اثرات روش‌های مختلف تهیه بستر بر رشد روشی، عملکرد و اجزاء عملکرد مانش

پژوهشگر

رضایت‌مندیان و محمدرضا خواجه‌پور

چکیده

محدودیت زمان برای پویسیگی نقایسی محصول قبلی و انجام عملیات کامل تهیه بستر در کشت مضاعف، سبب ضرورت کاهش خاک‌وردی و پروز مشکلات مربوط با آن می‌گردد. از ادجایی که در ارتباط با سایر تهیه بستر در کشت متولی گندم - مانش در اصفهان اطلاعاتی در دست نیست، اثرات روش‌های مختلف تهیه بستر در کشت متولی گندم - مانش بر رشد، عملکرد و اجزاء عملکرد مانش (لاین آزمایشی 16-62 از سال 1375 در مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه اصفهان مورد بررسی قرار گرفت. در نیم‌سال حفظ وزن سوزاندن نقایسی چهار روش تهیه بستر کاشت، به‌ترتیب تحت نامهای گیاهان پرگدنده، دیسک، خیش‌چی و عدم خاک‌وردی، با یک‌گروه طرح کنترلی توزیع در قالب بلورهای کامل تعادلی، در چهار تراریزیه شد. به‌پایان وضعیت استقرار و رشد‌گاهان در شرایط سوزاندن نقایسی، سبب توافق معنی‌دار تعادل بیوتی در واحد سطحی و زن خشک اندام‌های هوایی، تعادل‌گر در سطح فرعی، ارتفاع بیوتی، تعادل غلاف در سطح فرعی، در بیوتی و در متریوم، تعادل داهن در غلاف سطحی اصلی و سطح‌های فرعی، تعریق بیوتی، عملکرد دیسک، عملکرد پرگدنده و شاخص بردانتی گردید. تراکم بیوتی زیادتر در این شرایط، سبب کاهش معنی‌دار تعادل سطح‌های فرعی و تعادل غلاف در سطح‌های فرعی شد. شرایط مطلوب استقرار و رشد در تیمارهای دیسک و گیاهان پرگدنده، سبب افزایش معنی‌دار تراکم بیوتی و زن خشک اندام‌های هوایی، تعادل‌گر در سطح فرعی، ارتفاع بیوتی، تعادل غلاف در سطح فرعی و در متریوم، تعادل داهن در غلاف سطحی اصلی و سطح‌های فرعی، تعادل داهن، عملکرد دیسک و عملکرد پرگدنده و شاخص بردانتی گردید. تمریم عمل جایگزین کیفیتی کمترین مقایسه را در خصوصیات فوق ذکر، براساس نتایج حاصله استفاده از دیسک تحت شرایط سوزاندن نقایسی ممکن است مطلوبتر از بقیه روش‌های تهیه بستر از نظر عملکرد داهن، در شرایط مشابه آزمایش حاضر باشد.

واژه‌های کلیدی - بستر کشیده، بستر روشی، اجزاء عملکرد، عملکرد داهن

مقدمه

در شرایط کشت مضاعف، استفاده از روش‌های کاهش دیم (8، 10 و 18) و کاهش فرسایش خاک (4، 5، 10 و 13) ارجحیت بیشتری دارد (19). این امتیازات موجب شده است تا عملیات خاک‌وردی نسبت به روشن معمول خاکوزی به جهت صرف‌جویی در زمان (5) انرژی و هزینه‌های نیروی (10) و

- به‌ترتیب دانشجوی‌های کارشناسی ارشد زراعت، دانشگاه‌های زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
سیستم‌های مختلف کاشت عمليات خاكوروزی از قبل شروع کاشت، با کشت بدن خاكوزی و گرم فرض برای پودرگی بقا‌ي محصول قبل با مشکل مناسب تراکم خاك (21 و 26)، تداخل بقا‌ي گیاهی در استقرار محصول (24 و 28)، انوازه غلظت فردرکسما (15، 17 و 18) همراه می‌باشند. شدت این مشابه و کارآیی نسبی روشنایی خاكوزی به خط مشخص محصول قبل در تناوب و نحوه کاشت آن خاك و توزیع بازدگی بستگی دارد و بازدهی آن در مناطق مختلف بسیار نسبت (5 و 6) مطالعات مختلف اثرات ناحیه‌گذاری خاكوزی را اقامت گیاه و تراکم خاك (16، 17) را افزایش می‌دهد و تجربه ماه خاكوزی گیاه (21) نشان داده است. در حالی که در مطالعات اخیر (12 و 13) روشنایی مختلف بهتر بر ارتقاء و میزان ماه خاك تولید شده در سفره می‌باید تأثیر آن را نسبت به مورد اثربخشی خاكوزی بر عملکرد گیاهان نیز تشخیص است. افروز (11) در بزرگی آن‌ها در سیستم خاكوزی (سپر دیسک تاندون در مقایسه با خاكوزی بر روی سر اتی لای و لاوی) در پرزیس تاریخ چهار روز خاكوزی روز دوی مشاهده کرد که روشنایی بهتری داشت تأثیری بر عملکرد گیاه نداشت. در صورتی که در مطالعات دیگر و همکاران (8 روز سوار و ویرو و همکاران (16 روز گندم، عملکرد یکپارچه در شرایط گردیده است. ظاهر خاكوزی مختلف بهتر بر است زیر نтелه خاكوزی مناسب است از طریق تأثیر بر محسوبات زیستی و شیمیایی (14، 17 و 18) و رشدتی (15 و 19) و دمای خاك (11، 12 و 25 روز رشد) نمو و عملکرد گیاه تأثیر معنی‌دار طبقه‌بندی می‌گردند. (19).
روش‌های گیاهی و تجمیع ماده خشک در واحدهای سطح داشته است. در این زمینه تجاوز مشابهی در طول دیگران (۱۸، ۲۴ و ۲۵) نیز گزارش شده است.

تعداد ساقه فرعی در بوته به طور معنی‌داری تحت تأثیر عوامل آزمایشی قرار گرفت. تعداد ساقه فرعی در تیمار حفظ بیانیه از روی سوزاندن بیانیه بود. همچنین تحت تیمارهای خشیچی و عدم خاکرزی، تعداد ساقه فرعی بیشتری در بوته نسبت به تیمارهای کاوشان برگداندار و دیسک تولید شد (جدول ۴). افزایش ساقه فرعی در بوته به طور معنی‌داری تحت تأثیر عوامل گیاهی و تیمارهای خشیچی و عدم خاکرزی را می‌توان تیهای کاوش تراکم بوته در واحدهای سطح از دریایی (جدول ۱) دانست (۰/۸۵۳ ± ۰/۷). در شرایط کم بودن تراکم بوته، انتظار می‌رود رقابت کمتری بین هر مرحله با کاهش چسبگی جوانه‌ها افرادی (از طریق تجزیه اکسیسن) سبب شود. این بوته شده و مواد غذایی فشرده شده و نشانه‌های جنبه‌های گرد (۲۰) و تعداد ساقه فرعی بیشتری در بوته حاصل شود.

بین روش‌های حفظ و سوزاندن بیانیه گیاهی و تیمارهای مختلف خاکرزی از نظر تعداد گره در ساقه اصلی تفاوت معنی‌داری وجود نداشت. اما تعداد گره در ساقه‌های فرعی به‌طور معنی‌داری تحت تأثیر تیمارهای بیانیه و حاکمرزی قرار گرفت. تعداد گره در ساقه‌های فرعی در روش حفظ بیانیه به مقدار بیشتری نسبت به سوزاندن بیانیه و در تیمارهای خشیچی و عدم خاکرزی نسبت به گروه گیاهان برگداندار و دیسک کمتر بود (جدول ۴). ظاهراً افزایش تعداد ساقه فرعی در بوته در روست حفظ بیانیه و در تیمارهای خشیچی و عدم خاکرزی (جدول ۴) همراه با کاهش طول دوره رشد گیاه‌ها (۱/۱) نمایش تعداد کمتر در جانب ساقه‌های فرعی در بوته را به همین امر و مرحله‌کاوش می‌کند. سایر تعداد گره در ساقه‌های فرعی به صورت معنی‌دار است.

ارتقای بوته به‌طور معنی‌داری تحت تأثیر تیمار بیانیه قرار گرفت. تیمار حفظ بیانیه نسبت به سوزاندن بیانیه ارتقای بوته کمتری داشت (جدول ۲). این نکته به‌طور مطلق دیگر (۲۱) و (۲۴) نیز گزارش شده است. به‌نظر می‌رسد تأثیر بی‌پایه.
جدول ۱ - تأثیر عوامل آزمایشی بر تراکم بوطه در ۲۲ روز پس از کاشت و وزن خشک برق، ساقه، غلاف و کل انرژی هوای در ۷۹ روز پس از کاشت

وزن خشک (گرم در متر مربع)	تعداد بوطه	عوامل آزمایشی	برق	ساقه	غلاف	کل انرژی هوای	یکانی	میزان
۷۰۱ a	۲۱۸ a	۱۴۶ a	۳۱۵ a	۲۹/۲ a				
۵۷۹ b	۱۷۳ b	۱۴۷ b	۲۸۸ b	۴۶/۸ b				
۷۰۰ a	۲۱۶ a	۱۶۴ a	۳۱۹ a	۵۱/۵ a				
۶۸۷ a	۲۱۳ a	۱۶۷ a	۲۸۸ a	۵۱/۱ a				
۶۴۰ b	۱۸۸ a	۱۵۹ ab	۲۸۲ b	۴۵/۵ b				
۵۴۴ c	۱۶۴ c	۱۳۸ b	۲۴۰ c	۳۷/۰ c				

- اعداد هر عامل آزمایشی در هر ستون که در یک حرف مشترک هستند تفاوت آماری برساسی آزمون دانکن در سطح احتمال ۵% می‌باشد.

جدول ۲ - تأثیر عوامل آزمایشی بر تعداد ساقه فرعی، تعداد گره در ساقه اصلی و ساقه‌های فرعی و ارتقاع بوطه

<table>
<thead>
<tr>
<th>عوامل آزمایشی</th>
<th>تعداد ساقه</th>
<th>تعداد گره در بوطه</th>
<th>ساقه اصلی</th>
<th>ساقه فرعی (سانتیمتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>یکانی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷۹/۹ a</td>
<td>۲/۵۹ a</td>
<td>۹/۵۳ a</td>
<td>۳/۴۷ b</td>
<td></td>
</tr>
<tr>
<td>۶۸/۷ b</td>
<td>۲/۷۲ b</td>
<td>۹/۵۱ a</td>
<td>۲/۸۲ a</td>
<td></td>
</tr>
<tr>
<td>۷۰/۸ a</td>
<td>۲/۴۴ a</td>
<td>۹/۵۲ a</td>
<td>۲/۳۹ c</td>
<td></td>
</tr>
<tr>
<td>۶۷/۸ a</td>
<td>۲/۳۳ a</td>
<td>۹/۵۴ a</td>
<td>۲/۴۰ c</td>
<td></td>
</tr>
<tr>
<td>۶۶/۸ ab</td>
<td>۳/۷۸ a</td>
<td>۹/۶۸ b</td>
<td>۲/۴۸ a</td>
<td></td>
</tr>
<tr>
<td>۵۰/۸ c</td>
<td>۳/۸۸ b</td>
<td>۹/۶۵ a</td>
<td>۳/۶۰ a</td>
<td></td>
</tr>
</tbody>
</table>

- اعداد هر عامل آزمایشی در هر ستون که در یک حرف مشترک هستند تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵% می‌باشد.
تعادل فلاغ در بوته و در واحد سطح تحت تأثیر تیمار بقاها قرار گرفت. تیمارهای خاکوروزی تأثیر معنی‌داری بر تعادل فلاغ در بوته نداشتند. اما بر تعادل فلاغ در واحد سطح به‌طور معنی‌داری تأثیر نمودند. بهترین تیمار بقاها ۱ در جدول ۱ و ترکیباتی که در جدول ۲ و ۳ قرار داشتند، اثرات بیان‌سازی یافته در جدول ۱ و ترکیباتی که در جدول ۲ و ۳ قرار داشتند، اثرات بیان‌سازی یافته در جدول ۱ و ترکیباتی که در جدول ۲ و ۳ قرار داشتند، اثرات بیان‌سازی یافته در جدول ۱ و ترکیباتی که در جدول ۲ و ۳ قرار داشتند.

در مطالعات محققین دیگر (۱۷ و ۱۸) نیز روشهای مختلف خاکوروزی تأثیری بر تعادل غلظت در بوته نداشتند. افزایش تعادل غلظت در واحد سطح در روش سوزاندن بقاها و تیمارهای گاو-آهن برگراندار و دیسک بهبود وضعیت استقرار گیاهان (۱) و ترکیب بوته بهبود و تکرار بوته در واحد سطح

تعادل فلاغ در دسته‌های مختلف است. با توجه به نتایج تعادل فلاغ در سطح کلیشه در جدول ۱ و ترکیباتی که در جدول ۲ و ۳ قرار داشتند، امری به‌طور تامل آزمایشات واقع نشد. تعداد دانه در سطح فرعی تعادل تیمارهای آزمایشات واقع N

جدول ۳ - تأثیر عوامل آزمایشی بر اجزاء عملکرد

<table>
<thead>
<tr>
<th>عوامل آزمایشی</th>
<th>سطح اصلی ساقه‌های فرعی بوته</th>
<th>مترمراجع</th>
<th>تعداد غلاف در ساعت‌های فرعی</th>
<th>ساعت‌های اصلی ساقه‌های فرعی</th>
<th>تعداد دانه در غلاف</th>
<th>تعداد دانه در دانه‌گاز (گرم)</th>
<th>وزن هزار</th>
</tr>
</thead>
<tbody>
<tr>
<td>بقا ای گیاهی</td>
<td>۱۱/۲۲ ۳/۷ ۳/۷ا</td>
<td>۸/۱۲۵ک</td>
<td>۶/۱۶ ۴/۸۲ ۴/۸۲ا</td>
<td>۸/۳۰ ۸/۳۰ا</td>
<td>۲۶/۵۲ ۲۶/۵۲ا</td>
<td>۸۴/۷۳ ۸۴/۷۳ا</td>
<td>۴۱/۶ا</td>
</tr>
<tr>
<td>حفظ بقا</td>
<td>۸/۱۰ ۸/۱۰ا</td>
</tr>
<tr>
<td>دیسک</td>
<td>۷/۱۰ ۷/۱۰ا</td>
</tr>
</tbody>
</table>

- اعداد هر عامل آزمایشی در هر ستون که در یک حرف مشترک هستند قابل تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵% می‌باشند.
جدول ۲ - تأثیر عوامل آزمایشی بر عملکرد دانه (کیلوگرم در هکتار)، عملکرد بیولوژیک (گرم در مترمربع) و شاخص برداشت (درصد)*

<table>
<thead>
<tr>
<th>عوامل آزمایشی</th>
<th>عملکرد دانه</th>
<th>عملکرد بیولوژیک</th>
<th>شاخص برداشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱/۱ a</td>
<td>۷۵۳ a</td>
<td>۲۲۷۳ a</td>
<td></td>
</tr>
<tr>
<td>۲۶/۶ b</td>
<td>۲۷۶ b</td>
<td>۱۸۷۶ b</td>
<td></td>
</tr>
<tr>
<td>۲۱۹/۴ a</td>
<td>۷۵۱ a</td>
<td>۲۱۸۴ a</td>
<td></td>
</tr>
<tr>
<td>۲۹/۹ a</td>
<td>۷۶۴ a</td>
<td>۲۱۸۴ a</td>
<td></td>
</tr>
<tr>
<td>۲۹/۳ a</td>
<td>۹۹۴ b</td>
<td>۱۹۳۹ b</td>
<td></td>
</tr>
<tr>
<td>۲۴/۹ b</td>
<td>۵۹۰ c</td>
<td>۱۲۳۲ c</td>
<td></td>
</tr>
</tbody>
</table>

* اعداد هر عامل آزمایشی در هر ستون که در یک حرف مشترک هستند تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵% قابل بیان است.

خاکرزی (۱)، همراه با افزایش تعداد ساقه‌های فرعی در بوته (جدول ۱) و تعداد غلاف در ساقه‌های فرعی در این تیمارها (جدول ۲)، سبب افزایش قیمت درون گیاهی در جهت انتقال مواد فتوسنتزی به گل آدنی‌ها شده که نتیجه آن تشکیل دانه‌های کمتر در غلاف ساقه‌های ساقه‌های فرعی تحت تیمارهای ذکر شده می‌باشد. به هر حال، افزایش تعداد غلاف در ساقه‌های فرعی، به دلیل آزادی جیران کننده کاهش تراکم بوته تحت تیمارهای خیش‌چی و عدم خاکرزی و روش حفظ بقا (جدول ۱)، توانست اختلاف تعداد دانه در ساقه‌های فرعی را به تیمارهای دیگر از بین ببرد (جدول ۲).

تعداد دانه در ساقه‌های فرعی حدود ۲۳% تعداد دانه در ساقه اصلی هر بوته بود. از آنجا که در هر بوته بهطور میانگین ۲/۶۴ ساقه فرعی وجود داشت، نتایج این برابری هر ساقه فرعی از نظر تعداد دانه حدود ۱۴% ساقه اصلی بوته بود این نتایج افزایش تراکم بوته و در نتیجه تعداد ساقه اصلی در هر حدود سطح می‌تواند موجب افزایش عملکرد گردد، هر چند که این امر ممکن است سبب کاهش تعداد ساقه فرعی در واحد سطح شود. همچنین در مطالعه بوته و آندرسون و رایجر (۲۷) فراهمی عنصر غذايی
شکل 1- اثر مقاومت پیچی گیاهی با خاکورزی بر عملکردهای دانه. ستوهایی که درد در حرف مشترک هستند

فاقد تفاوت آماری براساس آزمون دانکن در سطح احتمال 5% معنی ندارند.

عملکرد فعلی، بخصوص تیمار‌زنانه از تیمار سوزاندن بقایا در دلیل بهبود رشد رشته و اندازه عملکرد دانه، در این شرایط ذاتی‌اند. بخش بودن عملکرد دانه در روش‌های خاکورزی با روش‌های خاکورزی می‌تواند و استقراض مطلوب گیاهان را در جدول 1 همراه با کاهش تراکم خاک و خاکورزی (جدول 2) و تعداد زیادتر دانه در ساقه اصلی (جدول 3) در این تیمارها نسبت داد. برخی از مطالعات (17, 23 و 25) افزایش عملکرد در سیستم‌های خاکورزی معنی‌دار این تحقیق بهبود وضعیت استقراض گیاهان و برخی دیگر (5, 18 و 26) و کاهش تراکم خاک و رشد بهبود وضعیت رشد در خاک و در نتیجه اندامهای هرایی ذاتی‌اند.

اگر تیمار‌زنانه با خاکورزی بر عملکردهای پژوهش و شاخه برداشت معنی‌دار بود، عملکرد پژوهش تحت تیمار حفظ بقایای گاهی کاهش یافته و کاهش بقایای گیاهی (15%) و بهبود و استقراض مطلوب گیاهان را به خوبی اختصاص دادند (جدول 4). بخش بودن عملکرد پژوهش و تحت تیمار سوزاندن بقایا
علوم و فناون کشاورزی و منابع طبیعی/جلد سوم/شماره اول/پیام

توپلید دانه (جدول ۳)، سبب کاهش شاخص برداشت در این تیمارها شد باشد. در مجموع میکم این نتیجه در کشت ویژه نمود که در کشت مضافات گندم و ماس، تیمار دیسک در شرایط سوزندان بقا با مطلوب تر از نتیجه روش اصلی بهتر می‌باشد. با این حال اندازه‌گیری مولکول‌های بکون با استفاده از دیسک در شرایط حفظ بقا نیز بی‌روان عملکرد دانه را در حد مطلوبی افزایش داد، مشروط به این که از مقدار زیر بیشتری همراه با مصرف میزان کافی عنصر غذایی، خصوصا تروژ، در ابتدای دوره رشد گیاه (جهت جابر آلی شدن عنصر غذایی) استفاده گردد.

و تیمارها گوآن روش گرداندن و دیسک می‌توان نتیجه به‌همراه وضعیت استقرار گیاهان (جدول ۱) و اثرات بهبود کمی و کیفی بستر شد. گیاه در این تیمارها (۱) دانست. نتایج مشابه در سایر مطالعات (۳، ۴، ۶، ۱۷، ۱۸ و ۲۲) به‌دست آمده است. کمتر بودن شاخص برداشت در شرایط حفظ بقا و میزان عدم خاکوزی (جدول ۴) نتیجه آن دانست. این شکل عملکرد دانه به پیشنهاد بیشترین تأثیر در این تیمارها جستجو نمود. وجود همبستگی بیشتر بین شاخص برداشت با عملکرد دانه (F=۸۸.۹۸، P<0.۰۱) در مقایسه با عملکرد پیونزیک (F=۷.۹۹، P<0.۰۵) با این نتیجه گیری هم‌اکنون است. احتمال می‌رود که تعداد بیشتری ساقه‌های فرعی در بیشتر نتیجه حفظ بقا و میزان عدم خاکوزی (جدول ۲) و پایین‌تر بوده ساقه‌های فرعی در منابع مورد استفاده

۱- جمشیدیان، ن.۱۳۸۷. بررسی اثرات روش‌های مختلف تهیه بستر بر عملکرد افزایش عملکرد ماسی (قرن ۱۶–۱۶) در اصفهان.

۲- کریمی، م.۱۳۸۶. آب و هوا، منطقه مرکزی ایران. انتشارات دانشگاه صنعتی اصفهان.

16- Izaurralde, R.C., J.A. Hobbs and C.W. Swallow. 1986. Effects of reduced tillage practices on continuous
18- Kamprath, D.K., E.D. Cassel, E.J. Gross and D.W. Dibb. 1979. Tillage effects on biomass production and
York.
21- Mock, J.J. and D.C. Erbach. 1977. Influence of conservation tillage environments on growth and
management effects on properties of Ultisol and double-cropped soybean production. Agron. J.
79:570-576.
74:1032-1034.
24- Swanson, S.P. and W.W. Willhelm. 1996. Planting date and residue effects on growth, partitioning, and
J. 88:507-512.
26- Tuchton, J.T. and J.W. Johnson. 1982. Soybean tillage and planting method effects on yield of
27- Undersander, D.J. and C. Reiger. 1985. Effect of wheat residue management on continuous production of