tr>
<th>اجزای چربی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/00</td>
</tr>
<tr>
<td>03/91</td>
</tr>
<tr>
<td>27/05</td>
</tr>
<tr>
<td>08/1</td>
</tr>
<tr>
<td>10/2</td>
</tr>
<tr>
<td>02/1</td>
</tr>
<tr>
<td>01/6</td>
</tr>
<tr>
<td>01/2</td>
</tr>
<tr>
<td>00/1</td>
</tr>
</tbody>
</table>

انرژی قالب هضم محاسبه شده (کیلوکارایی در کیلوی گرم) ۲۹۰۰

پروتئین محاسبه شده (درصد) ۲۷/۲

فسفر کل اندامگی شده (درصد) ۱۹/۰

مس محاسبه شده (میلی گرم در کیلوی گرم) ۱۶

خاکستر اندازه کریمی شده (درصد) ۴/۹

در مرحله فرآیند جذب است. ظاهراً روی سبب افزایش غلظت ماتالیتهاین (Metallationine) در محیط رودهای می‌شود و این پروتئین‌های مس را گرفتار از روی بدن می‌کند. مس باند شده به ماتالیتهای جذب می‌شود و همراه با مسولهای محاطه جو و دفع می‌گردد. در این آزمایش ۱۰۰۰۰/۰/۱/ناحیه ترکیب در چربی بدون مکمل مس سبب بهره‌ریزی و ضریب تبدیل کربن‌ها گردد که احتمالاً به واسطه راهی فسفر، رو و سایر کاتیون‌ها مس‌دارند. این امر که این مس مولکولی مسحور به جهت آزاد ماهی چینوی در فازهای شد. که به عنوان یکی از اصلی‌ترین مسحوریت‌های پیشنهادی محسوب می‌شود و این آزمایش نشان می‌دهد که این تیز می‌تواند در داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود. داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود. داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود.

عملکرد را نشان داده‌اند داده‌اند. در آزمایش‌ها که اثر فیتناز میکرویوی و مس در خوراک‌ها در حال رشد بررسی شد، افزودن فیتناز به چربی‌ها سبب راهی‌روی از کمبود فیتاب‌ها گردید. مس و روی آثار اتانوکبین‌ها نزدیکی بیشتر دسترسی یکدیگر دارند. اولین بار این در موسی و سینس در جوجه و گوسفنده بررسی شده است. در این مطالعه متفاوت آنزیم فیتناز و مس در کوره‌کشی در دست نیست ولی این نتایج نشان داده‌اند که اتانوکبین‌ها از کمبود می‌تواند وجود داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود. داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود. داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود.

و مس در کوره‌کشی در دست نیست ولی این نتایج نشان داده‌اند که اتانوکبین‌ها از کمبود می‌تواند وجود داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود. داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود. داشته باشد. در این آزمایش‌ها احتمالاً ایجاد کمبود چربی می‌شود.

همواری (۵) کورس‌های شدید است. بین سوخت و ساز مس و روی ارتباط و وجود دارد به نحوی که روی، چرب و ایفای مس را به همراه کرد و کلسیفی پاسما را افزایش می‌دهد. در این آزمایش‌ها بین مس و روی و مس در ایندا

۱۳۶
جدول ۲. اثر مکمل فیتاژ و مس مازاد بر جیره بر خویش از میارهای اندازه‌گیری شده در ماهی کپور در کل دوره آزمایش

<table>
<thead>
<tr>
<th>فیتاژ (وحد در کیلوگرم)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸/۰۷</td>
<td>۲۲/۸۸</td>
<td>۲۲/۸۸</td>
<td>۲۲/۸۸</td>
</tr>
<tr>
<td>۲۷/۹۶</td>
<td>۲۰/۵۴</td>
<td>۲۰/۵۴</td>
<td>۲۰/۵۴</td>
</tr>
<tr>
<td>۲۶/۷۸</td>
<td>۱۹/۰۵</td>
<td>۱۹/۰۵</td>
<td>۱۹/۰۵</td>
</tr>
<tr>
<td>۲۵/۳۴</td>
<td>۱۵/۲۵</td>
<td>۱۵/۲۵</td>
<td>۱۵/۲۵</td>
</tr>
<tr>
<td></td>
<td>۰/۸۰۰۰</td>
<td>۰/۸۰۰۰</td>
<td>۰/۸۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مس (میلی گرم در کیلوگرم)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸/۰۸</td>
<td>۲۷/۰۵</td>
<td>۲۷/۰۵</td>
<td>۲۷/۰۵</td>
</tr>
<tr>
<td>۲۷/۹۶</td>
<td>۲۶/۵۱</td>
<td>۲۶/۵۱</td>
<td>۲۶/۵۱</td>
</tr>
<tr>
<td>۲۶/۷۸</td>
<td>۲۵/۲۴</td>
<td>۲۵/۲۴</td>
<td>۲۵/۲۴</td>
</tr>
<tr>
<td></td>
<td>۰/۸۰۰۰</td>
<td>۰/۸۰۰۰</td>
<td>۰/۸۰۰۰</td>
</tr>
</tbody>
</table>

اثر متفاوت فیتاژ × مس

<table>
<thead>
<tr>
<th>فیتاژ</th>
<th>مس</th>
<th>زمان کپور</th>
<th>وزن سیستم فیتاژ (درصد)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
<th>وزن سیستم فیتاژ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸/۰۷</td>
<td></td>
<td></td>
<td>۴۴/۰۹</td>
<td>۴۴/۰۹</td>
<td>۴۴/۰۹</td>
</tr>
<tr>
<td>۲۷/۹۶</td>
<td></td>
<td></td>
<td>۴۲/۲۳</td>
<td>۴۲/۲۳</td>
<td>۴۲/۲۳</td>
</tr>
<tr>
<td>۲۶/۷۸</td>
<td></td>
<td></td>
<td>۴۰/۳۸</td>
<td>۴۰/۳۸</td>
<td>۴۰/۳۸</td>
</tr>
<tr>
<td>۲۵/۳۴</td>
<td></td>
<td></td>
<td>۳۸/۴۴</td>
<td>۳۸/۴۴</td>
<td>۳۸/۴۴</td>
</tr>
<tr>
<td>۲۲/۸۸</td>
<td></td>
<td></td>
<td>۳۶/۵۱</td>
<td>۳۶/۵۱</td>
<td>۳۶/۵۱</td>
</tr>
<tr>
<td>۲۰/۵۴</td>
<td></td>
<td></td>
<td>۳۴/۶۷</td>
<td>۳۴/۶۷</td>
<td>۳۴/۶۷</td>
</tr>
<tr>
<td>۱۹/۰۵</td>
<td></td>
<td></td>
<td>۳۲/۸۴</td>
<td>۳۲/۸۴</td>
<td>۳۲/۸۴</td>
</tr>
<tr>
<td>۱۵/۲۵</td>
<td></td>
<td></td>
<td>۳۰/۰۰</td>
<td>۳۰/۰۰</td>
<td>۳۰/۰۰</td>
</tr>
<tr>
<td>۱۵/۲۵</td>
<td></td>
<td></td>
<td>۲۷/۱۷</td>
<td>۲۷/۱۷</td>
<td>۲۷/۱۷</td>
</tr>
<tr>
<td>۱۵/۲۵</td>
<td></td>
<td></td>
<td>۲۴/۳۴</td>
<td>۲۴/۳۴</td>
<td>۲۴/۳۴</td>
</tr>
<tr>
<td>۱۵/۲۵</td>
<td></td>
<td></td>
<td>۲۱/۵۱</td>
<td>۲۱/۵۱</td>
<td>۲۱/۵۱</td>
</tr>
<tr>
<td>۱۵/۲۵</td>
<td></td>
<td></td>
<td>۱۸/۶۸</td>
<td>۱۸/۶۸</td>
<td>۱۸/۶۸</td>
</tr>
</tbody>
</table>

۳: در محدوده‌های داده‌شده که دارای حروف غیر مشابه هستند اختلاف معنی‌دار دانیده‌اند.

۴: ضریب رشد وزن‌های = ۱۰۰ (طول دوره - توصیه گیم وزن اولیه) (کمربند شاندیزی)
کاهشی بانده پروتئین در جیره حاوی 1000 واحد فیتات بی علوله در 15 میلی‌گرم، که در کیلوگرم مس در این آزمایش‌ها به‌خوبی بر خلاف مس، فیتات به طور معنی‌داری سبب افزایش قابلیت هضم فسفر (P < 0.01) به‌خوبی در این آزمایش‌ها معنی‌دار کنون و سویا بود. تقریباً 25% درصد و 29% درصد از ماده شکل فیتات داده‌ها به دسته پرسونی شده که در فاز آماده کننده کمآزونده 1000 واحد فیتات در کیلوگرم مس در جیره سبب کاهش رشد و کم خونی مزمن شده است (19).

اثار اصلی فیتات و مس بر نسبت بانده پروتئین معنی‌دار نبود و مقایسه جیره‌ها و اثرات متقابل مس و فیتات نشان داد که جیره محیطی 1000 واحد فیتات بین‌شیرین و 1000 واحد فیتات بی علوله در 15 میلی‌گرم مس کمترین نسبت بانده پروتئین را سبب شد. اثر متقابل مس و فیتات بانده پروتئین معنی‌دار بود (P < 0.05).

برخی بررسی‌ها نشان داده‌اند افزایش نسبت بانده در استفاده از پروتئین در ماهی شنا نیم‌ده‌هش (7). ولی و همکاران (16) به‌خوبی نسبت بانده پروتئین با استفاده از مکمل فیتات را افزایش گزارش کرده که با نتایج به‌خوبی در این آزمایش منجر شد، این اثربخشی کمپلکس نشکل می‌دهد. از نظر توری، هیدرولیز فیتات و توسیع پروتئین‌ها، فسفر و سایر کانی‌های موجود در ساخته‌شناسی فیتات برای استفاده در این آزمایش‌ها بود.

فیتات از طرفی باعث کاهش نشکل و از طرفی دیگر سبب شکست کمپلکس فیتات – اصلاح پروتئین می‌شود (42). در این آزمایش قابلیت هضم پروتئین افزایش گیری نشته و جیره حاوی 1000 واحد فیتات بدن مکمل در کاهش در نسبت پروتئین را داشته. احتمالاً فیتات علوله بر این مس را از کمپلکس‌های فیتات باعث صرفه جراحه بوده و مهم‌ترین نشانه‌های کاهش قدرت دهی و حمل مس کم مکر می‌کند. مس مانند آن به صورت کمپلکس‌های پروتئین جذب و حمل مس کم مکر می‌کند.

رده‌شناسی این یافته‌ها از نظر انتخابیتی پروتئین مس مانند تالار شدن در مس مسومیت مترن و بالا مس نیز وجود دارد. به‌خاطر احتمالاً می‌تواند
جدول 3. اثر مکس فیناز و مس مزدی بر جهش در ترکیب شیمیایی لنزه و خون ماهی کبوتر

<table>
<thead>
<tr>
<th>فاصله</th>
<th>HDL</th>
<th>گلیسرید</th>
<th>کنترل</th>
<th>فیناز</th>
<th>مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/01</td>
<td>17/8</td>
<td>17/825</td>
<td>24/72</td>
<td>17/825</td>
<td>1/7825</td>
</tr>
<tr>
<td>20/01</td>
<td>17/825</td>
<td>24/72</td>
<td>17/825</td>
<td>17/825</td>
<td>24/72</td>
</tr>
<tr>
<td>18/3</td>
<td>17/825</td>
<td>24/72</td>
<td>17/825</td>
<td>17/825</td>
<td>24/72</td>
</tr>
</tbody>
</table>

تعداد (یافته در کیلوگرم) پروتئین قلیایی

<table>
<thead>
<tr>
<th>فاصله</th>
<th>HDL</th>
<th>گلیسرید</th>
<th>کنترل</th>
<th>فیناز</th>
<th>مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/01</td>
<td>17/8</td>
<td>17/825</td>
<td>24/72</td>
<td>17/825</td>
<td>1/7825</td>
</tr>
<tr>
<td>20/01</td>
<td>17/825</td>
<td>24/72</td>
<td>17/825</td>
<td>17/825</td>
<td>24/72</td>
</tr>
<tr>
<td>18/3</td>
<td>17/825</td>
<td>24/72</td>
<td>17/825</td>
<td>17/825</td>
<td>24/72</td>
</tr>
</tbody>
</table>

+-----+-----+-----+-----+-----+-----+
مس (میلی‌گرم در کیلوگرم)				
17/825	24/72			
17/825	24/72			
17/825	24/72			

۳ با کلمه هر سطح اعدادی که دارای خط مشاهده اختلاف آنها معنی‌دار است (P<0.05).
زمینه که فسفر قابل دسترس جریه بيش از سطح نیاز نباشد. تغییر در سطح فسفر خون دیده نمی‌شود. آثار مقابل مس و فیتنس بر تری گلیسرید سرم خون معنی‌دار بود (0.01، P < 0.001). افزایش مقدار کلسترول و تری گلیسرید می‌تواند علائم اولیه از تغییر سوخت و ساز چربی از ریز می‌باشد. در حال رشد گزارش شده است (3). این گروه 15 میلی‌گرم سرم در چربی فیتات منجر به افزایش معنی‌دار در سطح تری گلیسرید خون شده است. قابل توجه است که منجر به کاهش معنی‌دار در سطح تری گلیسرید خون شده است.

نتیجه‌گیری
نتایج به دست آمده از این آزمایش نشان داد که آنزیم فیتات سبب افزایش قابلیت هضم فسفر می‌شود. همچنین مکمل مس، HDL چربی کبد و تری گلیسرید خون را کاهش و خون را افزایش می‌دهد. احتمالاً در کبور اثر انتانوگنستی بر آنزیم فیتات و مکمل مس وجود دارد که منجر به بهبود عملکرد و ترکیب لازم کیور معمولی در اثر استفاده از آن‌زیم فیتات می‌شود. بنابراین استفاده از مکمل مس خصوصاً در حضور آنزیم فیتات در چربی کیور معمولی توصیه نمی‌شود.

سیاست‌گذاری
از مسئولین مصرف کشاورزی کشوری دانشگاه صنعتی اصفهان، به‌طیاره‌ای برای تسهیل‌های لازم و تأمین هزینه‌های طرح و همچنین شرکت ایران که به‌طور گروهی فراهم نمود آنزیم فیتات و نیز مسئولین مصرف کیور تکمیل و پرورش آن‌زیم کرسکان اصفهان به منظور تأمین استخراج و دیگر تجهیزات مورد نیاز بررسی تشکر و قدردانی می‌گردد.

واحد بیمارستان ۱۵ میلی‌گرم سرم، به طور مغذی دریای سبب افزایش مس کبدی گردید. این اثر احتمالاً به علت آثار متقابل مس و روی می‌باشد. با علاوه‌ی فیتات سبب رشد شدن پروتئین از کمبیسیون فیتنس - اسماح - پروتئین‌های نیز می‌گردد. مس برای جذاب نیاز روزه‌ی پروتئین دارد. افزایش روزه و بدن نیز غلظت متابولیت‌های ریز افزایش می‌دهد و این پروتئین در ایقاف مس در کبد نقش پیش‌بازی جاری دارد (32).

همچنان در جدول ۳ نشان داده شده است، مکمل فیتات و مس اری می‌تواند اثرات بر تغییرات شیمیایی لازم (پروتئین، چربی، فسفر و خاکستر) داشت (33). در جدول ۳ نشان داده شده است، مس این پروتئین‌ها مقدار فسفر و گلیسرید خون دیده نمی‌شود. به‌طور کلی نتایج ارزیابی‌های انجام شده نشان داده‌اند که بار و عادی در سوخت و ساز سلولی شرکت داشته‌اند تا ایقا در بدن و با پیش‌بازی از سطح دفع شده باشد. این نتایج موافقاً گزارش کلسترول و همکاران (7) است که نشان دادند افزایش سطح فسفر قابل دسترس جریه اثر مغذی‌داری بر فسفر گزارش و همکاران (7) می‌باشد و استفاده از افزایش خاکستر استخوان ماهیان تعقیبی شده در جریه‌های دیگر (8) سویا را تأثیرگذار می‌کند. در حالی که به تفاوت گزارش، همکاران (8) که گزارش مکمل منجر به افزایش خاکستر استخوان و ایقا در ماهیان تعقیبی شده به سویا، می‌گردد.

همچنان در جدول ۳ دیده می‌شود که فیتات گروه ترکیب شیمیایی خون (کلسترول، تری گلیسرید و فسفر) ندارد. HDL و فسفر به‌طور کاهش و فسفر به‌طور کاهش گزارش خون را کاهش و خون را کاهش می‌دهد. به‌طور کلی نتایج ارزیابی‌های سویا و همکاران (7) است که نشان دادند مقدار فسفر قابل دسترس در جریه کیور معمولی در جدول ۳ نشان داده شده است (13). در حالی که در این بررسی مقدار فسفر قابل دسترس در جریه پاپیلی در این محدوده بود. ظاهراً یا

140
متناوی مورد استفاده

1. کرمیمی، ا. 1375. اثر سطوح مختلف مس و ووریامین C مازاد بر احتیاجات غذایی بر مردان کلسترول و دیگر اجزای سرم خون و عملکرد طیور گوشتی. پایان نامه کارشناسی ارشد، علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

