اثر مکمل فیتاژ و مس مازاد جیره بر رشد و ترکیب لاشه

کشور معمولی (Cyprinus carpio L.)

فاطمه شیرمحمدی، نصرالله محبوبي صوفیانی و جواد پوررضا

چکیده

به منظور بررسی اثر مکمل لیتاز و مس بر رشد و ترکیب لاشه کشور معمولی، جیره‌های آزمایشی شامل 3 سطح لیتاز، صفر، 500 و 1000 واحد در کیلوگرم جیره و 2 سطح مس، صفر و 10 میلی گرم در کیلوگرم جیره در قالب طرح کامل تصادفی به روش کاکتوپولسی در 3 تکرار مورد استفاده قرار گرفتند. مقدار فسفر کل جیره 0/77 درصد بود. برای این منظور 144 قطعه ماهی کشور معمولی با ماهیت ونیتی تکریم مورد استفاده قرار گرفتند. در نظر گرفتن شد. مکمل لیتاز و مس باعث تفاوت معنی‌داری در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین و ترکیب کبدی لاشه و خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین، قابیت هضم فسفر، مس کند و ترکیب شیمیایی لاشه کمتری تری کلرسید و فسفر خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین، مس کند و ترکیب شیمیایی لاشه کمتری تری کلرسید و فسفر خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین، مس کند و ترکیب شیمیایی لاشه کمتری تری کلرسید و فسفر خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین، مس کند و ترکیب شیمیایی لاشه کمتری تری کلرسید و فسفر خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین، مس کند و ترکیب شیمیایی لاشه کمتری تری کلرسید و فسفر خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین، مس کند و ترکیب شیمیایی لاشه کمتری تری کلرسید و فسفر خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غذا و وزن نسبی لاشه نسبت بازده پروتئین، مس کند و ترکیب شیمیایی لاشه کمتری تری کلرسید و فسفر خون نشده و لیتاز و مس باعث تفاوت معنی‌داری (P<0/01) در افزایش وزن، ضریب تبدیل غدا

واژه‌های کلیدی: کشور معمولی، لیتاز، مس، رشد، ترکیب لاشه

پاسخ‌گویی به این نتایج، تولید ماهیان پرورشی و استفاده از جیره‌های دستی که سبب رشد سریع می‌شود، معمول است. کشور معمولی یکی از مندول‌های ماهیان پرورشی در مناطق گرم مقدمه

به موارد افزایش آگاهی از ارزش غذایی و بهداشتی ماهی، امروزه تغذیه برای مصرف ماهی فروشی یافته است. به منظور

1. به ترتیب دانشجوی دکتری و استاد علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار شتابات، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
برخی مطالعات، اثر کمبود مس را بر سوخت و ساز چربی ها ثابت کرده است. کمبود معولی تخییر نیاز به 3 میلی‌گرم مس در کیلوگرم جیره برای رشد طبیعی دارد (۱۹). گرچه هیچ گونه مطالعه‌ای مستند بر اثر کمبود مس مازاد در جیره بر ترکیب لازم ماهی صورت نگرفت، این بررسی‌ها انجام گرفته در موش و انسان با این مطلب استیفاده شده که با رفت و نشین کلسترول بدن در اثر کمبود مس احساساً یک ب屁ه دیده عمومی بدون در نظر گرفتن گونه حیوان مورد بررسی می‌باشد (۱۱).

کمبود مس در موش‌های صحرایی منجر به رفت و نشین گلیسریدها و فسفولیپیدها (۲). کلسترول ماهی به عنوان عنصر سه‌گانه طوری گوشته بطور معکوس با مس مازاد ابتغاج ذهنی ابزار دارد (۱). نشان داده شد که کلسترید پلاسما جوگشنده گلوتاتیون ۱۵۰ میلی‌گرم مکمل مس در دو کیلوگرم جیره به طور معنی‌داری کاهش داشته‌است (۵). نتایج انسان‌گردی غلظت آنزیم گلوتاتیون پر اکسیداز در پلاسما پیمانکر کاهش غلظت (Glutathione peroxidase) این آنزیم می‌باشد. این آنزیم با تحریک آنزیم 3 هیدروکسی ۲- مسی‌سی‌گلوتاریل کوان‌سی‌ریم ۸ رده کم‌کان تراکم- ۳ (Hydroxy 3-Methyl Glutharyl COA Reductase) کلسترول را تحریک می‌کند (۱). نزدیک‌ترین هدف از این مطالعه بررسی اثر کمبود آنزیم فیتات و مس مازاد در جیره بر ترکیب لازمه و رشد کیور معمولی بود.

مواد و روش‌ها
این آزمایش در مرکز تکثیر و بروش آنیکا کرکسوان واقع در استان اصفهان انجام گرفت. برای این منظور ۱۴۴ قطعه ماهی کیور معمولی (Cyprinus carpio L.) به میانگین وزنی ۳۳۷ ± ۲۰ گرم برگرفته از همین مرکز به ۲۶ گردو، و در هر گردو ۸ ماهی وجود داشت. تخمین و در نفس هایی به ابعاد ۱۸۳۱ متر توزیع گردیدند. کلیه محل طرف فسیا به دست پلاستیکی از جنس پی ته‌این با قطر جسم ۱۰ میلی‌متر بودند. فسیاها در استخراج به ابعاد ۱۰۰×۲۰×۱۰ متر که با جریان آب آرامی که

و ایرانی می‌باشد. مقدار چربی بدن در کیور معمولی در مقایسه
با نوع وسیع و ثابت کرده که منجر به تحمیل و ظاهر ناملو بود. گوش خسته این مقدار بوده و تأثیر پرداخت آن تحت تأثیر تقریباً می‌گیرد. عوامل بهاری از جمله مصرف نشین، رسیده (۴)، افزایش لازم به‌صورت مفید باید افزایش چربی -(۱۸) و کم‌پوشینه (۲۵) بر مقدار چربی و طعم گوش خسته کیور معمولی آثار می‌گذارند. یکی دیگر از عوامل تجمع چربی در کیور، کمبود فسفر است. کمبود فسفر سبب افزایش ناهنجاری و کاهش مقدار چربی لازم ماهی می‌گردد که یافته‌های دستی نشان می‌دهد که کمبود فسفر در گوش خسته کیور، فسفر در مقدار کل بدن و اختا

به‌معنی ماده مرنگ‌نگین -کاسپیدین- نسبت داده می‌شود که
دلیل آن کمبود فسفر ذکر شده است (۲۸). احتمالات فسفر قابل
دسترس برای کیور بین ۱ و ۷ درصد جیره تخمین زده شد. قابلیت دسترسی و فرآیند فسفر برای نک می‌باشد.

همین‌طور داده‌ها در دانش‌های غیابی فسفر به شکل فیتوان
اکسی‌کاره است که قابلیت دسترسی آن به وسیله کیور معمولی
درصد گزارش شده است (۱۲). در پیروزی‌های آب شیرین مشکل اصلی را محدودیت فسفر در محوطه است. از این نکته می‌باشد. مقداری فسفر به جیره نسب بود. افزایش بایگانی فسفر در آب
می‌گردد. باید پیامدهای دسترستی فسفر موجود در جیره را
افراشی داشت احتمالات ماهی بر اثر خورد. دفع محدودی
فسفر فیتوتانی می‌تواند آب‌های شیرین و سایر اکوسیستم‌ها را
تخریب کند. به علاوه فیتوتان هضم خود بر قابلیت
فسفات املاح و پرتویانه ها دارد (۱۷).

پیش‌تر تکنولوژی در تولید آنزیم و افزودن فیتات مکروی با
جهت چربی روشن مؤثر در بهبود فیتوتان هضم فیتوتان در
چربی‌های غذایی است و آثار منفی فیتوتان را خصی می‌کند. فیتوتان می‌تواند با آزاد کردن فسفر ناشی در کیور تری در
سال‌ها افراشی و بسیار به‌هم در سرعت رسید و ضریب
تبدیل غذا گردد (۱۹).
نیاز به اکسیژن و نبود آب را تأمین می‌کرد، جای گرفته. نخست جهور پایه (جدول ۱) انتخاب می‌گردید. ماهی‌گران (NRC، ۱۹۸۹) و سپس جهور آزمایشی در قابل طرح کم‌تغذیه دارای فاکتور ۳ (FYT/kg) و میانگین (ROZENOTYME™ P) صفر و ۵۰۰ و ۱۰۰۰ واحد در کیلوگرم (جهور با صورت پنل سرد (Cold extruded moist pellet) جهور به نسبت می‌تراهم. در میان ۵ مدل مختلف به نسبت صورتی و در مقابل همان خشک و در ۴ دوره ساتیاگ‌گرا در زمان غذایی نگهداری شدند. هر جهور آزمایشی به میانگین (صفر و ۲ مدل یا ۳ تغذیه به دو حالت صورتی ویک بار نیز در سه تکرار، زمان‌ها در دو حالت سرد (۲۰ کیلوگرمی) جهور آزمایشی به دو حالت دیگری به میانگین (یک بار ماهی‌گران ویک بار غذایی و دو تابع تغذیه می‌شود. هر در نظر گرفته شد. طی آزمایش‌ها خودن میزان‌ها و سرعت بودند جمع آوری و مخلوط شد و در سه منعقد ۱۷-۱۶ درجه سانتی‌گراد ناگهانی درصد میانگین تغذیه از پنل سرد و تعداد آزمایشی در دمای ۱۵-۷ درجه سانتی‌گراد ناگهانی درصد. نمونه‌های مداوم نیز از کالیب شکافی‌شکمی از پنل سخت و نمونه‌های کیک نیز از ۵ ماهی در فقس جمع آوری و مخلوط شد. نمونه‌های لاشه نیز از ۵ ماهی پس از تخلیه اموا و احتمالاً به طور کامل چرخ و مخلوط شده و در ۱۷-۱۶ درجه سانتی‌گراد ناگهانی درصد. فسفر جهور، مداوم و لاغری به وسیله روش AOAC(۲) و ماده حشی در یک اوره در ۱۰۵ درجه سانتی‌گراد به مدت ۲۴ ساعت، مقدار خاکستری در یک کوره در ۵۵ درجه سانتی‌گراد به مدت ۱۲ ساعت، پروتئین خام به روش کالدل (N) و N×۶.۲۵ و جهور خام بعد استفاده گیری جهور به یکی از دو روش سوکسکل تغییر شد. غالپت کلسترول و تری‌گلیسرید با استفاده

نتایج و بحث

اثر مکمل فیتواز و مس مازاد جهور بر رشد و ترکیب لاشه کیور معمولی (Cyprinus carpio L).

از روش‌های آزمایشی - کالیبره کنیت‌ها یزدی‌شیمی (Stefanidi chemnigostics) به ترتیب با روش‌های و همکاران (۲۲) و فوستری (۲۱) در اندیشگرینانه‌ی لیپیدریت‌های HDL و فسفر سرم به سیرین یا روش‌های و همکاران (۲۱) و تیبیس (۲۰) انجام شد. اکسید کرم جبه و میکروگرام‌ها (۲۰۰nm) توصیف شده به وسیله فیتواز و فتون (۱۰۰) انجام شد.

در پایان نتایج به دست آمده در قابل طرح کم‌تغذیه به روش فاکتور ۲۳ (یک تا ۲۳ نکار با وسیله برای اکسید کرم جبه ANOVA در آن به صورت جی‌بی‌ان (۲۳) SAS برای آنالیز میکروب فیتواز و مس مازاد و MISTAT-C برای آنالیز میکروب اللغة. به منظور مقایسه میانگین‌ها از ازمون محب و دانک (۸) استفاده گردید. آثار تیمارها در میانگین (۴) معنی‌دار در نظر گرفته شد.

نتایج و بحث

اثر مکمل فیتواز و مس مازاد جهور بر رشد و ترکیب لاشه کیور معمولی (Cyprinus carpio L).

از روش‌های آزمایشی - کالیبره کنیت‌ها یزدی‌شیمی (Stefanidi chemnigostics) به ترتیب با روش‌های و همکاران (۲۲) و فوستری (۲۱) در اندیشگرینانه‌ی لیپیدریت‌های HDL و فسفر سرم به سیرین یا روش‌های و همکاران (۲۱) و تیبیس (۲۰) انجام شد. اکسید کرم جبه و میکروگرام‌ها (۲۰۰nm) توصیف شده به وسیله فیتواز و فتون (۱۰۰) انجام شد.

در پایان نتایج به دست آمده در قابل طرح کم‌تغذیه به روش فاکتور ۲۳ (یک تا ۲۳ نکار با وسیله برای اکسید کرم جبه ANOVA در آن به صورت جی‌بی‌ان (۲۳) SAS برای آنالیز میکروب فیتواز و مس مازاد و MISTAT-C برای آنالیز میکروب اللغة. به منظور مقایسه میانگین‌ها از ازمون محب و دانک (۸) استفاده گردید. آثار تیمارها در میانگین (۴) معنی‌دار در نظر گرفته شد.
جدول 1. ترکیب شیمیایی و اجزای تشکیل دهنده جیره پایه

<table>
<thead>
<tr>
<th>اجزای جیره (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/00 برداشته‌شده و مایع</td>
</tr>
<tr>
<td>03/91 پودر مایع</td>
</tr>
<tr>
<td>07/65 آرد کان iphone</td>
</tr>
<tr>
<td>08/06 روزن آفتابدار</td>
</tr>
<tr>
<td>09/05 مکمل اصلاح نیازی و میشه</td>
</tr>
<tr>
<td>10/01 ذبیح و میوه ها</td>
</tr>
<tr>
<td>12/01 نمک معمولی</td>
</tr>
<tr>
<td>15/02 مالاس</td>
</tr>
<tr>
<td>03/04 ویتامین E</td>
</tr>
<tr>
<td>05/02 ویتامین C</td>
</tr>
</tbody>
</table>

انرژی کالری هضم محاسبه شده (کیلوکالری در کیلوگرم) 2900

پروتئین‌های هضم محاسبه شده (درصد) 27/7
فسفر کل اندازه‌گیری شده (درصد) 20000
مس هضم محاسبه شده (بیلی گرم در کیلوگرم) 36
خاکستر اندازه‌گیری شده (درصد) 4/8

1. مقادیر فراهم شده (بیلی گرم در کیلوگرم جیره): مقدار: 12000، آهن: 20، رو: 120، مس: 121، پتاسیم: 142
2. مقادیر فراهم شده (بیلی گرم جیره: مقدار: 120000، آهن: 20000؛ کل کلسیم: 108000، ویتامین A: 1/8، ویتامین E: 2/1، کلر: 1/8

عملاکردیه را نشان داد (جدول 2) در آزمایشکی که اثر فیتباز میکروبی مس در خوشه‌ها در حال رشد بررسی شد افزودن فیتباز به جیره‌ها سبب رهایی روی از کمیابی فیبان‌های گردید. مس و روی آثار آنتی‌گیمسی نوینیکی بر فیتباز دسترسی یکپارچه داده. اولین بار این در موش و سیس در جوجه و گوسفندر بررسی شد (است). در مورد اثر متقابل آنزیم فیتباز مس در کشور اطلاعی در دست نیست و لاین لاین نگاه نشان داد. که اثرات این انسولینیستی در کورس می‌توان وارد داشته باشد. دلیل این آنتی‌گیمسی احتمالاً ایجاد کمیابی سطحی مس و فیتان‌های هیدرولیز شده در اثر فیتباز و در نتیجه کاهش کارایی و تأثیر مس پاشید. وجود اتصال بین مس و اسید فیتابیک در دستگاه هورش توسط زارعیر و همکاران (33) و باکال و همکاران (34) کارشک دیده شده است.

در مرحله فرایند جذب است. ظاهرها روی روی فیتانیون مس در مخلوط روده‌ای می‌شود و این مثالیت‌های مس را قوی‌تر از روز باند می‌کند. مس باند شده به مثالیت‌های مس سبب بهبود رشد و ضریب تبدیل خوراک گاردی که احتمالاً به واسطه رهایی فسفر، روی و سایر کاتیون‌ها مس‌بردن که این فیتباز مسیونی به جیره آزاد ماهی چینوگیرها کاهش شد که به خود شد و باندی به صورت و پروتئین دیده شد. این آنتی‌گیمسی جیره به نسبت داده شده، به طوری که تکمیل جیره‌های فیتباز با روز (35-4 گرم در کیلوگرم) نمک مس به جیره‌ها روی زمین‌های بار روی و آت‌یو انتخابی احتمالاً به دلیل اثر آنتی‌گیمسی مس و روی، آثار سبیل بر معیارهای فوق الذکر داشته است. علاوه بر این احتمال دارد مسمومیت زمانی با مس

136
جدول ۲: اثر مکمل فیتیاز و مس مازاد بر چربی، بروز از میزان‌های اندازه‌گیری شده در هر کیوگرم در گروه‌های آزمایش

<table>
<thead>
<tr>
<th>ماده چرب کبد (گرم در کیوگرم)</th>
<th>ماده چرب کبد (گرم در کیوگرم)</th>
<th>زن و مرد (گرم در پرتین)</th>
<th>نسبت خاص چربی (گرم در پرتین)</th>
<th>وزن پرتین (گرم در پرتین)</th>
<th>فنر (گرم در پرتین)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵/۰۷</td>
<td>۲۷/۰۷</td>
<td>۲۷/۰۷</td>
<td>۲۷/۰۷</td>
<td>۲۷/۰۷</td>
<td>۲۷/۰۷</td>
</tr>
<tr>
<td>۲۶/۰۳</td>
<td>۲۶/۰۳</td>
<td>۲۶/۰۳</td>
<td>۲۶/۰۳</td>
<td>۲۶/۰۳</td>
<td>۲۶/۰۳</td>
</tr>
<tr>
<td>۲۷/۰۰</td>
<td>۲۷/۰۰</td>
<td>۲۷/۰۰</td>
<td>۲۷/۰۰</td>
<td>۲۷/۰۰</td>
<td>۲۷/۰۰</td>
</tr>
<tr>
<td>۲۸/۰۹</td>
<td>۲۸/۰۹</td>
<td>۲۸/۰۹</td>
<td>۲۸/۰۹</td>
<td>۲۸/۰۹</td>
<td>۲۸/۰۹</td>
</tr>
<tr>
<td>۲۹/۰۶</td>
<td>۲۹/۰۶</td>
<td>۲۹/۰۶</td>
<td>۲۹/۰۶</td>
<td>۲۹/۰۶</td>
<td>۲۹/۰۶</td>
</tr>
</tbody>
</table>

افراد متفاوت در فیتیاز، مس

<table>
<thead>
<tr>
<th>ایون</th>
<th>فیتیاز</th>
<th>M</th>
<th>Fr</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸/۱۵</td>
<td>۲۴/۸۲</td>
<td>۲۴/۸۲</td>
<td>۲۴/۸۲</td>
<td>۲۴/۸۲</td>
</tr>
<tr>
<td>۲۸/۱۹</td>
<td>۲۸/۸۶</td>
<td>۲۸/۸۶</td>
<td>۲۸/۸۶</td>
<td>۲۸/۸۶</td>
</tr>
<tr>
<td>۲۸/۲۳</td>
<td>۲۲/۸۴</td>
<td>۲۲/۸۴</td>
<td>۲۲/۸۴</td>
<td>۲۲/۸۴</td>
</tr>
<tr>
<td>۲۸/۲۷</td>
<td>۲۸/۸۸</td>
<td>۲۸/۸۸</td>
<td>۲۸/۸۸</td>
<td>۲۸/۸۸</td>
</tr>
<tr>
<td>۲۸/۳۱</td>
<td>۲۸/۸۸</td>
<td>۲۸/۸۸</td>
<td>۲۸/۸۸</td>
<td>۲۸/۸۸</td>
</tr>
</tbody>
</table>

* در هر ستون بیانگر تفاوت معناداری میان میانگین دایره (۸/۰۰۳)
کاهش بازده پروتئین در جیره حاوی ۱۰۰۰ واحد فیتاز به علاوه ۱۵ میلی گرم در کیلوگرم مس بوده است. این احتمالاً مدیریت از این مس به صورت فیتنس است که قابل دسترس نیست. با این حال، از افزودن فیتاز و راه های دیگر از کمپلکس فیتات - اصلاح به همراه ۱۵ میلی گرم در کیلوگرم مکمل مس، احتمال مسمومیت مزمن را افزایش داده است. در مقایسه با خود (۵) میلی گرم در کیلوگرم مس در جیره (۲۰۰۰ میزان تحمل مس توسط بیماری باشند، به علاوه گزارش شده که ۲۳ میلی گرم مس در جیره کوب سبب کاهش رشد و کم خونی مزمن شده است (۱۹).

اثر اصلی فیتاز و مس نسبت بازده پروتئین معنی دار نبود و مقایسه جیره و اثرات متقابل مس و فیتاز نشان داد که جیره محتوی ۱۰۰۰ واحد فیتاز بیشتر و ۱۰۰۰ واحد فیتاز به علاوه ۱۵ میلی گرم کمک به نسبت بازده پروتئین را می رساند. اثر متقابل مس و فیتاز بازده پروتئین معنی دار (۳۰۰)

برخی بررسی ها این تأثیر فیتاز به استفاده از پروتئین در ماهی نشان می دهد (۳۱) (بهبود مشبکه بازده پروتئین با استفاده از مکمل فیتاز را گزارش کرده که با نتایج به دست آمده در این آزمایش مشابه است. فیتات با پروتئین کمکس تشکیل می دهد. از نظر نوری، هیدرولیز فیتات توسط فیتنو و پروتئین ها، فسفر و سایر کاننده های موجود در استخوان فیتات برای استفاده حیوان آزاد می سازد. فیتات از طرفی باعث کاهش تشکیل و از طرف دیگر سبب شکست، کمپلکس فیتنات - اصلاح - پروتئین می شود (۳۲) در این آزمایش فیتنات بهمراه مکمل مس به حاصل ۱۰۰۰ واحد فیتاز بدون مکمل بهتر پروتئین باشد. احتمالاً فیتاز علاوه بر این که مس را از کمپلکس فیتنات - اصلاح رها می سازد، با آزاد کردن پروتئین از این کمپلکس به جذب و حمل مس کمک می کند. مس منابع این صورت کمپلکس مس - پروتئین بدیع و حمل می شود (۲۰). ولی ریشه شده از این مسئله انتگرالیست بر مس دارد. این احتمال می تواند

مسمومیت مزمن با مس نیز وجود دارد. که احتمالاً می تواند
جدول ۳: اثر مکسیم و مس ماراد بر جریه در تركیب شیمیایی لاسته و خون ماهی کپور

<table>
<thead>
<tr>
<th>فشار</th>
<th>HDL</th>
<th>تری کلریلید</th>
<th>کسترون</th>
<th>فیبر (واحد دو کیلوگرم)</th>
<th>پروتئین</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/1</td>
<td>87/2</td>
<td>39/6</td>
<td>17/52</td>
<td>9/14</td>
<td>22/45</td>
</tr>
<tr>
<td>20/2</td>
<td>34/7</td>
<td>13/51</td>
<td>10/42</td>
<td>1/15</td>
<td>4/95</td>
</tr>
<tr>
<td>19/3</td>
<td>9/41</td>
<td>34/8/5</td>
<td>8/11</td>
<td>1/20</td>
<td>4/82</td>
</tr>
</tbody>
</table>

مس (میلی‌گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>فشار</th>
<th>مس</th>
<th>فیبر</th>
<th>پروتئین</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/1</td>
<td>5/8</td>
<td>15</td>
<td>9/88</td>
</tr>
<tr>
<td>20/2</td>
<td>17/81</td>
<td>10/24</td>
<td>9/89</td>
</tr>
<tr>
<td>19/3</td>
<td>15</td>
<td>1/20</td>
<td>4/11</td>
</tr>
<tr>
<td>18/4</td>
<td>5/8</td>
<td>15</td>
<td>9/89</td>
</tr>
<tr>
<td>19/5</td>
<td>15</td>
<td>1/20</td>
<td>4/11</td>
</tr>
<tr>
<td>18/6</td>
<td>5/8</td>
<td>15</td>
<td>9/89</td>
</tr>
<tr>
<td>19/7</td>
<td>15</td>
<td>1/20</td>
<td>4/11</td>
</tr>
<tr>
<td>18/8</td>
<td>5/8</td>
<td>15</td>
<td>9/89</td>
</tr>
</tbody>
</table>

* a,b,c: اختلاف معنی‌دار بین میانگین‌ها*
زمانتکه فسفر قابل دسترس جیب به بیش از سطح نیاز نباد. 

تغییری در سطح فسفر درون دیه نمی‌شود.

اندازه‌ی متابولیت‌های فسفر در پرتونین دارای اثر متفاوتی بر سرعت مقایل مس و روی باشند. به علاوه فیتاز سبب مشاهده شدن مربوط به دارای یکمیکلکس اتمای - پرتویت نیز می‌گردد. مس برای جذاب نیازهای پرتویت دارد. افزایش روز در روز تیگریگر متابولیت‌های افزایش می‌دهد و این پرتویت در ایجاد مس در کبد نقص بیسایری دارد(33).

همچنان در جدول 3 نشان داده است، مکمل فیتاز و مس هری کربن‌برتر کیمیابی لاستیک (پرتویت، چربی و فسفر و خاکستری) (ناهیدن). گیاه 1000 واحد فیتاز به طور معنی‌داری (p<0.01) بالاتر است. فسفات را فیتاز داده به علزلی

می‌رسد این مقدار فسفر در سطح شده بیشتر در رفع نیاز کربن

فیتاز به کار رفته و غلیظاً در سوخت و ساز سلولی شرکت داده‌

تا ایفای بنر و با پیشی از طریق ادار دفع شده باشد. این نتایج

موافق با گزارش‌های مکمل و همکاران(7) است که نشان داده‌

افزایش سطح فسفر قابل دسترس جیب اثر معنی‌دار بر فسفر

کل بدن در فرآیند رنگ شدن و رنگ کننده در این مطالعه می‌باشد.

چنین این نتایج گزارش ولی و همکاران (31) مبتکر و اثر مکمل فیتاز در

افزایش خاکستر استخوان ماهیان تغذیه شده با چربی‌های حاوی

سوريا را تأیید می‌کند. در حالی که با تغذیه کنین و همکاران (4) 

که گزارش مربوط مکمل فیتاز نبوده بود افزایش خاکستر استخوان

و ایفای فسفر در ماهیان تغذیه شده با سورینا شد، مقایسه‌ی دارد.

همچنین در جدول 3 دیده می‌شود که فیتاز اثری بر ترکیب

شیمیایی خون (کلسترول، چربی و فسفر) ندارد. مس و HDL

ویا سبب کاهش گیبری ریخت خون شد (p<0.01). این

نتایج مطلب با تأثیر سوگیری و همکاران (32) است که نشان

داده مربوط به درون دیه نمی‌شود. افزایش سطح فسفر

طرح و همچنین مشابه ترکیب ترکیب فراهم می‌باشد. این اثر

می‌باشد و افزایش کربن‌های کربن کربن‌ها و

امکان کاهش انرژی سطح و دیگر تجزیه‌های مورد نیاز

برروش تشکر و قدردانی می‌گردد.

پیشگزاری

از مسئولین محترم دانشگاه کشاورزی دانشگاه صنعتی اصفهان، 

به خاطر ایجاد تسهیلات لازم و گزارش‌های طرح و

همچنین شرکت‌های تهیه فراهم نمودن آزمایش و

نسبت مسئولین محترم پنل و پرورش ارزیابی آزمایش

اصفهان به منظور اطمینان استخراج و دیگر تجزیه‌های مورد نیاز

برروش تشکر و قدردانی می‌گردد.
مانند مورد استفاده

1. کرمی، ا. 1375. اثر سطوح مختلف مس و وینیتامین C مازاد بر انتخابات غذایی بر میزان کلسترول و دیگر اجزای سرم خون و عملکرد طیور گوشتی. پایان‌نامه کارشناسی ارشد، علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.


