کنترل بیولوژیکی و زراعی بیماری نقطه سیاه سپ زمینی

مهدی نصر اصفهانی و احمد مرتضوی

چکیده

بیماری نقطه سیاه سپ زمینی یک بیماری قارچی بوده و عامل ایجاد آن Colletotrichum cocccodes (syn. Catramentarium) است که با توسعه ایجادی و قربانی سیاههای بنیادی سپ زمینی که آنها بر اثر کثیف سیاههای نقطه سیاه سپ زمینی نشان داده می‌باشد. در این بیماری معمولاً در اواخر فصل ایجاد شده و تا اواخر فصل آدامه و گسترش می‌یابد. برای پیشگیری و کنترل بیماری در منطقه نقش مربیان از اصول اقتصادی استفاده از مواد کاتک و در همان سیاست کشت سپ زمینی به‌عمل آمده.

نتایج مشخص نمود که میانگین آلودگی گیاهان سپ زمینی مورد کشت در این منطقه 80/4 درصد است. تجربه داده‌های حاصل از بررسی‌های زراعی در منطقه نشان داد که آبی‌ای که سالانه از کمترین آلودگی به ترتیب در مقایسه با کشت کنده، مولده و جو بخاردراد است. بررسی‌های بیولوژیکی بیماری نقطه سیاه در قابلیت که در مقابل بلوک‌های کامل نهایی‌ای با استفاده از اسپوری فراریما آتافودیست در آب و کشوری سیاه و انورون از ریخته‌های کشت به‌سوی غلظت مفهرست و نیز تلفیق آن در Trichoderma harzianum غلظت دهای بدروی و انورون اسپوری در ریخته‌های کشت غلظت سیاه سپ زمینی شناس انورون که فراریما آتافودیست موجب کاهش بیماری نقطه سیاه سپ زمینی شده است. هر چند کثرتی آلودگی در نیاز اقدام آب و انورون اسپوری فراریما آتافودیست می‌خواهد که تغییر می‌یابد. در مقایسه با سایر کشت‌های سیاه کاشت بیماری بستگی به روش کاشته و مقدار اسپوری که استفاده داشته است. بررسی تعداد سیاهه، ارزان سیاهی و هنجاره، رشد طولی گیاه و میزان محصول نشان داد که با کثرت فراریما آتافودیست موجب افزایش رشد و نمو گیاه سپ زمینی و موفقیت محسوع از نظر انرژی که وابسته به بیماری و فیزیک سیستم معلم بالاتر شده که افزایش مورد بررسی و اکتشافی می‌نماید. به‌عنوان مثال در اینستیت آلودگی می‌دانست که بیماری از خود نشان می‌دهد. به‌طوری‌که بعدی کثرت آلودگی را داشته و پس از آن به‌ازار اینکه روی کار آمد، کاراکتر، بیماری و نمودار به اختلال بسیار کمی واقع شدند. پیش‌ترین آلودگی روبه رقم مارکجی کوبه از شد و پس از آن ارتفاع کلامی و موانع توانا نزدیک و پیچه ارقام در هید فاصله این دو طیف را قبلاً شناخت.

واژه‌های کلیدی: سپ زمینی، نقطه سیاه

۱. دانشیار تحصیلات آقای و بیماری‌های گیاهی، مرکز تحصیلات کشاورزی و منابع طبیعی اصفهان
۲. استاد تحصیلات اصلاح و تهیه نهال و بذر، مرکز تحصیلات کشاورزی و منابع طبیعی اصفهان
مقدمه
عملیات بیماری نقطه سیب زمینی (Phytophthora capsici) یکی از بیماری‌های باعث کاهش می‌شود که باعث کاهش ارزش و کیفیت محصولات سیب می‌شود. این بیماری در سیب‌های باغ و غیرباغی می‌تواند ایجاد شود.

پاتوژنیک (Phytophthora capsici) یکی از بیماری‌های زراعی است که باعث کاهش ارزش و کیفیت محصولات سیب می‌شود. این بیماری در سیب‌های باغ و غیرباغی می‌تواند ایجاد شود.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جمله استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جمله استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جمله استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جملе استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جمله استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جمله استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جمله استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.

به‌طور کلی، به‌منظور کنترل بیماری نقطة سیب، چندین استراتژی به‌کار می‌رود که از جمله استفاده از بیماری‌های فیتوکسین‌های نشانه‌ریز و استفاده از مواد ضدبیماری می‌باشد.
در این پژوهش بررسی‌هایی در دو سال متغیر با هدف تعیین وضعیت فعلی بیماری نقع سیب (C. coccodes) در سیب زمینی در منطقه فردیون پدیده موردنظر در فردیون انجام شد. هدف اصلی این پژوهش از سیب زمینی توزیع در منطقه فردیون و محصولات کاشت شده قبل از سیب زمینی نیز درج می‌گردد. تا این که سیب زمینی توزیع در منطقه فردیون و محصولات کاشت شده قبل از سیب زمینی نیز درج می‌گردد.

1. بررسی آزمایشگاهی کنترل بیولوژیکی بیماری

اکتشافات جدید در زمینه بیولوژیکی بیماری نقع سیب سپاسی درآمیزشگاهی می‌تواند نمایش دهد که قراردهنهای آنتی‌گونیت به‌صورت یک گروه خاصی از گونه‌های طبیعی موجود در سیب زمینی پدیده می‌شود. این بیماری توسط PDA (Parasite Diagnostic Association) در مزارع بیولوژیکی در آزمایشگاه پدیده این انتقال است. در قسمت اولیه قراردهنهای آنتی‌گونیت در مزارع بیولوژیکی در آزمایشگاه پدیده این انتقال مذکور بوده و در نتیجه می‌تواند در اندازه‌گیری حاویت

2. بررسی آزمایشگاهی کنترل بیولوژیکی بیماری

امکان مصارف یک بیماری نقع سیب سپاسی در آزمایشگاه، بررسی‌های انجام شده و انتقال قراردهنهای آنتی‌گونیت به مادری و کنترل این بیماری توسط PDA (Parasite Diagnostic Association) در مزارع بیولوژیکی در آزمایشگاه پدیده این انتقال مذکور بوده و در نتیجه می‌تواند در اندازه‌گیری حاویت

3. بررسی کنترل بیولوژیکی بیماری در مزارع

در بررسی امکان مصارف بیولوژیکی بیماری نقع سیب T. harzianum از طریق مصارف گونه‌های مختلف در سیب زمینی در منطقه موردنظر در فردیون انجام شد. هدف اصلی این بررسی جمعاً ۱۲۵ مزرعه در منطقه موردنظر بازدید قرار گرفت. در این پژوهش نیز هم‌مانی رویه ویژه در مزارع سیب زمینی و نام رقم مورد کشت و محصولات کاشت شده قبل از سیب زمینی نیز درج می‌گردد. تا این که سیب زمینی توزیع در منطقه فردیون و محصولات کاشت شده قبل از سیب زمینی نیز درج می‌گردد.

مواد و روش‌ها

۱. بررسی آزمایشگاهی کنترل بیولوژیکی بیماری از منطقه

برای تعیین منازل آلودگی بیماری در منطقه بررسی‌های زراعی سیب زمینی در منطقه سپاسی در طول فصل زراعی و به‌تفکر از تهدید‌های محتمل بررسی‌های زراعی سیب زمینی در منطقه فردیون انجام می‌شود. هدف اصلی این پژوهش از سیب زمینی پدیده بیماری، تعداد سیب زمینی در فردیون و محصولات کاشت شده قبل از سیب زمینی نیز درج می‌گردد.

طلو و وزن گیاه نیز شده است (۲۱).

۲. بررسی آزمایشگاهی کنترل بیولوژیکی بیماری نقع سیب

در این پژوهش بررسی‌هایی در دو سال متغیر با هدف تعیین وضعیت فعلی بیماری نقع سیب (C. coccodes) در سیب زمینی در منطقه فردیون پدیده موردنظر در فردیون انجام شد. هدف اصلی این پژوهش از سیب زمینی توزیع در منطقه فردیون و محصولات کاشت شده قبل از سیب زمینی نیز درج می‌گردد. تا این که سیب زمینی توزیع در منطقه فردیون و محصولات کاشت شده قبل از سیب زمینی نیز درج می‌گردد.

۱۹۴
شکل 1-الف) بوته‌های سبزی‌سازی‌شده به بیماری ناقل‌های سباه ب) ساقه‌های زیر‌سازی‌شده و ج) آسروی عامل بیماری روی آن نشان داده شده است.
کنترل بیولوژیکی و زراعی بیماری نقطه سیاه بیماری

اشکال 2-الف: رشد فازی عامل بیماری (Colletotrichum coccodes) از قسمت آلوده روز محدودی شده است.

اشکال 2-ب: آسروولیا آن همراه با شرارت (پرز) توسط استرابومیکوسکوب گونه داده شده است.
آزمایش شک تیمار زیر در چهار تکار (کرت) 9 مترمربع (3 متر ص الی 3 متر در هر کرت) در حالی که طرح آماده بندی کل کامال تعادل با یک تکار تعداد 6 تا 8 نمونه از آهنگی در نظر گرفته شده که کوزا میانگین وزن 15-20 کرم برای هر گله بذر
براساس نوع تیمار در هر کرت (تکار) جمعا 24 کرت بود.

1. آغشتهن غده‌های بذری سبیل زینی به اسپوراتانگوئیست (T. harzianum) 100 میلی‌لیتر به میانگین فوق (SOI).
2. افزودن اسپوراتانگوئیست به خاک به روش بالا به میزان 170/1400 عسی‌سره در هر میلی‌لیتر که باری کریم تیمارها تیم‌ها یک حدیک یکسپان اعمال گرددی است.

3. شاهد (افزودن یک صد میلی لیتر قارچ عامل بیماری (C. coccodes) به خاک به میزان 147/8×100 آسیل و 7/1500 تکار در چهار تکار زیر در چهار تکار (کرت) بود. با کم‌ترین استفاده از سطح برای جدران، گره‌ها و تکار 1 بسته از نظر جلول‌گری که یکی یکی و یکی از خشکش بدن زیر و روی می‌کند که به مدت دو روز


4. بررسی حساسیت ارقام تجاری به اسپریت (C. coccodes) در قالب یک طرح بلوک‌های کامل نمازی سه در تکار در هر 37 مترمربع به چهار رشته و در هر ۲ متری در قطعه زینی بیان ارقامی که برای بررسی فاکتورهای کمی و کیفیت ارقام موجود توسط بخش تحقیقات یک و نهایاً هیچ اصفهان در فردی به اجرا در آمده بود. میزان آلوگری ارقام در اواخر فصل بر اساس مشاهده اسپورات روند


5. آزمایش شک تیمار زیر در چهار تکار (کرت) و وضع


6. در اجرای تیمارهای فوق، اسپوراتانگوئیست 170/1400 آسیل و 7/1500 تکار در چهار تکار (کرت) می‌باشد. با گره‌ها و تکار 1 بسته از نظر جلول‌گری که یکی یکی و یکی از خشکش بدن زیر و روی می‌کند که به مدت دو روز


7. در اجرای تیمارهای فوق، اسپوراتانگوئیست 170/1400 آسیل و 7/1500 تکار در چهار تکار (کرت) می‌باشد. با گره‌ها و تکار 1 بسته از نظر جلول‌گری که یکی یکی و یکی از خشکش بدن زیر و روی می‌کند که به مدت دو روز


8. بررسی حساسیت ارقام تجاری به اسپریت (C. coccodes) در قالب یک طرح بلوک‌های کامل نمازی سه در تکار در هر 37 مترمربع به چهار رشته و در هر ۲ متری در قطعه زینی بیان ارقامی که برای بررسی فاکتورهای کمی و کیفیت ارقام موجود توسط بخش تحقیقات یک و نهایاً هیچ اصفهان در فردی به اجرا در آمده بود. میزان آلوگری ارقام در اواخر فصل بر اساس مشاهده اسپورات روند


198
مناسب به یک مکان است در اثر وجود برخی از گیاهان (Amaranthus retroflexus) و (Solanum nigrum) و تاجبازی (Chenopodium album) بنابراین در کشت با گل‌های میوه‌دار بیماری می‌گردد. این مطلب با توجه به دیالود و نیز راید و پی‌پاکر (18، 21) موافق دارد.

نتایج بررسی عکس الکترون ارقم مورد کشت و را ریج در منطقه فردی نشان می‌دهد که بیشترین آلوگی روی کورزیما با 0/7 درصد می‌باشد در موارد هر 3/17 درصد آلوگی رسیده (جدول 2) این نتایج با گزارش‌های ترموکیمیک و کورزیما (25) موافقت دارد. وضعیت آلوگی نیز به تفکیک رودیشن و ساقه زیرزمینی و با هم‌زمان روی هر درج شده است که نشان می‌دهد بیشترین آلوگی ساقه از رقمنامه با 1/39 درصد کمترین آن روی رقم دراکا با 1/12 درصد است (0/0C>P). در نتیجه این نتایج می‌کند (جدول 2) که از نظر آماری نیز این گروه متفاوت از قرار گرفت و اختلاف معنی‌دار نشان می‌دهد (0/0C>P). این نتایج آلوگی هم‌زمان روی رشد و ساقه اکثریتی از هم‌سازند (0/0C>P). لازم به ذکر است که این مشاهدات پس از گل‌دهی و در اواخر فصل انگیزه یافته است که برای همه آزمایش‌ها نیز صادق است. چون قبل از آن نه آسپورول مشاهده گردید و نه فارپ در شامل بیماری جدا شد. در اینجا نیز میانگین جدول 2 وضعیت عفای بیماری را با کمی اختلاف در منطقه نشان می‌دهد که به تفکیک نیز مشخص شده است.

نتایج به دست آمده از بررسی‌های بیولوژیک با فارپ قسمت‌های زیست‌محیطی گیاه سبب زمینی و به تفکیک بی‌راهی سالم و آلوگی و همچنین وضعیت بیماری براساس روش فوق روز ریشه، ساقه و با هم‌زمان روی هر مورد قسمت‌های مروبط مشخص گردیده است(35).

نتایج و تحلیل آماری داده‌ها با تبعیض درصد، میانگین و با استفاده از آزمون‌های دانکین (DMRT) انجام شد.

نتایج و بحث

نتایج به دست آمده از بررسی‌ها در 2011 و 2012 خلاصه‌شده است. بازگرداندن یک مکزیر در طول فصل زراعت نشان داد که بیماری در اواخر فصل با تشکیل آسپورول روی ساقه زیرزمینی و با روی ریشه‌ها بهبود می‌یابد (شکل 1، الف، ب، و ج). میانگین جدول 2 اهمیت بیماری را در منطقه نشان می‌دهد. میانگین آلودگی با یک ریشه از 192 مزرعه در طول سال زراعی (1/0/1/2) درصد بود که به تفکیک برای ساقه، ریشه و با هم‌زمان روی هر درصد ترتیب 18/3/28/1/2/2 (0/0C>P) درصد تعیین گردید. لازم به ذکر است که تفاوت‌های میانگین درصد آلودگی در جدول 1 و 2 دیده می‌شود. پیدا شد که در میانگین درصد آلودگی در مزارع از مزارع ارقم نادر کشت شده بود که در بررسی‌های آماری مربوط به ارقم (جدول 2) پر رهش شده است.

بررسی اثر کشت سایر محصولات قبل از سبب زمینی روی بیماری نقطه‌سی (C. cocceoides) در منطقه فردی اصل‌مان نشان می‌دهد که آلودگی در مزارع سبب زمینی با این چک ساله 1/0/0/5/1 درصد در مقایسه با بهترین گندم با 1/0/0/1/2 درصد. یونجه (4/1) ساله از 1/0/0/2/2 درصد و 1/0/0/2/2 درصد آلودگی است (جدول 1). بنابراین این طور نتیجه‌گیری می‌شود که در منطقه (جدول 1) آنتی از مؤثرترین روش‌ها در کاهش بیماری از یک (جدول 4) که به احتمال اندازه‌گیری و تعیین در این راستا تاکید زراعی با کندم و جو با گزارش‌ها (11) در این که کشت غلات در تاکید با سبب زمینی موجب کاهش بیماری نقطه‌سی سبب شد. یک میزان آلودگی
جدول ۱. بررسی میزان آلودگی سبب زمینی به بیماری نطف سیاه از گونه محصولات مختلف در فردی اصفهان

<table>
<thead>
<tr>
<th>نوع محصولات</th>
<th>تعیین درصد آلودگی روی قسمت‌های زیر زمینی گیاه</th>
<th>ساقه و رشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبجو</td>
<td>۲۴/۴۳</td>
<td>۱۵/۱۸</td>
</tr>
<tr>
<td>چای</td>
<td>۳۰/۱۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>گندم</td>
<td>۱۵/۷۱</td>
<td>۱۲/۶۷</td>
</tr>
<tr>
<td>آیش</td>
<td>۱۵/۷۱</td>
<td>۹/۴۹</td>
</tr>
<tr>
<td>میانگین</td>
<td>۲۶/۸۳</td>
<td>۱۲/۳۷</td>
</tr>
</tbody>
</table>

میزان آلودگی به بیماری نطف سیاه در سطح ۵ درصد انجام گردیده است که اعداد با حروف مشابه دارای اختلاف معنی‌دار نیستند (P≥0/۰۵).

جدول ۲. بررسی میزان آلودگی و اثر ارقام مورد کشت سبب زمینی به بیماری نطف سیاه در شرایط مزارع فردی اصفهان

<table>
<thead>
<tr>
<th>ارقام</th>
<th>تعیین درصد آلودگی روی قسمت‌های زیر زمینی گیاه</th>
<th>ساقه و رشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>کوزیما</td>
<td>۱۷/۹۸</td>
<td>۱۸/۱۸</td>
</tr>
<tr>
<td>دراکا</td>
<td>۱۲/۵۱</td>
<td>۱۲/۵۱</td>
</tr>
<tr>
<td>مارفونا</td>
<td>۲۵/۲۳</td>
<td>۷/۷۵</td>
</tr>
<tr>
<td>مورنر</td>
<td>۱۷/۸۷</td>
<td>۷/۷۵</td>
</tr>
<tr>
<td>میانگین</td>
<td>۱۷/۸۷</td>
<td>۷/۷۵</td>
</tr>
</tbody>
</table>

میزان آلودگی به بیماری نطف سیاه در سطح ۵ درصد انجام گردیده است که اعداد با حروف مشابه دارای اختلاف معنی‌دار نیستند (P≥0/۰۵).

تشان می‌دهد که بیشترین آلودگی گیاه سبب زمینی در تیمار کوزیما باید ۹۹ درصد (شده) و کمترین آن در تیمار تلخیقی SE+SOII با ۱۲۸ درصد (شده) بود که تیمارهای دیگر بین این دو حد قرار می‌گیرند. بدین ترتیب که در حد ۱۵/۸۹ SE و SOII در ۲۴/۳۸ SOII ۳۰ درصد در مراتب بعدی واقع می‌شود که از نظر آماری دارای اختلاف معنی‌دار هستند SE و SOII (P<0/۰۵). به طرف ترتیب به سوی گروه‌های اکثریت دارای تیمارهای SE و SOII (P<0/۰۵) و لیل میزان آلودگی در تیمارهای SE و SOII از نظر آماری دارای ترتیب در تیمارهای SE و SOII دارد. این نتایج به کارتید اسپرتینوکر در دریا نسبت به بهشت باعث افزایش تعداد سایه‌های سبب زمینی می‌گردد. این افزایش در تیمارهای بزرگ و ارسباری‌های شامل SE و SOII در درصد به‌هم شاهد مشخص می‌شود. میزان آلودگی در تیمارهای مختلف T. harzianum

۲۰۰
جدول 2: اثر فرآم آنتاگونیست Trichoderma harzianum روی بیماری نقطه سیاه سپیب زمینی رقم کوزیما

<table>
<thead>
<tr>
<th>رقم</th>
<th>نام بکر</th>
<th>بکر فیتواسپورن</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>آویشن غده‌ها بذری به اسپور (SE)</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
</tr>
<tr>
<td>2</td>
<td>خودرو آسیب پذیر یا ترکار (SOI)</td>
<td>56/50</td>
<td>56/50</td>
<td>56/50</td>
<td>56/50</td>
<td>56/50</td>
<td>56/50</td>
<td>56/50</td>
<td>56/50</td>
</tr>
<tr>
<td>3</td>
<td>سیسیمین بر (SOII)</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
</tr>
<tr>
<td>4</td>
<td>گردن در یک میلی‌متر (SOIII)</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
<td>30/60</td>
</tr>
<tr>
<td>5</td>
<td>آویشن غده‌ها و افزودن اسپورن به حاک (SE+SOII)</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
</tr>
<tr>
<td>6</td>
<td>شاهد</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
<td>78/80</td>
</tr>
</tbody>
</table>

Mahyabat Amari بر اساس اُزمون چند دانگ‌کش در سطح 5 درصد انگل گرده‌که کاها باحروف مشابه اختلاف معنی‌دار دارد. (P<0.05)
بندر، افرودن به خاک در وفقیایی کاشت و یا تلقیف هر دو گوره کاهش بیماری نسبت به نوع تیمار و میزان اسور انتگونیست مرده استفاده گردیده است. این بررسی ها با گزارش های اخیر و همکاران (4) در تولید این قارچ به افزودن به خاک در کاشت بیماری نقطه سیاه، یا با سایر گزارش ها R. solani (13) P. drechsleri (4) و حتی روی محلولها دیگر شایع بوده میتوان جایی در آنها T. harzianum (30) و نیز بر علمی زندگی گروه فنگی (14) موفقیت دارد. چگونگی کنترل بیولوژیکی بیماری توسط قارچ انتگونیست شامل احتمال کاشت در کنار بیماری، رقابت تغییرات به ایجاد مقاومت و افزایش تحمل گیاه به نیازهای محیطی در زمان رشد، فعالیت هیپراپاتوسنسی خاصیت پایدارنگی ترشحات مابین خارج سلولی و ترشحات قارچ و تولید آنزیم های ماندن سلولای، برونتاکی همگونی می گردد (9).6 و (9.6.2) اکثریت از دنبال کردن در روش گیاه بیماری رلی از R. solani (13) از نظر شرایطی به تغییرات زیستی این گونه های ترکیب در میباشد. کنار زن از گونه های ترکیب در میباشد به گیاهان نوآری ریخته در ایجاد مقاومت به بیماری‌های مثل جریه سبب موفقیت خانم در درمان‌نگاره است (9.6.2).

از این آزمایش ها انتگونیست T. harzianum در افرودن به خاک و با آن به خاک شده گه موجب کاهش قابل توجه بیماری نقطه سیاه گردیده، بلکه افزودن رشد و نمو گیاه سبب زیمی نیز در درمانش به موفقیت بسته بوده است (13 و 24). مقایسه میانگین از ارزان تر و خشک بیماری سبب بیماری در هر تیمار نشان می دهد که بیشترین افزایش در تیمار SE+SOII با میانگین وزن تر 29.64 کیلو گرم و وزن خشک 5.65 کیلو گرم کمترین آن به ترتیب با 21.67 و 3.64 کیلو گرم در مقایسه با شاهد SE در با SE+SOII تیمار با 21.67 و 3.64 کیلو گرم در مقایسه با شاهد SOII، 4.81 و 21.67 با SE در با SOII و 4.81 و 21.67 با SE در با SOII

کردنده که میانگین وزن تر تیمارها 

بنا به نظر SOII و SO, SE, SE+SOII و دارای اختلاف معنی دار هستند (جدول 3). مقایسه و وزن خشک تیمارها با مقاومت به طوری که تیمار SE و SOII در یک گروه (P<0.05) و همچنین در SOII گروه دیگری (P<0.05) از نظر آماری واقع شدند. همچنین در این بین تیمارها دارای اختلاف معنی دار هستند (P<0.05). میزان رشد طولی بیشتر دارد. بنابراین از روند فوق تیمار SE و SOII در اثر

میانگین وزن خشک تولید شده در هر تیمار (کرته‌های 3×3 متر مربع) نیز متفاوت بود (جدول 3) از نظر آماری به طور یکسان با SE و SOII، SE+SOII تیمارها در این بین مشابه است (P<0.05) از این (P<0.05) با SE+SOII کیلو گرم است که پس از آن تیمار SE+SOII با 12/60 کیلو گرم و کمترین محلول در تیمار SOII با 9/80 کیلو گرم در مقایسه با شاهد با 9/80 کیلو گرم است (جدول 3) و نقش تیمارها در این بین قرار گرفتند. این نتایج با تاراها هورن بای (21) روي گل دانودی، کاکاس و عیدالور (23) روي گوجه فرنگی و سبز (23) روي خیار با سبب محلول در این آزمایش رشد و نمو و نیز محلول آنها مطابقت دارد.

از جمله مکانیسم‌ها در ازدیاد رشد گیاه در این گرو های که این قارچ موجب تولید ریشه‌های فری و عملکرد می‌شود که در آزمایش‌های زیستی مشاهده گردیده و نیز کاهش میزان آنت مورد نیاز گیاه 40 درصد نسبت به شاهد این همچنین حلالیته سفته و درگذشتی در خاک کاز گزارش شده است (24).

موضوع توقف توجه در این آزمایش‌ها که تیمار آنتگونیست با اختلاف T. harzianum با سبزیزمی با تیمار SE+SOII و SE و SOII و افرودن یا انتگونیست به سبب اسور، کمی غیر از مضمونی است تازه درد از این آزمایش‌ها و وزن تر و خشک و طول ساقه سپس از تیمار تلقیف آنتگونیست در

۲۰۱
جدول 2: میزان آللوگی برخی ارقام تجاری سیب زمینی به بیماری نقطه سیاه

<table>
<thead>
<tr>
<th>رده ارقام سیب زمینی</th>
<th>سفارش رئیسه</th>
<th>سفارش رنگ و ساقه*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماریچک</td>
<td>1</td>
<td>17/64 ab</td>
</tr>
<tr>
<td>کورزیما</td>
<td>2</td>
<td>14/00 ef</td>
</tr>
<tr>
<td>مونالیزا</td>
<td>3</td>
<td>13/00 a</td>
</tr>
<tr>
<td>مارفونا</td>
<td>4</td>
<td>4/46 bdef</td>
</tr>
<tr>
<td>هیدرام</td>
<td>5</td>
<td>4/47 bdef</td>
</tr>
<tr>
<td>والکانو</td>
<td>6</td>
<td>4/48 bdef</td>
</tr>
<tr>
<td>فاموسا</td>
<td>7</td>
<td>4/49 bdef</td>
</tr>
<tr>
<td>ایستا</td>
<td>8</td>
<td>4/50 bdef</td>
</tr>
<tr>
<td>آنولا</td>
<td>9</td>
<td>4/51 bdef</td>
</tr>
<tr>
<td>فرسکو</td>
<td>10</td>
<td>4/52 bdef</td>
</tr>
<tr>
<td>موائیال</td>
<td>11</td>
<td>4/53 bdef</td>
</tr>
<tr>
<td>شارکا</td>
<td>12</td>
<td>4/54 bdef</td>
</tr>
<tr>
<td>آنقا</td>
<td>13</td>
<td>4/55 bdef</td>
</tr>
<tr>
<td>پشنی</td>
<td>14</td>
<td>4/56 bdef</td>
</tr>
<tr>
<td>دراکار</td>
<td>15</td>
<td>4/57 bdef</td>
</tr>
<tr>
<td>گرناولا</td>
<td>16</td>
<td>4/58 bdef</td>
</tr>
<tr>
<td>اریگو</td>
<td>17</td>
<td>4/59 bdef</td>
</tr>
<tr>
<td>دیبانکت</td>
<td>18</td>
<td>4/60 bdef</td>
</tr>
<tr>
<td>مورن</td>
<td>19</td>
<td>4/61 bdef</td>
</tr>
<tr>
<td>کاراکنا</td>
<td>20</td>
<td>4/62 bdef</td>
</tr>
<tr>
<td>کامسوس</td>
<td>21</td>
<td>4/63 bdef</td>
</tr>
<tr>
<td>کیزر</td>
<td>22</td>
<td>4/64 bdef</td>
</tr>
<tr>
<td>اسکورت</td>
<td>23</td>
<td>4/65 bdef</td>
</tr>
<tr>
<td>دژیری</td>
<td>24</td>
<td>4/66 bdef</td>
</tr>
</tbody>
</table>

ملاحظه: از این سترن به علت عدم وجود داده‌ها در برخی از ارقام ادامه نگردیده است.

*محاسبات آماری بر اساس روش آزمون چند دامنه دالکن (500/05) اعداد با حروف مشابه دارای اختلاف معنادار نیستند.

امروزه به هر حال، واقع شد که در تولید محصول با اختلاف

این بسیار جزیی پس از دو تیمار نام برده قرار گرفت. بنابراین، احتمال

در نهایت، هدف کاهش بیماری و ازدیاد محصول در نظر است.

بنابراین در این ارتباط، آگاهی می‌باشد با اسپور آتاتوکوست

به لحاظ اقتصادی و همچنین قابل اجرا بودن

آن توصیه می‌گردد. این نتیجه‌گیری یکی از نظارت موکیپاده و

همکاران (8) در کنترل بسیاری از بیماری‌های فارمی خاکرذاد

203
نظر آماری نیز در یک گروه قرار گرفتند (P<0.05) و کمترین آلوگی در رقم دزه را با 18 درصد دوده است. رقم مونالیزا نیز با 15/3 درصد آلوگی در گروه دیگری با 18/6 درصد دوده، 24/22 و 20/41 مارفونا، هیدرمال، والاندر و فاموس به ترتیب با 12/4 درصد آلوگی در یک گروه قرار گرفتند (P<0.05).

ارقام آماری، اندازه فرسرد، مونادیال و دراکن نیز به ترتیب با 20/7 76/60/33 درصد در گروه دیگری با 18/6 درصد آلوگی در یک گروه قرار گرفتند (P<0.05) و سپس سایر ارقام در ماین واقع گردیدند که از نظر آماری نیز معنی دار نبودند (P>0.05).

بررسی‌ها روی ارقام نشان می‌دهد که حساسیت ارقام در نبود.

اسکورت، کیسی، کاسوموس و کارانیا و مونر به ترتیب با درصد آلوگی 18، 19، 20، 22/6 و 24 درصد نسبت به سایر ارقام در این بررسی‌ها کمتر است که ارقام مورن، کاسوموس، کارانیا و کیسی در بیشتر قرار گرفته (P<0.05) و با سایر ارقام اختلاف معنی‌دار دارند (P<0.05). و وضعیت آلوگی روی قسمت‌های زیرزیمینی گیاه، مثل ریشه، سایه زیرزیمینی و با هموگلوبین روی هر دو به تاکید بررسی شده است که در این ارتباط بعضاً با اختلاف معنی‌دار در مقایسه با کتیک دیده می‌شود (P<0.05). آلوگی هموگلوبین روی ریشه و ساقه، بررسی آماری نشان داد. چون غیر از بیرخ از ارقام مورد بررسی این هموگلوبین وجود نداشت است. (جدول 4) به عنوان یکی از بیان‌ها در آنتی‌ژن دندان آلوگی سایه زیرزیمینی با استفاده از نظر بالای بیان دندان آلوگی سایه زیرزیمینی را بیان نمود که در بررسی این ژن‌ها بیشتر در معرض بیماری قرار گرفته و ممکن است از یک درآمد ولی روی ریشه کمتر حاند اهمیت است چون ممکن است قسمت‌هایی از ریشه باشد که به گیرید، بیان‌ها در آنتی‌ژن دندان آلوگی سایه زیرزیمینی با است.
منابع مورد استفاده

1. اشرفی زاده، آ. ج. اعتمداری و ح. زمانی زاده. 1381. ارزیابی جدایی‌های پژمرده‌گی فورازیومی خریزه و طالبی. خلاصه مقالات پانزدهمین کنگره گیاهپزشکی ایران، دانشگاه رازی کرمانشاه، 16-20

2. بهبهانی، ک. ع. ارتایی نهاری، ق. حجاری و ح. جادویی. 1376. بررسی اثر آنتاگونیست‌های شدیده‌تر تریکوکردوما و گلیکولایدروم R. capiscus بر خصوصیات سیروه‌های گیاهپزشکی ایران. دانشگاه صنعتی اصفهان، 1-5

3. پورزهی، ا. م. و. نامی‌نژاد. 1377. بررسی امکان‌های فورازیومی پژمرده‐گی فورازیومی‌های خروجی و خارجی فاراچ Trichoderma خلاصه مقالات سیروه‌های گیاهپزشکی ایران، دانشگاه صنعتی اصفهان، 14-17

4. هادی‌نژاد، ش. ح. اعتمداری و ح. زمانی زاده. 1381. کنترل بیولوژیکی بیماری باتریا میلی با جدایی‌های Trichoderma

5. سلطانی، ج. ح. و. روزانی و. م. و. صفری. 1377. بررسی اثر تریکوکردوما در B. royi تعدادی از فاراچ‌های بیماری‌زا در سبب زمینی. خلاصه مقالات سیروه‌های گیاهپزشکی ایران، دانشگاه صنعتی اصفهان، 14-17

6. شریعتی طبرستانی، م. م. فلاحی‌نژاد، ب. جعفری‌نژاد و. روزانی. 1378. کنترل بیولوژیکی پوسیدگی ریزکانونیایی ریشه جنگ‌دندان با فاراچ‌های تریکوکردوما و گلیکولایدروم در باتریا با بیماری‌زا. خلاصه مقالات سیروه‌های گیاهپزشکی ایران، دانشگاه صنعتی اصفهان، 14-17

7. غفاری‌نژاد، آ. ا. و. مسیح‌آبادی و. د. شهروی. 1379. مبارزه بیولوژیکی فاراچ Macrophomina phaseolina داروی سیروه‌سیاهی خروجی نوش‌فاراچ Trichoderma harzianum

8. امتوره‌نژاد، ح. و. روزانی و. م. و. صفری. 1377. بررسی اثر تریکوکردوما در B. royi تعدادی از فاراچ‌های بیماری‌زا در سبب زمینی. خلاصه مقالات سیروه‌های گیاهپزشکی ایران، دانشگاه صنعتی اصفهان، 14-17

9. فرخزاد، ا. ب. رعیتی و. فرشادی، ح. و. رضائی، ح. و. رضائی، ح. و. کیانوش. 1381. تأثیرات F. viride و Trichoderma harzianum در کنترل بیماری پاکسیمی گندم. خلاصه مقالات پانزدهمین کنگره گیاهپزشکی ایران

10. وحدتی، ر. و. هادی‌نژاد، ش. ح. اعتمداری و ح. زمانی زاده. 1381. بررسی اثر آنتاگونیست‌های باتریا میلی با جدایی‌های Sclerotium rolfsii در دانشگاه رازی کرمانشاه، 16-20


