تدوین معادلات حسابی هیدرولیکی مدولهای تیغه‌ای و بررسی اثر تغییرات کمی شاخص حساسیت در شرایط بهره‌برداری

چکیده
به‌ره‌برداری شکوه‌های آبیاری، نتیجه‌یک فرآیند تصمیم‌گیری است که در آن سه عامل ضریب انرژی و نوعی مواد غذایی موجود سازوکار، ترافیک کنتور و رفتار هیدرولیکی سیستم نش کلیدی ایفا می‌نماید. این سه عنصر به‌ویژه در منطقه‌ای ممکن است تأثیر غیر مطلوبی بر این تغییرات کمی شاخص حساسیت هیدرولیکی سازوکار داشته باشد. این سه عنصر به‌ویژه در منطقه‌ای ممکن است تأثیر غیر مطلوبی بر این تغییرات کمی شاخص حساسیت هیدرولیکی سازوکار داشته باشد.

نتایج محاسباتی انجام گرفته روی داده‌های موجود و استحکام جریان چند مدول از شکوه آبیاری دشت فرزین، بیانگر تغییراتی مقدار حساسیت هیدرولیکی این ای gag در شرایط بهره‌برداری است. در بخشی از موارد این تغییرات به‌ویژه از 100 درصد می‌رسد. تغییر در مقدار کمی حساسیت جریان به‌وسیله تغییرات در این داده‌ها یک تغییرات در سطح شکوه بیش از 30 درصد می‌باشد. بنابراین، این محاسبات می‌تواند به‌عنوان میزان کمی تغییرات در سطح شکوه در سطح سازوکار داشته باشد.

واژه‌های کلیدی: آبخور، انتقال‌تولید، بهره‌برداری، سازوکار، تیغه‌ای، مدل

مقدمه
به‌ره‌برداری شکوه‌های آبیاری، نتیجه‌یک فرآیند تصمیم‌گیری است که در آن سه عامل ضریب انرژی و نوعی مواد غذایی موجود سازوکار، ترافیک کنتور و رفتار هیدرولیکی سیستم به‌ره‌برداری نش
خصوصیات هیدرولیکی سازه‌ها عنوان می‌شود (12). رفتار سنجی جیران در شبکه‌های آبیاری با استفاده از روابط جیران‌های مانندگار و غیرمانندگار صوتی می‌یابد. بر این اساس مدل‌های هیدرودینامیک به‌منظور پایان‌های همه کمک‌رسانی جیران و ارزیابی عملکرد هیدرولیکی شبکه‌های آبیاری را فراهم می‌نماید. از جمله مهم‌ترین این مدل‌ها می‌توان به Mike, Modis, Sobek, Regvar, Canvar و مدل‌های نرم‌افزار Crude, Iccs, Procan, Carima, Canalced, Canalman نام برد (13).

وجود جمله‌های شیبی ساز علی‌رغم مناطقی که قابل توجه در پیش بینی وضعیت جیران به‌دلیل پیچیدگی کاری به حلال نظر پهناوی و مولفه‌های پیش‌بینی شبکه‌های آبیاری را به خود جلب نکرده است. از این رو هنوز نیاز به توسعه متدولوژی‌های سازه‌ها به منظور تحلیل جیران در سطح شبکه‌های آبیاری احساس می‌شود (14). روش آنالیز حساسیت هیدرولیکی سازه‌های (Sensitivity Analysis Approach) آبیاری در هنگام راستا طرح و توسعه به‌انتهای است. این روش یک شبیه‌سازی است. ما بین شبیه‌سازی سازه و محدودیت برأسس معادلات جیران دیسی و شبیه‌سازی پیچیده و هر اساس براساس معادلات جیران قدرادیمی. از این رو به‌کارآمدی است. انسجام است. رفتار سنجی می‌تواند به تغییرات پارامترهای ورودی سنجیده‌شود. شاخص حساسیت هیدرولیکی یک سازه آبیاری به عنوان نسبت تغییرات نسبی و یا مطلق پارامترهای هیدرولیکی خروجی به تغییرات نسبی و یا مطلق پارامترهای هیدرولیکی ورودی تعیین می‌شود (11). (12).

طبق تعیین دسته‌بندی شناخته‌شده: [1] تغییرات پارامترهای هیدرولیکی ورودی تغییرات پارامترهای هیدرولیکی خروجی = حساسیت هیدرولیکی سازه در این شیوه، پاناکلیفیک سیستم نسبت به کنترل نوسانات و اختلالات ورودی و راهبردهای ارزیابی می‌گردی. داشت آنالیز حساسیت سازه‌های آبیاری، سعی بر پاسخ‌گویی پنج سوال

122
ارائه روابط محاسبه حسابی هیدرولیکی مدل‌های تیغه

فرضیه هیدرولیکی جریان از سازه‌های آیپیک و تنظیم کننده، متأثر از در مسیر حرکت گرایی از روزنامه‌های (مرحله سپرده) و ورود آن به کانال پایین دست سازه (مرحله دوم) می‌باشد (شکل 3) مساحت همکاری‌های عمومی دیتی و وضعیت این دو مرحله ارتباط یافته می‌تواند به صورت زیر نمایش داده شود (11):

\[q = aA_w (H_{US} - H_{DS})^\alpha \] \hspace{1cm} [2]

\[q = b(H_{US} - H_{REF})^\beta \] \hspace{1cm} [3]

در روابط فوقی \(q \) نمایانده قدرت عمک جریان از سازه، \(A_w \) سطح مقطع جریان که به عنوان ثابت از میزان تنظیم یک بار زمانی می‌باشد، \(H_{US} \) و \(H_{REF} \) ضرایب رابطه که در کانال اصلی بالادست و در کانال فرعی پایین درست سازه ارتفاع سطح مرجع ثابت که می‌تواند کافی کانال بود. \(H_{DS} \) ضریب تاکید سازه در کانال فرعی پایین و \(\alpha \) و \(\beta \) ضرایب تاکید سازه در کانال فرعی پایین و \(\gamma \) رقوم تاکید سازه در کانال فرعی پایین در شرایط جریان آزاد از سازه، رابطه (2) حذف شده و نهایتا در جریان از حاکمیت نگه داشته می‌شود.

در حالت سری یا افزایش تیغه می‌باشد صورت نمایشی (Overshot Flow) به عنوان عمک آب روي تاج و در جریان از زیر سازه، (Undershot Flow) به عنوان عمک جریان در

کانال) و استخراج چند رابطه تحلیلی در این مقول وارد مرحله جدیدترین گردهده است (13) هم اکنون نیاز به تغییرکننده از دیگر نیروزیک تغییرکننده است. مدل‌های تیغه (Baffle Modules) از جمله مناسب‌ترین ابزار تغییر جریان بهدست آمده که امروزه در سطوح مختلف به‌همراه و مدیریت‌سیستم‌های شکاف و توصیف می‌شوند. این توزیع کننده‌ای که پدیده بالایی در بین مولتیالی امور شکاف‌ها و بهره‌برداری می‌باشد.

مدل‌های تیغه شامل یک استقلال فازی استادان بوده که نتایج خروجی‌های پیش‌رفته طول به‌کلان توضعی می‌باشد. به روش همبسته یک از مقاطع خروجی، یک بند روزنامه فلزی نصب شده که خروجی را به صورت تغییر روزنامه یا سطح مقاطع خروجی قابل تنظیم تبدیل می‌کند. در این مقاله به هر یک از این خروجی‌ها یک دریچه اطلاق می‌گردند. شکل‌های 1 و 2 به‌ترتیب شماتیک یک مدل تیغه‌ای بوده و پیش‌رفسی طولی جریان در یک دریچه ضریب از همین نوع مدل‌های را تایش می‌کند (7).

بسیار به مقدار عمک جریان بالادست مدل، حس وضعیت هیدرولیکی متفاوت برای جریان‌های عموری از این سازه به وقوع می‌پیوندد (8 و 9).

- در عمک‌های کم، سرعت‌های حجمی در جریان‌ها را کاهش می‌دهد.
- در عمک‌های بالا، سرعت‌های حجمی در جریان‌ها را کاهش می‌دهد.
- با افزایش عمک جریان، تیغه مدول وارد عمل شده و روزنامه جریان را از حالت سریز آزاد (Weir) تغییر می‌دهد. در این بررسی محدوده تغییر جریان از حالت سریز آزاد به روزنامه، منطقه انفعالی جریان نامیده گردید.
- با افزایش عمک و آب افزایش نتیجه در روزنامه افزایش می‌یابد. در این محدوده شامل افزایش در اضافه کاهش یک می‌کند.

مدول‌ها در در سری‌بندی به دیهای ویژه 0.500 و 0.200 طراحی شده‌اند. این پنجره سیستم به تعداد تیغه‌ها lit.s.dm
شکل ۱. شماره‌ی از یک مدل تیغه‌ای نوع

شکل ۲. پروفیل طولی چرخان در یک دریچه از مدل نوع یک تیغه‌ای

شکل ۳. وضعیت چرخان در سازه‌ای آبنما
نادوین معادلات حسابی هیدرولیکی مدولهای تغییرات، و بررسی اثر تغییرات…

محدوده‌ی روزنه‌ی با دریچه در نظر گرفته می‌شود. جریان در مدولهای به صورت ترکیبی از جریان از رو و از زیر سازه صورت می‌گیرد.

با جمع روابط ۲ و ۳ و متقاطع نسبت به متغیرهای و \(H_{US} \) فرض ثابت بودن رابطه ۲ به دست می‌آید:

\[
\frac{dH_{US}}{dq} = \left(\frac{\sqrt{\alpha}}{\beta} (H_{US} - H_{DS}) + \frac{\alpha}{\beta} (H_{DS} - H_{REF}) \right)
\]

با تعویض \(H_{US} \) به صورت رابطه ۵ و چاگذاری در رابطه فوق، رابطه ۶ به دست می‌آید:

\[
\frac{dH}{q} = \frac{H_{US} - H_{DS}}{\frac{\alpha}{\beta} (H_{DS} - H_{REF})}
\]

مقدار افت بار معادل می‌باشد. افت بار معادل از یک ایبگر ویژه برای با تریاپی از همان نوع ایبگر با همان مقدار حساسیت اما تحت شرایط جریان آزاد در نظر گرفته می‌شود. مقدار در شرایط جریان آزاد، معادل خواهد بود. با توجه به روابط ۱ و ۲ حساسیت جریان تحت‌ویلی به تعیین مقدار عمق جریان در بالادست سازه‌ای ایبگر (حساسیت هیدرولیکی سازه) از رابطه زیر قابل محاسبه می‌باشد.

\[
\frac{dq}{dH_{US}} = \frac{\alpha}{H_{E}}
\]

به منظور تجربه حساسیت مدولهای تغییرات و ارتباط شاخص مناسب ارزیابی حساسیت این نوع خاص از ایبگرها، وجود روابط هیدرولیکی دی‌پی‌های جریان به مقدار آپ‌ها سپر است. در این پژوهش برای محاسبه روابط مکان در حال توری از گرفته‌ای ارائه شده توسط کارخانه طراح مدولهای ایبگر الی از مدولهای یک‌تغییرهای \(C_{1}, L_{1}, XX_{1}, X_{1} \) (بر صورت داده‌گذاری ارائه گردیده است و جریان عبری از مدولهای یک و دو تغییرات در بالادست مsects 125
جدول ۱. روابط مورد آزمون برای محاسبه حسابی هیدرولیکی ناحیه ای

<table>
<thead>
<tr>
<th>عنوان رابطه</th>
<th>جدول‌های دو ناحیه</th>
<th>جدول‌های یک ناحیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_0 = S_1$</td>
<td>$S_0 = S_3$</td>
<td>A</td>
</tr>
<tr>
<td>$S_0 = \frac{S_1 + S_2}{2}$</td>
<td>$S_0 = \frac{S_1 + S_r}{2}$</td>
<td>B</td>
</tr>
<tr>
<td>$S_0 = \frac{\sum S_j}{n}$</td>
<td>$S_0 = \frac{\sum S_j}{r}$</td>
<td>C</td>
</tr>
<tr>
<td>$S_0 = \frac{\sum \Delta H_{US(j)} S_j}{\sum \Delta H_{US(j)}}$</td>
<td>$S_0 = \frac{\sum \Delta H_{US(j)} S_j}{\sum \Delta H_{US(j)}}$</td>
<td>D</td>
</tr>
<tr>
<td>$S_0 = \frac{\Delta q'}{q_1} \frac{1}{\Delta H_{US}}$</td>
<td>$S_0 = \frac{\Delta q'}{q_1} \frac{1}{\Delta H'_{US}}$</td>
<td>E</td>
</tr>
<tr>
<td>$S_0 = \frac{\sum S_j A_j}{\sum A_j}$</td>
<td>$S_0 = \frac{\sum S_j A_j}{\sum A_j}$</td>
<td>F</td>
</tr>
</tbody>
</table>

داده‌های موجود و استناد جیران چند مدول نیم‌پایه

به‌منظور بررسی تغییرات حسابی هیدرولیکی مدول نیم‌پایه

تغییرات در شرایط بحرانی از نتایج داده‌های موجود

و استناد جیران چند مدول در شبکه آبیاری دشت قزوین

استفاده گردیده است. شبکه آبیاری دشت قزوین در دهه ۱۵۵ نقطه

توحیل آب به کانال‌های درجه سه بوده که کلیه آگیرهای

موجود در این مناطق از نوع مدول نیستند می‌باشند. آب

مورد نیاز این شبکه از رودخانه طالقان تأمین گردیده و توسط

126
دانوی معادلات حسابی هیدرولیکی مدولهای بینیایی و برشی اثر نگرانیت

ارتقا دارا هستند. در جدول 3 ضریب ظرفیت اسپرمیک کوچکترین درجه در هر مدول می‌باشد. روابط ارائه شده برای شرایط نتوری قابلیت تبعیض شدن جریان مدولها را دقت بسیار بالا دارد و می‌توانند جایگزین گرافهای تپ شوند.

با استفاده از روابط جدول 3 رابطه 7 و هر یک از معادلات جدول 1 مقدار کمی حسابی هیدرولیکی انتخاب متفاوت مدولها در شرایط توری محاسبه شده‌است. به منظور ارزیابی دقیق در این مدل A تا F به تغییردیه در پاسخگویی مقدار حسابی محاسبه شده از این معادلات تبعیض شده‌اند. مقدار از پایان بیشتر تغییردیه در شبکه تغییردیه دوی میزان تغییرات مدولها با مستقیم نواحی ارتقای عملکرد E جدول 3 می‌باشد. مقدار این بر حسب درصد بوته و از معادلات با حاصل بوبکار دقت حسابی محاسبه شده از در معادلات مختلف تغیرات عمل جریان بالاالدرست Cc,ef (ازجدول 3) است. در دو نقطه پایان این حسابات برای انتخاب مختلف مدولها اهمیت اس اصلی محور انتقای نوع مدول و محور قائم باید تغییردیه دوی را نشان می‌دهد. در این شکل باید تغیرات تغییردیه محاسبه شده از معادلات مدولر با مقدار مجزا آن که 0 درصد می‌باشد و بهعنوان نقش مرجع محاسبه شده است، مورد مقایسه گرفته می‌باشد. مقدار جذر میناکی معابد (RMS) در سری از داده‌ها که مبروت در معادلات مدولر می‌باشد نسبت به معرفی کمی می‌باشد که قابلیت این برای کلیه مدولر ثابت و معادل می‌باشد. مقدار این از مدل A تا F به تغییردیه 0.68, 0.51, 0.62, 0.18, 0.68, 0.51, 0.62, 0.18, 0.68 و 0.51 می‌باشد. حداکثر مقدار جذر معابد مدولر مربوط به مدل A دو که بینانگ مناسبی Bبیشتر این معادله به منظور محاسبه حسابی هیدرولیکی مدولها می‌باشد. معادلات دیگر نیز مورد آزمون قرار گرفته که از دقت کمی برعکس بوده و در مقاله گامه تنشدند.

در این پژوهش ضمن ارائه معادلات حسابی هیدرولیکی مدولهای نوری، تغییرات این شاخه در تجهیزات دیگر بهره برداری ارزیابی شد. به منظور تغییرات نمونه‌های مدلر، تغییر روابط دیگر عمک در هر یک از این شرایط است. در شرایط نتوری این روابط از پاسخ مناسبی تبیره و در بهره برداری از پاسخ بیشتر روابط بهره برداری دهه‌های واحده جریان پنچ مدول از شبکه آثاری داشته‌اند است. روابط با شرایط توری و بهره برداری به تغییر در جدول 3 و 4 این شده است. این روابط حاکم ضرایب همبستگی را بین کلیه روابط قابل انطباق در هر ناحیه

نتایج و بحث

در این پژوهش ضمن ارائه معادلات حسابی هیدرولیکی مدولهای نوری، تغییرات این شاخه در تجهیزات دیگر بهره برداری ارزیابی شد. به منظور تغییرات نمونه‌های مدلر، تغییر روابط دیگر عمک در هر یک از این شرایط است. در شرایط نتوری این روابط از پاسخ مناسبی تبیره و در بهره برداری از پاسخ بیشتر روابط بهره برداری دهه‌های واحده جریان پنچ مدول از شبکه آثاری داشته‌اند است. روابط با شرایط توری و بهره برداری به تغییر در جدول 3 و 4 این شده است. این روابط حاکم ضرایب همبستگی را بین کلیه روابط قابل انطباق در هر ناحیه.
جدول 2. مشخصات و موقعیت مدول‌ها و درجه‌های واقعی شده

<table>
<thead>
<tr>
<th>درجه‌های واقعی شده</th>
<th>موقعیت مدول</th>
<th>طبقات احتمالی (البته بر تابع)</th>
<th>نوع مدل</th>
<th>سری آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{\text{left}}(\cdots), C_{\text{mid}}(\cdots), C_{\text{right}}(\cdots), C_{\text{d}}(\cdots), C_{\text{d}'}(\cdots), L_{\text{d}'}(\cdots), L_{\text{d}''}(\cdots), L_{\text{d}'''}(\cdots), XX_{\text{d}'''}(\cdots), XX_{\text{mid}'}(\cdots), XX_{\text{left}'}(\cdots), XX_{\text{right}'}(\cdots)</td>
<td>محل آبگیری کانال L_{d} از کانال اصلی</td>
<td>1900</td>
<td>C_{d}</td>
<td>اول</td>
</tr>
<tr>
<td>محل آبگیری کانال L_{d} از کانال اصلی</td>
<td>3700</td>
<td>C_{d}</td>
<td>دوم</td>
<td></td>
</tr>
<tr>
<td>ابتدای کانال درجه 4 از کانال</td>
<td>170</td>
<td>XX_{d}</td>
<td>سوم</td>
<td></td>
</tr>
<tr>
<td>تغذیه</td>
<td>470</td>
<td>L_{d}</td>
<td>چهارم</td>
<td></td>
</tr>
<tr>
<td>محل کانال L_{d} از اندازه کانال</td>
<td>250</td>
<td>XX_{d}</td>
<td>پنجم</td>
<td></td>
</tr>
<tr>
<td>محل آبگیری 1و1.8 از کانال اصلی</td>
<td>250</td>
<td>XX_{d}</td>
<td>ششم</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 5. مقایسه پژوهشی تغییرات دی مدل‌های مختلف بر اساس حساسیت محاسبه شده از روابط مورد آزمون

در رابطه فوق تعداد نواحی ارتفاعی مقادیر حساسیت بیلورولیکی مدل‌های مختلف در شرایط مختلف با استفاده از رابطه فوق محاسبه گردیده و نتایج در شکل 5 آراش شدند. در نتایج بررسی این شکل محور افقی نوع مدل و محور عمودی مقادیر کشی شاخص حساسیت بیلورولیک را نشان می‌دهد. در نتایج بررسی مقادیر حساسیت مصرفی شده است. هر نوع مدل چهار مقادیر حساسیت مشخص شده است. مقادیر S_{0} به ترتیب حساسیت نواحی ارتفاعی اول تا n

\[
\bar{S}_{0} = \frac{\sum_{j=1}^{n} \Delta H_{\text{US}(j)} S_{j}}{\sum_{j=1}^{n} \Delta H_{\text{US}(j)}}
\]

[A]
درصد معادلات حسابی هیدروپلیکی مدول‌های تیغه‌ای و بررسی اثر تغییرات...

شاده نیز همانند نمودارهای شکل 4 نیز ارتفاع و حسابی هیدروپلیکی محاسبه شده برای دریچه‌های مدول‌های مشخص بوده است.

بررسی این نمودارها نشان می‌دهد به شرایط بهره‌برداری دریچه‌های متفاوت‌است که درصد معادلات حسابی به سادگی در مورد مدل‌های مختلف انجام شده است. با توجه به نتایج تحقیق در دم، تغییرات در دمین ناپایین این مدل به اتاق 10 سانتیمتر تغییرات عمک از لنگر. مقدار حسابی مدول‌های تیغه‌ای از مدل نوع X0 با افزایش ناپایین عمک مدل، روند کاهشی داشته X0 به طورکننده حسابی مدول، C3 برابر از مقدار حسابی C3 کمتر است. این روند با همان نسبت 7.4 برای مدل X0 با پردازش است. حسابی هیدروپلیکی هر نوع از افزایش عمک و C3 برای حسابی X0، C3 دارای تغییرات مجدی‌ای بوده و می‌توان حسابی مدول را مدل حسابی دریچه‌های بررسی اثر تغییرات عمک از مدل‌های مورد بررسی در شرایط بهره‌برداری با استفاده از معادلات جدول 4 و روایت (1) محسوس گردد و نتایج در شکل 7 ترسنیم شده. هر یک از نمودارهای این شکل مربوط به دریچه‌های مختلف یکی از مدل‌های مورد نظر شده در جدول 2 می‌باشد. در نمودارهای این شکل محدود افقی مربوط به نوع دریچه‌های مدول‌های مورد طراحی و محور عمودی مقدار کمی شاخص حسابی را نشان می‌دهد. شاخص‌های حسابی مناسب
جدول 3. شرایط معادلات دیگر انواع مدولها در نواحی ارتفاعی مختلف

<table>
<thead>
<tr>
<th>صریح</th>
<th>محدوده تغییرات عمق جریان (نواحی ارتفاعی)</th>
<th>نوع مدول</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cm</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1.15</td>
</tr>
<tr>
<td>11.2</td>
<td>10/8/22</td>
<td>2</td>
</tr>
<tr>
<td>1/4/22</td>
<td>10/2/22</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>105/10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/17/26</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/17/26</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/17/26</td>
</tr>
<tr>
<td>1/17/26</td>
<td>1/17/26</td>
<td>100</td>
</tr>
<tr>
<td>1/17/26</td>
<td>1/17/26</td>
<td>100</td>
</tr>
<tr>
<td>1/17/26</td>
<td>1/17/26</td>
<td>100</td>
</tr>
</tbody>
</table>

منبخش‌های X, L, C به ترتیب عمق آب در بالا دست مدول و در اسیر دریچه‌های می‌باشند. واحد دما نیتر بر تهای است.

در شرایط به‌هم‌پیوستگی با استفاده از رابطه فوق محاسبه گردیده و روی نمودارهای مربوطه در شکل ۷ مشخص شده است.

در حالیکه دریچه‌های نیز می‌توانند از نواحی ارتفاعی مختلف از طرف و تغییر محدوده و وضعیت هیدرولیکی جریان از طرف دیگر، در اندازه‌های حسین واقع این سازه تأثیر گذار است. در شرایط به‌هم‌پیوستگی اثر تغییرات مدول در ارتفاعی بالاتر از آنچه در نمودار بیشتر شده، عمل می‌نماید. پس از عمل نمودار تغییرات که وضعیت هیدرولیکی جریان تغییر می‌کند (جریان روگرف و سریز به جریان زیرگرفته...
کاهش یافته و S_b که مقدار کمی انجمن بلافاصله در علت افزایش مقدار حساسیت هیدرولیکی این دریچه عمل نموده و مقدار آن را 3.84 درصد افزایش می‌دهد. به تعبیر دیگر در شرایط بهره‌برداری افزایش محدوده ارتفاعی و حساسیت ناحیه اول، کاهش حساسیت های نواحی در مدل‌های یک تیغه و دو و چهار در مدل‌های دو تیغه که دارای مقدار حساسیت هیدرولیکی مدل نسبت به حالت نوزدهنسخه عمده‌ای اضافی می‌کند. مقدار حساسیت نواحی ارتفاعی خطود تابعی از اسکاراپیکی دریچه‌های مدل می‌باشد و از این رو می‌توان حساسیت دریچه‌ها و به نتیجه آن مدل‌ها را تابعی از وضعیت ساختار فیزیکی و هیدرولیکی برنامه دریچه‌ها دانست.

موفقیت دریچه روی مدل نیز در مقدار کمی حساسیت آن تأثیر گذاشت. برای مثال دو دریچه با ظرفیت اسیمی یکسان، روی یک مدل، دارای میزان حساسیت منتفاوت هستند. دریچه‌های که در وسط مدول واقع شده نسبت به دریچه‌های که در ناحیه‌ی طرفین واقع شده نسبت به دریچه‌ها کاهش یافته و در حالت نوزدهنسخه عمده‌ای اضافی می‌کند.
جدول 2. ضرایب معادلات دیگ درجی‌های مدل‌های واسطی‌شده در شرایط پره پردار (E) \(= (B H_{\text{ss}} + D H_{\text{ut}} + E) \cdot (\text{جریان جریان})\) \(= (B H_{\text{ss}} + D H_{\text{ut}} + E) \cdot (\text{درایه‌های ارتشات})\)

<table>
<thead>
<tr>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>جریان</th>
<th>درایه‌های ارتشات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1/10</td>
<td>18/12</td>
<td>18/7</td>
<td>(left)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/10</td>
<td>18/12</td>
<td>18/7</td>
<td>1000 (mid)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/10</td>
<td>18/12</td>
<td>18/7</td>
<td>(right)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/10</td>
<td>18/12</td>
<td>18/7</td>
<td>2000 (left)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/10</td>
<td>18/12</td>
<td>18/7</td>
<td>2000 (mid)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/10</td>
<td>18/12</td>
<td>18/7</td>
<td>2000 (right)</td>
</tr>
</tbody>
</table>

C_{i}	1
C_{i}	2
XX_{i}	3
L_{i}	4
نسبت اختلاف مقادیر حساسیت شرایط بهره برداری و برق هر مورد بررسی محاسبه و روی نمودارهای شکل (8) مشخص شده است. به عنوان مثال باید تغییرات ذکر در آزمایش‌های سری اول

\[Q_{R(Ty,T)} \]

در شرایط نسبی افزایش نشان می‌دهد. به این ترتیب باید تغییرات دیسپتی به ازای میزان تغییرات مجزا عمق جریان 27/5 درصد افزایش یافته که بیانگر دقت یا اینکه درجه مصرف در

کنترل جریان خروجی است. لیست شرایط برنامه و \(L \) \(C \)

در شرایط بهره‌برداری، موردکرد مدولهای نوی و طرفیت بالاتری دیافتن‌های جریان دارند و به عنوان مدولهای

به‌طور گسترده‌ای شناخته می‌شوند نسبت به تغییرات کنی حساسیت هیدرولوژیکی بیشتر متقی می‌شوند. افزایش حساسیت آنها در

شرایط بهره‌برداری باعث تغییرات بیشتر تغییرات دیسپتی اند.

با استفاده از رابطه 10 اختلاف باید تغییرات دیسپتی مدولهای

واستجو شده باید شرایط نتوری محاسبه گردد. در نمونه 8،

گزارش شده است. نمودارهای ارائه شده در این شکل، همچنین

افزایش دیسپتی مختلف مدولهای موارد بررسی و محور

عمودی باید تغییرات بیشتر را نشان می‌دهد. در هر نمودار که

مرورت باید تغییرات دیسپتی از مدولهای مصرفی شده در

جدول 2 است. مقادیر محاسبه شده نتوری و بهره برداری این

پایه مورد مطالعه گرفته است. منظور از پارامتر \(\Delta S/P \)
شکل 7 مقایسه مقادیر کن حساسیت هیدرولیک دریچه‌ها و مدول‌های مورد مطالعه در شرایط بهره‌برداری

که با افزایش دبی تحویلی همراه است. می‌گردد این مدول‌ها دبی پیش‌تری را نسبت به آنچه در شرایط توری پرایشان پیش بینی شده تحویل کشاورزان می‌دهند. بدان ترتیب کشاورزان نواحی بالادست شبکه به دلیل عملکرد نامناسب مدول‌های میزان آب پیشتری نسبت به آب خریداری شده که بر اساس وضعیت توری مدول‌ها محاسبه و خریداری می‌شود، دریافت می‌نمایند. این تعداد از کشاورزان از روند توزیع جریان در سطح شبکه

۱۳۴
نتایج گیری

به طور کلی نتایج به دست آمده از این پژوهش را می‌توان در ناحیه زیر خلاصه نمود:

1. مقدار کلی حساسیت هیدرولوژیکی مدل‌های تغییرات در پارامتر محدود تغییرات عمک در نواحی ارتفاعی چندگانه و حساسیت هر یک از این نواحی افزایش یافته بود. به این دلیل حساسیت مدل‌های تابعی است از ساختار فیزیکی سازه و هیدرولوژیک جریان و بدن دین ترتیب کلیه عواملی که بر هر یک از دو عامل فوق تأثیر گذار باشند. در حساسیت مدل‌های نیز موتر

جبران تغییرات ترکیب آثار ناشی از تغییر حساسیت مدل‌ها و مزرعه جریان تحت‌البندی در طول شبکه است. این تغییرات، عملکرد توزیع را در طول فصل آبیاری متأثر می‌نماید.

مشکلات جدیدی در اواخر فصل آب‌یاری خود تمامی می‌کند. افزایش نیاز آبی و کم‌بود میزان ذخیره آبی شکه در اواخر فصل آب‌یاری از طریق و وجود اختلال در فرآیند توزیع جریان که موجب عدم عادت در توزیع می‌گردد از طرف دیگر. در مواقعی باعث نرسیدن آب به انتهای شبکه شده و کشاورزان این نواحی را با مشکلات زیادی مواجه می‌سازند.
دارای عملکرد یکسانی نیستند و از این رو لزوم و استخراج چرایان و محاسبه حساسیت واقعی آنها ضروری است. محاسبه مقدار کمی حساسیت این سازه با استفاده از روابط ارائه شده در این پژوهش امکان‌پذیر خواهد بود.

۴. با توجه به عدم وجود اطلاعات فنی کافی جهت طراحی، ساخت و جهت اجرای مدل‌های تیغه‌ای و ورودی این سازه توسط چند کارگاه به جنگان تخصصی داخلی و مضاف بر آن وضعیت بهره برداری نه وجود مدل‌های شبکه‌های آبیاری کشور، ترددی در دقیق مشترک افراد دبی این سازه با استفاده از اگرگ‌های این تیپ ارائه شده کارگاه طراح ده متغیر ارائه شده در این تیپ است. اختلاف این پیش در تعدادی از نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان دهنده نتایج تفاوت قابل توجهی یافته‌های دیگر در مدل‌های نمودارهای مدل‌های مورد بررسی نسبت به شرایط توری، نشان D. Althom, F. 1971. Technical Brochures: Distributors, Amil & Avis Gates. France.