ارزیابی مقدماتی زنوتیپ‌های گلرنگ بوته‌میری فوزازیومی

بوته‌میری گلرنگ یکی از مهم‌ترین بوته‌میرهای گلرنگ در منطقه اصفهان است. هدف از این بررسی شناخت عامل بوته‌میرهای گلرنگ در منطقه اصفهان و ارزیابی مقدمات متقاومت نسبی زنوتیپ‌های مختلف گلرنگ به بوته‌میر بوته‌میر در آنچه از سرزمین گلرنگ در منطقه اصفهان، کوه‌های مختلف فوزازیومی جنوبی دشت و پر ایاً و بوته‌میرهای زیادی به‌دست آمده، حاصل از اصل اتخاذ شده در آن بوده و مبتنی بر شرایط گلرنگ مورد ارزیابی قرار گرفته است. الگوریتم مصنوعی بوته‌ها از طریق تزیین سوسپانسیون آسیور قارچ عامل بوته‌میر با غلظت ۱۰۷ اسپور در میلی‌لیتر سوسپانسیون در کمیت پایین طوفان و در مرحله حصول بوته‌ها (۸ هفته بعد از اکست) انجام گردید و با استفاده از آراسته، گیاه و درصد مرگ و میر این داروهای گلرنگ فراگرفت.

نیپت آزمایش نشان داد که عامل بوته‌میر بوته‌میر گلرنگ در منطقه اصفهان قارچ Fusarium solani به تفاوت معنی‌داری بین

زنوتیپ‌های از لحاظ عکس، عامل بوته‌میرهای یوگود داشت. مقاومت، زنوتیپ‌های در برابر ترکیب IUTC121 با ماکسیمین تکسیره شدن ۹۶/۳۷/۳۱ میلی‌سر و میزان مرگ و میر ۳۳ و ۳۷/۳۳ بودند. براساس میانگین تکسیره شدن و درصد مارک و مرگ، زنوتیپ‌های بوته‌میر دانه‌داری به ۵ درصد مشترک شامل ۳۲ نمونه (۵۶/۳۲ زنوتیپ)، همچنین میانگین تکسیره شدن در گروه Saffire و AC Stirling نسبتاً حساس (۲۲ زنوتیپ) و حساس (۲۵ زنوتیپ) غرب‌پدید شدند. این نتایج نشان داد که در منطقه اصفهان بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهند که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهند که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهند که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهند که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهند که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهند که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهند که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهید که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهید که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهید که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد). این نتایج نشان می‌دهید که در مقایسه با Botheforme، گلرنگ بوته‌میرهای در حالت اصلی از قارچ AC Sunset تکسوره شدند (۱۹۷ ۳/۲۱ میلی‌سر و ۲۵ درصد).
مقدمه

گلرنگ (Carthamus tinctorius L.) یکی از گیاهان دانه روانه چند منظوره است که دانه آن درازی ۲۵ تا ۳۰ رونه و پروتئینی می‌باشد. علاوه بر نشر روانه، کنجه‌ای آن نیز نقص اساسی در جهیز غذایی دارد. همچنین رنگ‌وزهایی موجود در گل‌های آن در ارزش اقتصادی نسبتاً بالایی است. ممنی چراغهایی و مراکز تولید گلرنگ را تولید می‌کنند و منطقه خاورمیانه و حتی ایران می‌داند. در مقایسه با سایر گیاهان دانه روانه، این گیاه به لحاظ سازگاری بالا به شرایط محیطی منطقه، مقاومت به خشکی و نیاز آب کمتر آن قرار دارد (۱۲).

از جمله روش‌های جدیدی که در این مقاله بررسی شده است، به طوری که بررسی‌های انجام شده به‌خصوصی از زیست‌شناسی آن ایرانی به‌عنوان یکی از محل مقاوم به بررسی‌های می‌باشد. (۵) می‌توان به خصوصیات از لایه بالای مقاوم به بررسی پژوهش‌گری در اینگونه استفاده کرد. (۷) این موضوعات به بررسی و تولید مواد مورد استفاده زیست‌پزشکی گیرند به منظور بهبود کارکردی و گسترش گونه‌های مختلف از جمله Rhizoctonia solani و Fusarium oxysporum f. sp. Verticillium albo-atrum به عنوان گونه‌های پارسی‌مند گلرنگ و Rhizoctonia solani و Carthamum carthami گلرنگ ذکر شده است. (۶) بررسی این موضوعات از جمله عوامل پارسی‌مند گونه‌های مختلف Fusarium گلرنگ کشف شده است (۷). (۲) بررسی تکنیک‌های نگهداری و تولید محصولات گیاهی از جمله گلرنگ را محدود و با کاهش درد کلیه را کاهش می‌دهد.

مواد و روش‌ها

۱. نمونه برداری

در هرار تابستان ۱۳۸۰ از مزار مختلف گلرنگ منطقه اصفهان بازدید و نمونه‌برداری از بوته‌های مشکوک به بیماری
آزمایش‌های نشت، در تشکیل پتری فرآیند سفت‌پوشانی و سبب‌زایی داده شد و نشان داده شده است که در دمای 20 درجه سانتی‌گراد به مدت 120 ساعت نگهداری شده، جدایی‌های بیماری‌زا پس از 24 ساعت در ناحیه طرف و ریشه گیاه‌های ایجاد شده می‌توانند تحت تأثیر PDA کشت گردد. در این آزمایش‌ها در نوع فلج و محیط کشت، Penicillium و Aspergillus بود که جدایی فلج و محیط کشت به‌طور مثبت شاهد در نظر گرفته شد.

ب) در شرایط گلخانه‌ای

بدن‌های استاندارد از دستگاه‌های پودر داکت استفاده شد. در گل‌کره‌های طراحی شده 10 میلی‌متری تغییرگرگ میکروویوی در 5 دقیقه به‌طور میلی‌متری مورد استفاده قرار گرفت. نتایج نشان داد که در غلظت 5 میلی‌متری PDA گیاه‌های کشت مرگ می‌یافتند. در نتیجه، برای کاهش آخرین در گل‌کره‌های طراحی شده به‌طور مثبت شاهد در نظر گرفته شد. در این پوشک سبب‌زایی به‌طور مثبت شاهد در نظر گرفته شد.

پ) در شرایط خارجی

در هر سه نمونه از سبب‌زایی به‌طور مثبت شاهد در نظر گرفته شد. در این پوشک سبب‌زایی به‌طور مثبت شاهد در نظر گرفته شد.

آ) نمونه‌های زیست‌خور

برای آزمایش بیماری‌زا از روش یافته‌ای (15) استفاده شد. در هر گروه PDA یک محله‌ای 5 میلی‌متری میلی‌متری میکروبی‌ها به‌طور مثبت شاهد در نظر گرفته شد. در این پوشک سبب‌زایی به‌طور مثبت شاهد در نظر گرفته شد.

شناختی اصلی بیماری‌زا

به‌طور مثبت شاهد در نظر گرفته شد. در این پوشک سبب‌زایی به‌طور مثبت شاهد در نظر گرفته شد. در این پوشک سبب‌زایی به‌طور مثبت شاهد در نظر گرفته شد.
نتایج و بحث

از بوته‌های آلوده گل‌کره صورافه‌های مختلف فاریوم جداسازی گردید. در این پژوهش هیچگونه فاریوم از سایر آن‌ها به‌خصوص گونه‌های F. solani و F. oxysporum شرایط آزمایشگاهی بالا گل‌کره تهیه گونه قادر به ایجاد آن‌دستی نبودند. در آزمون بیماری‌زایی در آلودگی روند گل‌کره بود و سایر فاریوم‌های سه‌پروتوفیتی بالا توجه به مصرف پژوهش مورد نظر گزارش شد. آلودگی گل‌کره در مزرعه نسبت به نوع گل‌کره خاص و بین هر مروند پیوستگی ریشه‌ها از نوع خشک و بوته‌های آلوده به راحتی از خاک خارج نمی‌شود (شکل 1). عامل بیماری‌زا در تمام مرحله رشد کارآمدی می‌تواند گل‌کره را مورد حمله قرار دهد، به طوری که بوته‌های خشک و بین هر مروند پیوستگی ریشه‌ها از نوع خشک و بوته‌های آلوده به راحتی از خاک خارج نمی‌شود (شکل 1). عامل بیماری‌زا در تمام مرحله رشد کارآمدی می‌تواند گل‌کره را مورد حمله قرار دهد، به طوری که بوته‌های خشک و بین هر مروند پیوستگی ریشه‌ها از نوع خشک و بوته‌های آلوده به راحتی از خاک خارج نمی‌شود (شکل 1). عامل بیماری‌زا در تمام مرحله رشد کارآمدی می‌تواند گل‌کره را مورد حمله قرار دهد، به طوری که بوته‌های خشک و بین هر مروند پیوستگی ریشه‌ها از نوع خشک و بوته‌های آلوده به راحتی از خاک خارج نمی‌شود (شکل 1). عامل بیماری‌زا در تمام مرحله رشد کارآمدی می‌تواند گل‌کره را مورد حمله قرار دهد، به طوری که بوته‌های خشک و بین هر مروند پیوستگی ریشه‌ها از نوع خشک و بوته‌های آلوده به راحتی از خاک خارج نمی‌شود (شکل 1). عامل بیماری‌زا در تمام مرحله رشد کارآمدی می‌تواند گل‌کره را مورد حمله قرار دهد، به طوری که بوته‌های خشک و بین هر مروند پیوستگی ریشه‌ها از نوع خشک و بوته‌های آلوده به راحتی از خاک خارج

برای ارزیابی مقادیری مربوط به السلطنهای مختلف استفاده شد. نتایج این تحقیق نشان داد که در زنوتیپ‌های حساس به بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر بیماری، لکه‌های نکروزه در محل آلودگی مصنوعی سریع تر

222
جدول 1: نتایج برش و اریان برای میزان نکروزهای شدن و مرگ و مرگ در زنوتیپهای مختلف گل‌نگ

<table>
<thead>
<tr>
<th>میزان نکروزهای شدن</th>
<th>درجه آزادی</th>
<th>صابع تغییرات</th>
<th>نکروز</th>
<th>زنوتیپ</th>
<th>حضو</th>
</tr>
</thead>
<tbody>
<tr>
<td>مارک و مر</td>
<td>123/22</td>
<td>192/52</td>
<td>2</td>
<td>75/90</td>
<td></td>
</tr>
<tr>
<td>مارک و مر</td>
<td>360/100</td>
<td>271/99</td>
<td>99</td>
<td>51/29</td>
<td></td>
</tr>
<tr>
<td>مارک و مر</td>
<td>93/27</td>
<td>13/83</td>
<td>118</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: ممکن است در محدوده محاسبات دسترسی برای بک درصد

جمله گروه‌های مقاوم (۷ زنوتیپ)، نسبتا مقاوم (۹ زنوتیپ)، مستحکم (۲۹ زنوتیپ)، نسبتا حساس (۵ زنوتیپ) و حساس (۲ زنوتیپ) نتایج گرفته شده. توده بومی کویس که مهم‌ترین واریته مورد کشت در استان اصفهان است، با میانگین نکروزهای شدن ۷۵/۹۰ mm/میزان مرگ و مرگ ۵/۹۲ mm و میزان مرگ و مرگ ۲/۷۷ mm، مصرفی شده است. در توده، میانگین نکروزهای شدن ۹/۹۰ mm/میزان مرگ و مرگ ۲/۷۷ mm، مصرفی شده است.
جدول ۲: میانگین نکروزه‌شدن مارگ و میر در زننی‌های مختلف گل‌نگر

<table>
<thead>
<tr>
<th>تکرارهای نکروزه‌شدن تکرارهای مارگ و میر</th>
<th>زننی‌ها</th>
<th>مارگ و میر</th>
<th>زننی‌ها</th>
<th>مارگ و میر</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت قند</td>
<td>IUTC229</td>
<td>خارجی</td>
<td>مانگ</td>
<td>GEO62914</td>
</tr>
<tr>
<td>منبع</td>
<td>KOSEH</td>
<td>مانگ</td>
<td>IUTC136</td>
<td>خارجی</td>
</tr>
<tr>
<td></td>
<td>IUTC128</td>
<td>مانگ</td>
<td>GEO62915</td>
<td>خارجی</td>
</tr>
<tr>
<td></td>
<td>IUTC11</td>
<td>مانگ</td>
<td>GEO62916</td>
<td>خارجی</td>
</tr>
<tr>
<td></td>
<td>IUTC111</td>
<td>مانگ</td>
<td>GEO62917</td>
<td>خارجی</td>
</tr>
<tr>
<td></td>
<td>IUTC410</td>
<td>مانگ</td>
<td>GEO62918</td>
<td>خارجی</td>
</tr>
<tr>
<td></td>
<td>IUTC128</td>
<td>مانگ</td>
<td>GEO62911</td>
<td>خارجی</td>
</tr>
<tr>
<td></td>
<td>IUTC121</td>
<td>مانگ</td>
<td>GEO62912</td>
<td>خارجی</td>
</tr>
</tbody>
</table>

توجه: برای مقایسه میانگین‌های درصد مارگ و میر، $\frac{15}{16} = (\frac{5}{5})$ (درصد مارگ) و $\frac{6}{11} = (\frac{5}{5})$ (درصد میر) است. لطفاً به تفصیل مقایسه برای مطالعه بیشتری اشاره کنید.
جدول ۳. میانگین‌های نکروزه‌شدن و مرم و میر در گروه‌های مختلف زنوتیپ گرلنگ

<table>
<thead>
<tr>
<th>کروه</th>
<th>نکروزه‌شدن (mm)</th>
<th>تعداد زنوتیپ</th>
<th>مرم و میر (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماکار</td>
<td>11/54*</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>نسبتاً ماکار</td>
<td>15/28*</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>نسبتاً متحمل</td>
<td>18/59*</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>نسبتاً حساس</td>
<td>21/65*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>حساس</td>
<td>27/219</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* در هر ستون میانگین‌های کروه‌ها دارای حداکثر یک حرف مشترک هستند، با استفاده از آزمون LSD تفاوت معنی‌داری ندارند.

جدول ۲. اجرای واریانس، ضریب توان و واریانس پذیری عمومی برای پیمان نکروزه‌شدن و مرم و میر

<table>
<thead>
<tr>
<th>صفت</th>
<th>واریانس زنوتیپ</th>
<th>واریانس محرکه</th>
<th>واریانس فنوتیپ</th>
<th>ضریب توان</th>
<th>فنوتیپ (٪)</th>
<th>عمومی (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نکروزه‌شدن</td>
<td>47/87</td>
<td>11/3</td>
<td>11/3</td>
<td>1/4/6</td>
<td>11/3</td>
<td>11/3/4</td>
</tr>
<tr>
<td>مرم و میر</td>
<td>45/2</td>
<td>21</td>
<td>25</td>
<td>31/1/3</td>
<td>31/1/3</td>
<td>31/1/3</td>
</tr>
</tbody>
</table>

به پوپسیدگی فورمیسی رشته به برخورد است، انتخاب زنوتیپ‌های مقاوم و تولید ارقام مقاوم به این بیماری بسیار حائز اهمیت بوده و باید مورد توجه قرار گردد. در ضمن بعضی از لاین‌های مقاوم به بیماری ممکن است به نتایج میزان مقاومت مورد نظر در سطح قابل قبول نباشد. قلمی می‌تواند پایه‌زنوتیپ و سبب برای ایجاد ارقام مقاوم در بیماری اصلاحی فراهم نماید (5). توجه‌های مهمی که در این بررسی دارای فرآیندی بیشتری از لاین‌های مقاوم بودند، می‌تواند به عنوان منابع زنوتیپ‌های مقاوم به بیماری بیشتر مورد توجه قرار گیرند. انتخاب زنوتیپ‌های مقاوم به بیماری از لاین‌های مقاوم به زنوتیپ‌های که در لیست زراعی خصوصیات مطلوبی را دارا هستند می‌تواند منجر تولید ارقام مقاوم و سپس توسعه کشت و افزایش تولید گرلنگ شود (5).

سپاسگزاری
کلیه همراهی‌ها و امکانات اجرایی این طرح توسط خانم معاونت پژوهشی دانشگاه صنعتی اصفهان تأمین شده که بدين وسیله صمیمانه تشکر و قدردانی می‌گردد. همچنین تأکید بخشی از موانع زنوتیپی مورد استفاده در این پژوهش از طرف مرکز کالسیون متاب زنوتیپی گاهی در پرانتشن آلمن قابل تقدیر می‌باشد.

دارند و نیاز به انتخاب برای تولید ارقام مقاوم به بیماری پوپسیدگی فورمیسی رشته می‌تواند مورد باشند. در بررسی‌های دیگر نیز نشان داده شد که بعضی از زنوتیپ‌های بیماری‌های از جمله پوپسیدگی فیتوفورسیی رشته و زمردگی فورمیسی بیماری نیز وجود داشته است (10 و 13). بطوری که بعضی از زنوتیپ‌های ایرانی در گروه زنوتیپ‌های مقاوم طبق میانه و در پرداختن اصلاحات گرلنگ باید تولید ارقام تجاری مقاوم استفاده شده‌اند (5 و 9).

نمونه‌برداری از بیماران از بیماری میانه رشته در کاشت میزان خصوصیات بازیخی از بیماری‌های مختلف از جمله پوپسیدکی رشته و گرلنگ‌های مقاوم بیان می‌شود. ویل استفاده از ارقام مقاوم در برنامه کنترل تولید کامل (PM) نتیجه‌گیری‌های پیش‌گام می‌باشد (8). یکی از علل موفقیت‌های گرلنگ به عنوان یک محصول پایدار تجاری در کشت آبی این کشور امکانات برای خاطر تولید ارقام تجاری مقاوم به بیماری پوپسیدگی رشته فیتوفورسیی بوده است (13).

تولید ارقام مقاوم به بیماری پوپسیدگی فورمیسی رشته در گرلنگ می‌تواند با بهبود توان و کنترل کشت این محصول خصوصاً در مناطق خشک گردد. بنابراین در شرایط گرم و خشک اسکله‌های که عمدتاً کشت محصولات از واریتی کوچه‌ای به ماشین‌کاری و بازسازی ناباید از عوامل سیستم‌های کاهشی برای کاهش بیماری‌ها استفاده شود.
مباحث مورد استفاده:
1. آل آقازاده. 1349. بهاماری یونت‌هایی کارنگ. خلاصه مقالات سومین کنگره گیاه‌پزشکی ایران. شیراز.
2. ارشادی. ج. 1374. فاره‌های ایران. نشریه شماره 10، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران.
3. بهدادی. ا. 1359. بهاماری یونت‌های گیاه‌پزشکی ایران. چاب ناشت اصفهان.
4. عبداللهی. م. و. ف. صبح‌الی. 1374. معرفی یک فرم اختصاصی جدایی شده از کارنگ. خلاصه مقالات دوازدهمین کنگره گیاه‌پزشکی ایران. کرمان.