اثر مکمل فیتاژ و مس مازاد جیره بر رشد و ترکیب لاسته کپرون معمولی (Cyprinus carpio L.)

فاطمه شیرمحمدی، نصرالله محیوبی صوفیانی و جواهر پورضا

چکیده

به منظور بررسی اثر مکمل فیتاژ و مس بر رشد و ترکیب لاسته کپرون معمولی، جیره‌های آزمایشی شامل سه سطح فیتاژ، صفر، ۵۰۰ و ۱۰۰۰ واحد در کیلوگرم جیره و ۲ سطح مس صفر و ۱۵ میلی‌گرم در کیلوگرم جیره در قالب طرح کامل تصادفی به روش拉丁ی‌فلکی در ۳ تکرار مورد استفاده قرار گرفتند. مقادیر فلفل کپرون ۲/۷ درصد بود. برای این منظور ۱۴۴ قطعه ماهی کپرون معمولی با مانگی سنتی تکرار مورد استفاده قرار گرفتند. نسبت به بزرگترین پرنده و لاسته کپرون در نظر گرفته شد. مکمل فیتاژ و مس باعث تفاوت معنی‌داری افزایش وزن، ضریب تبدیل غذا، وزن نسبی لاسته، نسبت بزرگ‌ترین پرنده و ترکیب کبد، لاسته و خون تشدید، نسبت قابلیت هضم فسفر و ظرفیت مصرف با طور معنی‌داری (P<0/05) افزایش داد. هم‌چنین مکمل مس به برتری معنی‌دار در مقایسه فیتاژ صفر و پرورش غیر افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاسته، نسبت بزرگ‌ترین پرنده و ترکیب کبد، لاسته و خون تشدید، نسبت قابلیت هضم فسفر و ظرفیت مصرف با طور معنی‌داری (P<0/05) افزایش داد. HDL و خون را افزایش (P<0/05) و تری کلسترول را کاهش (P<0/05) داد. آثار HDL و خون را افزایش داده و به طور معنی‌داری چربی کبد را کاهش (P<0/01) داد. افزایش میزان مکمل مس، آنزیم لیپاز سبب بهبود بخیه می‌گردد. شرایط و ترکیب لاسته کپرون معمولی و افزودن مکمل مس به همراه آنزیم فیتاژ منجر به بهبود عملکرد کپرون معمولی شد.

واژه‌های کلیدی: کپرون، لیپاز، مس، رشد، ترکیب لاسته

پاسخ‌گویی به این نتایج، تولید ماهی پرورشی و استفاده از جیره‌های دستی به عنوان نشانه‌نامه سریع می‌شود، معمول است. کپرون معمولی بکی از منابع ترین ماهیان پرورشی در مناطق گرم مقدمه

به مواد افزایش آگاهی از ارزش غذایی و بهداشتی ماهی، امروزه تqua برای مصرف ماهی فرظون پایه ای است. به منظور

1. به ترتیب دانشجوی دکتری و استاد علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار شیلات، دانشگاه صنعتی اصفهان

133
سر برخی مطالعات، اثر کمبود مس را بر سوخت و ساز چربی‌ها ناشی می‌کند. کمبود معمولی قطب‌داری تنازه به 3 میلی‌گرم مس در کلیول و جنریم برای رشد طبیعی دارد(19). گرچه، مغز مطالعه‌های ممکن بر اثر کمبود مس در جنریم بر ترکیب لاسته ماهی صورت نگرفت. طبق بررسی‌های انجام‌گرفته در موس و انسان به چشمه اشتباه شده که در موارد میزان کلسترول بالاتر در اثر کمبود مس احتیاطی یک بدیهی بوده است. بدون این تنظیم کردن گونه حیوان مورد بررسی می‌باشد(11).

کمبود مس در موس‌ها یا صحرای منجر به ویلی می‌گردد که یکانگری صورت می‌گیرد و میزان چربی در ماهی کاهش می‌شود. ویلی مگر در میشیا به طور معنی‌داری کاهش باعث گلوتامات نیتروژ اتئیم گلوتامات پر آکسیداز (Glutathione peroxidase) می‌شود. انزیم مسی می‌باشد. این آنزیم به عنوان یک انزیم تراریک 3 هیدروکسی-3-میثی-کلرول و اکسیداز (Hydroxy 3-Methyl Glutaryl COA Reductase) باعث کاهش غلظت نیتروژ گلوتامات می‌گردد.

مواد و روش‌ها

این آزمایش در مرکز تکثیر و برورش آبیانا کرکسکان واقع در استان اصفهان انجام گرفت. برای این منظور 144 فیلبه ماهی کیپر معمولی (Cyprinus carpio L.) با سایز متوسط 207 ± 32 گرم بر گروه از همین مرکز به 18 گروه، در هر گروه 8 ماهی و یک میلی‌میلی‌ریزات مربی با نسبت 9:1 توزیع گردیدند. کلیه طراحی و نظارت بر پلاستیکی از جنس پی ایلیان با قطر چشم 5 میلی‌متر یک فیل به دست نشانه‌شده از 100 متر که با جریان آب آرام که

و ایرانی می‌باشد. مقدار چربی بدن در کمبود معمولی در مقایسه با نوع نوعی بنیان پیشرفت که منجر به طعم و ظاهر نامتطب و گوشته‌ی آمده و بارزیندن آن تحت تأثیر قرار می‌گیرد. عوامل پیشی از جمله میکروبه سه، سرعت رشد و استفاده از چربی‌های دستی غیز از چربی با پرانرژی افزایش انرژی غیر پروتئینی (18) و کمبود میکروبه (25) برمقدار چربی و عوامل گوشته کمبود معمولی در چربی می‌گند. یکی دیگر از عوامل تجمع چربی در چربی است. مکمل کیفین سبب افزایش مقدار پروتئین و کاهش مقدار چربی لاش ماهی می‌گردد که یکانگری صورت می‌گیرد و میزان چربی در ماهی کاهش می‌شود. این است که قابلیت دسترسی آن به وسیله کیپر معمولی می‌باشد.

درصد گزارش شده است(14)، در پرورش ماهیان آب شیرین مشکل اصلی را شدن فسفت در محیط است. افزودن مقداری فسفت به جریه به نسب افزایش فسفت در آب می‌گردد. دنبالاً به‌عنوان قابلیت دسترسی فسفت موجود در جریه را افزایش داده که باعث افزایش شده به درصد فسفت در آب می‌گردد. دنبالاً به‌عنوان قابلیت دسترسی فسفت موجود در جریه را تحقیب کنند. به علاوه نتایج حساس اثر منفی بر قابلیت هضم اصلاح برادر به شکل دیگر(17) یکی دیگر از این مطالعات است. چون با این روش برای افزایش فسفت در بدن می‌باشد.
نیاز به اکسیژن و تهویه آب را تأمین می‌کند. جایی که نخست
چرخه پایه (جدول 1) طبق احتیاجات غذایی ماهیان گرمایی
(1989)، NRC (نیروی مردمی و مسیر 4 چرخ آزمایشی در قابل طرح
کاملاً تصادفی به روش فاکتوریال 2*3*4 سطح آزمایش
کلی‌گرم (FYT/kg،iman، 200 و 1000 واحد در کلی‌گرم
سپرده) (Cold extruded moist pellet)
جهت 2 و سطح مس (سولفات اسید) صرف و 15 میلی‌گرم در کلی‌گرم
جیره به صورت بلن سرد
قطر 5 میلی متر به نهایت در مکان‌ها خشک و در 4 درجه
سانتی‌گراد تا زمان غذادهی نگهداری شدن. هر چیره آزمایشی
به طور تصادفی به سه تکرار، روزانه دوبار حذف می‌شود. به
میزان (X7.1 کیلوگرمی 200/140 درنی) مایعات
پیک بار ماهی‌ها توزین و میزان غذادهی تصحیح شد. مدت
ازمان آزمایش 10 هفته بود که ۱ هفته اول را سازگاری در نظر
گرفتند. طی آزمایش‌های درجه حرارت آب ۱۹۰ تا ۲۰ درجه سانتی-
گراد، طول نور طبیعی بود و مقدار اکسیژن محلول 3/1±0/8 میلی‌گرم
در لیتر بود.
در پایان آزمایش نمونه‌های خون از رک دمی ۵ ماهی
بهروش شده به وسیله MS-222 که به طور تصادفی از هم‌س
صد شده بودند جمع آوری و مخلوط شد و پس از منعقد
شدن در چرخه 1000/1000 به مدت 20 دقیقه سانترفیوز شد تا
سرم ان جذب شده و تا زمان آزمایشی در دمای ۱۷-۲۰ درجه
سانتی‌گراد نگهداری شدند. نمونه‌های مایع از کالبد
مشکل شکمی که از بخش انتهای رو و نمونه‌های کبد نیز از
ماهی در هر قسم جمع آوری و مخلوط شد. نمونه‌ها لاش نیز از
۵ ماهی پس از تخلیه اعما و احیا به طور کامل چربی و مخلوط
شد و در 17-۲۰ درجه سانتی‌گراد تا زمان آزمایشی نگهداری شد.
فسفر جیره‌ها، مایع از کالبد و لاش به وسیله روش
سّم. مقدار مایع در کالبد و لاش را طبق درجه ۵۵ درجه سانتی‌گراد
به مدت ۱۲ ساعت، پرینتیک باور به روش کالبد (N × 6/1) جیره خام بعد از عصاره‌گیری با آب اتیله ترش و تری کلوسیرید با استفاده
تمایل در میکل فیتابز و مس مزایا چرخ به رشد و ترکیب لاهه کیور معمولی (Cyprinus carpio)
جدول 1. ترکیب شیمیایی و اجزای تشکیل دهنده چربه یا به

<table>
<thead>
<tr>
<th>اجزای چربه</th>
<th>(درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/00</td>
<td>پودر ماهی</td>
</tr>
<tr>
<td>03/91</td>
<td>کنجاله سویا</td>
</tr>
<tr>
<td>27/05</td>
<td>آرد کلم</td>
</tr>
<tr>
<td>08/59</td>
<td>روح افتابیوند</td>
</tr>
<tr>
<td>03/09</td>
<td>مکمل اصلاح</td>
</tr>
<tr>
<td>03/09</td>
<td>مکمل ویتامین‌ها</td>
</tr>
<tr>
<td>02/11</td>
<td>دی ام‌پتین</td>
</tr>
<tr>
<td>01/01</td>
<td>نمک معمولی</td>
</tr>
<tr>
<td>01/01</td>
<td>ماسلا</td>
</tr>
<tr>
<td>01/01</td>
<td>ویتامین E</td>
</tr>
<tr>
<td>01/01</td>
<td>ویتامین C</td>
</tr>
</tbody>
</table>

انرژی قابل هضم محسوب شده (کیلوکالری در کیلوگرم) = 2900

پروتئین محسوب شده (درصد) = 12/77

مس محسوب شده (میلی گرم در کیلوگرم) = 16

خاکستر انداز گیری گردش (درصد) = 1/42

1 مقداری فراهم شده (میلی گرم در کیلوگرم چربه) = 12/5000

2 مقداری فراهم شده (میلیمتر، واحد بین المللی در کیلوگرم چربه) = 12/4000

3 مقداری فراهم شده (میلیمتر، واحد بین المللی در کیلوگرم چربه) = 12/3000

4 مقداری فراهم شده (میلیمتر، واحد بین المللی در کیلوگرم چربه) = 12/2000

در مثلث فراوان جذب است. ظاهراً رژیم سبب افزایش غلظت مالاتیولینین (Metallationine) در مخاط رودهای می‌شود و این پروتئین مس را قلیوی از روزی باند می‌کند. مس باند شده به مالاتیولینین جذب نمی‌شود و همراه با سلول‌های مختلف جد و دفع می‌گردد (32). در این آزمایش 1000 واحد فیتات در چربه بدون مکمل مس سبب بهبود رشد و ضریب تبدیل خوراک گردید که احتمالاً به واسطه رهیابی فسفر، روز و سایر کاتیون‌ها مبتنی است. این در نتیجه این آزمایش که اسید فیتابیک مسیونی به چرب جادوگر ماهی چینوک افزوده شد، کاهش قدرت گیری در سرعت رشد و بیماری در پروتئین دیده شد. این آزمایش تا حدی که کاهش قابلیت استرسی جهانی روز نسبت داده شده، به طوری که تکمیل مس به چربی هپ پرینت با روی (13/05 - 4 گرم در کیلوگرم) تنها حدی باند جدا و پروتئین را بهبود می‌بخشد (32). با افزودن مکمل مس به چربی حاوی 1000 واحد فیتات احتمالاً به دلیل اثر آناتوکینست مس و روز، آثار سریع بر معیارهای فوق الذکر داشته است. علاوه بر این احتمال دارد مسمومیت مرموز با مس عملکرد را نشان داده است (جدول 2). در آزمایشی که اثر فیتات میکروبوی و مس در خوراکی در حال رشد بررسی شد، افزودن فیتات به چربی مس سبب رهیابی روی کمینگی از کمینگی مسی است. مس و روی آثار آناتوکینست از نظریه بر قابلیت استرسی یکدیگر دارند. اولین بار این در موش و سپس در جوجه و گوسفندر بررسی شده است (33). در مورد متوسط آنرژی فیتات و مس در هر اطمینان در دست نیست ولی این نتایج نشان دادند که آناتوکینست در کشور نیز می تواند وجود داشته باشد. دلیل این آناتوکینست احتمالاً ایجاد کمیلکس مجدد مس و فیتات هیدروفیل شده در اثر فیتات و در نتیجه کاهش کازیس و تأثیر مس باشد. وجود اتصال بین مس و اسید فیتابیک در دستگاه کراش توسط زاکرایس و همکاران (32) و باکاتی و همکاران (3) کراش شده است.

اگر سوخت و نشست و روی ارتباط وجود دارد به نحوی که روی، جذب و ایفای مس را به مهار کرده و کلسترول پلاسمای را

افراشی مس دهه (28). این آناتوکینست بین روی و مس در ابتدای

136
جدول 2. اثر مکمل چنوز و مس مازاد بر جریب خیار از میان‌رده‌سازی گروهی شده در ماهی کُور در کل دوره آزمایش

| ماده خشک | جریب خیار | قابلیت تحمیل | وزن سیس | ضربه رشته | پرتنی | فنار (درصد ماده خشک) | دوست (درصد) | قروم (گرم) | گرم (گرم) | ۱/۷۸ | ۲/۸۹ | ۲/۸۶ | ۲/۸۷ | ۴/۸۶ | ۴/۸۷ | ۴/۸۸ | ۴/۸۹ | ۴/۸۸ | ۴/۸۸ |
|-----------|-----------|-------------|----------|----------|-------|-------------------|-------------|------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|

۲. در هر سونه اعدادی که دارای حروف دارای اختلاف معنی‌دار دارند (p<0.05)
کاوه پادشاه پروپتین در جهان حاکمیت 10000 سال پیشی به علیه
15 میلی گرم در کیلوگرم مس دریافت می‌شود. این بیان احتمال‌آمیزی از این مسئول
سورتی پژوهشی است که می‌تواند به قابلیت مختاری واژه‌ای از فلزات و رفتارهای مس از
کمپلکس‌های فیتابیت - مدل میکروسکوپ اجرایی به شماره 15
میلی‌گرم در کیلوگرم مکمل مس، اثربخشی مسمومیت از
ارافاه شده است. در مقایسه با گروه (15) میلی‌گرم در
کیلوگرم مس در جهتی (50 میزان نفوذ مس توسط کورنی
پیش از 20 میلی‌گرم در کیلوگرم مس در جهتی نیست. با
افراش کریستال که 10 میلی‌گرم مس در جهتی کورنی سبب
کاوه رشد و کم کردن مس کوو شده است (19).

آقای اصلی فیتاب و مس نسبت به پروپتین می‌گذراند تا
ولی مقایسه جهشی و آثار متقابل مس و فیتاب نشان داد که جهش
محتوی 10000 واحدهای متفاوتی در جهتی و 1000 واحدهای فیتاب به علیه
15 میلی‌گرم مکمل مس، نسبت به پروپتین را در سبب شد. اثر
متفاوت مس و فیتاب در پروپتین می‌گذراند (18).

برخی بررسی‌ها مدل اضطراب فیتاب را از استفاده از پروپتین را در
ماهی‌نشان می‌گذرانند (7) و برای میکروفیتابت
بازه پروپتین با استفاده از مکمل فیتاب را کردن که با
نتایج به دست آمده در این اموزش می‌گذراند. این فیتاب با
پیروپتین کمک‌سازی کمک‌سازی می‌گیرد. از نظر توری، هیدروژن
فیتاب توسط پروپتین‌ها، فسفر و سرآی کانی‌های موجد
در ساختارهای فیتاب را برای استفاده از آزاد مس. فیتاب از
طرفی باعث کاهش تشکیل و از طرف دیگر به سبب شکست
کمپلکس فیتابیت - مدل‌گیری - پروپتین می‌گذراند (7).
در این
اموزش، میکروفیتابت نسبت پروپتین‌های از دیگری نیز، ویژه جهتی
10000 واحدهای مکمل مس، نسبت به پروپتین را
داراست. احتمالاً فیتاب علیه تا این مسئول از
املاح رها می‌گذراند، با آزاد کردن پروپتین از این کمپلکس به
جدب و حمل مس نیز کمک می‌کند. مسئولیت این همان صورت
کمپلکس مس - پروپتین جدیب و حمل می‌گذراند (16). ویلی روی
رها شدن از فیتابل آنتی‌گلوتیسیتی بر مس دارد. این احتمالاً می‌تواند
مسمومیت مسین بر مس نیز وجود دارد، که احتمالاً می‌تواند

138
جدول ۳ اثر مکس‌فیتیاز و مس مزادر بر جیره در ترکیب شیمیایی لاغری و خون ماهی کبور

<table>
<thead>
<tr>
<th>ترکیب شیمیایی خون (میلی‌گرم در کیلوگرم بدنی)</th>
<th>ترکیب شیمیایی لاغری (میلی‌گرم در کیلوگرم بدنی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL</td>
<td>کسترون</td>
</tr>
<tr>
<td>۲۱/۱۹</td>
<td>۸۷/۸۴</td>
</tr>
<tr>
<td>۲۰/۳</td>
<td>۹۸/۱۱</td>
</tr>
<tr>
<td>۱۸/۳</td>
<td>۹۱/۸۰</td>
</tr>
</tbody>
</table>

مس (میلی‌گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>سال</th>
<th>مس</th>
<th>ترکیب شیمیایی لاغری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۱/۱۹</td>
<td>۹۱/۸۰</td>
<td>۳۸/۵۳</td>
</tr>
<tr>
<td>۲۰/۳</td>
<td>۱۱۷/۶۹</td>
<td>۳۴/۸</td>
</tr>
</tbody>
</table>

ارث مقابل فیتیاز بر مس

<table>
<thead>
<tr>
<th>سال</th>
<th>مس (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۲/۹</td>
<td>۹۷/۸۰</td>
</tr>
<tr>
<td>۲۰/۸</td>
<td>۱۱۷/۶۹</td>
</tr>
<tr>
<td>۱۸/۳</td>
<td>۹۸/۱۱</td>
</tr>
<tr>
<td>۲۲/۳</td>
<td>۹۸/۱۱</td>
</tr>
<tr>
<td>۱۸/۳</td>
<td>۹۸/۱۱</td>
</tr>
</tbody>
</table>

۲. هر ستون اعدادی که دارای حروف عطر مشابهند اختلاف آنها معنی‌دار است (p<0/05).
زماني كه فسفر قابل دسترس جبره بيش از سطح نياز نباشد.

تغیيری در سطح فسفر خون دیده نمی‌شود.

اثر مقابل مس و فيتان بر تری کلیرسید سرم خون معملاً به

آمارا (0.01% P). افزایش مقدار کلسترول و تری کلیرسید

پلاسمای عاليم اولیه تغییر سوخت و ساز چربی اثر می‌کند

ما در خون‌هايي در حال رشد از نياز شده است (3). اين

چگونه 15 ميلي‌گرم مس در جبره فاقت فيتان خون به افزار

معنادار در سطح تری کلیرسید خون شده است، قابل توجه

نيست ولی در جبهه‌هاي حاوي فيتان، احتمالاً فيتان با رها کردن

فسفر فيتانی و مس موجود در فيتان اثر مس در کاهش تری

کلیرسید خون که مرتبط با ساختن چربی در کبد است (4)

تشديد کرده که منجر به کاهش معنادار در سطح تری کلیرسید

خون شده است.

نتيجه‌گيري

نتایج به دست آمده از اين آزمایش نشان داد که آنزیم فيتان

نسبت افزایش قابل‌توجه فسفر مس شود. همچنين مکمل مس،

چربی کبد و تری کلیرسید خون را کاهش و

بیشتر نشان داد. احتمالاً در کورث اثر آنتاگونيستی بین آنزیم فيتان

و مکمل مس وجود دارد که منجر از بهبود عملکرد و ترکيب

لاغر کورم معمولی اثر از استفاده از آنزیم فيتان می‌شود. بنابراین

استفاده از مکمل مس خصوصاً در حضور آنزیم فيتان در جبره

کورم معمولی توصیه نمی‌شود.

سيستمزاري

از مسئولين محترم دانشگاه كشاورزي دانشگاه صنعتي اصفهان,

به خاطر ایجاد تسهيلات لازم و تامين هرچه‌‌في طرح و

همچنين شركت كوب محدود در آزمایش فراهم نمود. از این فيتان و

نیز مسئولين محترم كتورک و پوروری در اين کرسكان

اصفهان به منظور تامين استخراج و دیگر تجهيزات مورد نياز

برورش تشکر و قدردانی می‌گردد.

واحد با افزایش 15 ميلي‌گرم مس، به طور معيار در مس

افراش مس کبدی گردید. اين اثر احتمالاً به خاطر آثار مقابل

مس و روی مباش. به علاوه فيتان سبب رشد پروتين از

کم‌پرداز فيتان - اصلاح - پروتين تيپ م‌گرد. مس برای

جذب نياز به پروتين دارد. افزایش روی در بين تيپ غلفظ

متافينون را افزایش می‌دهد و اين پروتين در اين مس در

کبد نقص بسیار دارد (3).

همچنان در جدول 3 نشان داده شده است، مکمل فيتان و

مس الري بر ترکيب شيميايي لاجم (پروتين، چربی، فسفر و

خاکستر) نداشته. گرچه 1000 واحد فيتان به طور معيار

(0.01% P). قابليت جابجات فسفر را افزایش داده به نظر

رسيبد اين مقدار فسفر هضم شده بيشتر در رفع نياز کلیرسید

فسفر به كار رفته و غالي‌اً در سوخت و ساز سلولی شركت داشته

تا افقا در بدن و مي‌شتر در طریق اادر دفع شده باشد. اين

نتایج مختلفاً گزارش كولوس و همکاران (1) است که نشان دادند

افراش سطح فسفر قابل دسترس جبره اثر معيار داري بر فسفر

کل داد در قبول آليات رنگن کم در داشت. همچنين اين تانيج

گزارش دیهبر و همکاران (2) مبنا بر عدم اثر مکمل فيتان در

افراش خاکستر استخوان ماهیان تعقیب شده به جبره‌هاي حاوي

سويا از تأسيس کم. در حالي که با تانيج كين و همکاران (1)

که گزارش مشابه مکمل فيتان فيتان به افزایش خاکستر استخوان

و ابزار فسفر در ماهیان تعقیب شده به سواي شديد، مي‌گویند دارد.

همچنين در جدول 3 ذکر مي‌شود که فيتان الري بر ترکيب

شيميايي خون(كابسترو، تری کلیرسید، HDL و فسفر) ندارد.

ولی به كاهش تری کلیرسید خون شدور (0.01% P). اين

نتایج مطلوب تا نابيل سوگوری و همکاران (3) است که نشان

دادند محدودیت فسفر طي 24 روز آزمایش كلي کلسترول

و مقدار آب پلاسم ار فيزلي رينگن کم تغيير نداد.

فثار نياز فسفر قابل دسترس در جبره كورم معمولی در

دند. ذکر شده است (19). در حالی که در اين بروسي مقدار

فسفر كلي (نه فراهم) در جبره پايه از اين محدوده بود. ظاهران تا

140
متاپ مورد استفاده

1. کرمی‌آرا. ۱۳۷۵. آزمایش مختلف مس و ویتامین C مازاد بر احتیاجات غذایی بر میزان کلسترول و درگیر اجزای سرم خون و عملکرد طیور کوشتی. پایان نامه کارشناسی ارشد. علوم دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.

