تأثیر کلرید سدیم بر فعالیت آنزیم لیپاز در دانه‌های سه پایه پسته و پراکسیداسیون چربی در دانه‌های سه پایه پسته

مختار حیدری و عنايتا!... تفضیل

چکیده

پیکر از عوامل مهم در تعیین مقاومت به کلرید سدیم، کارایی غشایهای سلولی در شرایط نش تنها پایه. پراکسیداسیون چربی همچنین از فعالیت آنزیم لیپاز در زمان و با راه‌کارهای آزاد آکبیز، از عوامل مهم تخریب غشایه سلولی در شرایط نش کلرید سدیم است. در پژوهش حاضر آثار تیمارهای صفر، ۱۵۰ و ۳۰۰ میلی‌مول کلرید سدیم می‌تواند در دوره روزه بر فعالیت آنزیم لیپاز در دانه‌های پسته (Pistacia mutica F. & M.) برگ دانه‌های پسته، بسته ترکیبی و پسته (P. vera L.) وحشی سرخس پخته (hạnh بزرگ گرگندی) و تاثیر آن بر ترشح آنزیم‌های دانه‌های پسته را نشان دهنده دوره‌های سیستمی می‌باشد و بهبود آن تاثیر آنزیم لیپاز در گزینش گیاهان مقاوم به کلرید سدیم در پسته و دانه‌های سه پایه پسته در نظر گرفته شده. شکل‌شناسی آن با توجه به نوع و شرایط محیطی و آنزیمی در پسته در پیش بیان شده تاثیر کلرید سدیم بر بیشتری صورت گرفته.

واژه‌های کلیدی: پسته، کلرید سدیم، پراکسیداسیون چربی، لیپاز در دانه‌های پسته، پراکسید و مالون دی آلدهید
مقدمه

وجود غلظت زیاد کلرید سدیم در خاک و یا آب موجب صرع تغییرات فیزیولوژیکی و بیوشیمیایی سیستمی در گیاهان می‌شود. یکی از عوامل مهم در تغییر مقاومت به کلرید سدیم کلرید غلظتی در سلولهای زیستی و اثرات آلکل‌های دفعات و عوامل بیماری را، نشان دهیم که تنها محیط، حشرات و عوامل بیماری را نشان نمی‌دهد. (11). این اثرات لیپولیکس و اسید لیپولیکس، استرها و گلیکوان آنزیم لیپولیکس زیست در گیاهان می‌باشد که به عنوان الگوهای آنزیم فسفولیپید آغاز می‌شود. (12). از طرف دیگر، پراکسیداسیون چربی‌های موجود در دیواره سلول‌های گیاهی که تحت تأثیر رادیکال‌های آزاد به ویژن سلول‌های و یا بیوشیمیایی انجام می‌شود، مهم‌ترین مکانیسم تخریب (MDA) مولکولهای سلولی دی‌آلدهید (13). مولکولهای دی‌آلدهید می‌توانند ترکیب را از سوی دی‌آلدهید می‌توانند به توجه این افراد تولید شده و اندام‌گیری آن به عنوان تغییرات پراکسیداسیون چربی غلظت سلولی در نظر گرفته می‌شود. مولکولهای دی‌آلدهید می‌تواند، استاده‌های تولید و نظر شاخصی پراکسیداسیون چربی غلظت سلولی را به طور تاماسی تحت تأثیر قرار دهد (12). تفاوت در میزان تولید مولکولهای دی‌آلدهید در ارتفاع نسبت و مقاومت به کلرید سدیم در پرداخت (13). نتایج (21) و (22) با گزارش گذشته است و می‌تواند نشان دهنده اهمیت این ترکیب در شناسایی گیاهان در مقاوم به کلرید سدیم باشد. یکی از نشانه‌های آن زمان در رابطه با غلظت چربی‌های غلظت سلولی، سیستم آنزیمی لیپولیکس زیست در گیاهان می‌باشد. آنزیم لیپولیکس زیست و اکسیداسیون چربی فیبر اشیاء و تولید هیدروپراکسیداسیون ایده‌بردار از پیش‌نشدن چنین گزارش‌های می‌باشد که کلرید سدیم موجب افزایش گردیده است، نشان دهنده ایمن آنزیمی را که می‌تواند با راه اندازی مولکول‌های آنزیمی واسکولیکس زیست و اکسیداسیون چربی غلظت و تولید هیدروپراکسیداسیون ایده‌بردار را اشتباه نشان دهد. (11) اکسیداسیون ایده‌بردار چربی ناشی از فعالیت‌های این آنزیم، موجب تولید رادیکال‌های آزاد اکسیژن می‌شود (12). همچنین گزارش گذشته است نشان دهنده این آنزیم موجب افزایش گردیده است، نشان دهنده ایمن آنزیمی را که می‌تواند با راه اندازی مولکول‌های آنزیمی واسکولیکس زیست و اکسیداسیون چربی غلظت و تولید هیدروپراکسیداسیون ایده‌بردار را اشتباه نشان دهد. (11)
ماده و روش‌ها
این پژوهش طی سال 1382 در غربه‌های باغبانی دانشگاه شیراز و آزمایشگاه مجمع تحقیقات باغ‌سازی و دامپروری به مرکز تحقیقات کشاورزی استان فارس انجام گردید. بذردهای نه 1300، بذردهای از جنگلی و باعث به‌سازی در جنوب غربی استان فارس گروه‌بندی شده، بذرده‌های پسته قزوینی و سرخس نیز از مجموع به‌سازی‌های پسته ایران واقع در فاصله تهیه شدند.

به ترتیب به‌نوع برگ‌پذیری پسته قزوینی و نسبت به مدت یک ماه در سه‌ها هر یک پذیرش نموده شد. تعداد بذردها در دمای 22 درجه سانتی‌گراد در مدت 70 تا 80 روز بالاخره به‌وجود آمد.

پراکندگی‌های حریک
میزان مالون در آگهی به برگ با استفاده از روش پیشنهادی هست و با بررسی‌های لاکتیک و روزه‌ای (آزمایشگاه‌های فناوری)، همکاران 12 و 60 نمونه فراوانی گرده و میزان مالون در آگهی با استفاده از تفاوت قرار انجام شده در 60 نمونه (مربوط به جذب مولد غیر ویژه) محاسبه شد.

پراکندگی‌های بندورون
پراکندگی‌های میزان پراکندگی بندورون براساس روش پیشنهادی ویلکوس و همکاران (24) انجام گردید. نمونه برگ (200 گرم) با استفاده از 5 میلی لیتر اسید نیتریک کلر استیک (TCA) درصد عصاره‌ی عضوی شد و به مدت 15 دقیقه سانتی‌فیوز.
پراکسیداسیون جربی
جدول ۳ مربوط به نتایج آثار تیمارهای کلرید سدیم و مدت زمان تیمار بر پراکسیداسیون جربی (که براساس مقدار مالون دی آلدهای اندوزگری شد) در برج دانه‌الهای پایه‌های پسته‌ای مشاهده شد. نتایج نشان داد کاربرد تیمارهای کلرید سدیم و ۱۵۰ میلی‌مول لیزر به طور معنی‌داری موجب افزایش پراکسیداسیون جربی در هر سه سطح جربه در ۱۵۰ میلی‌مول از کلرید سدیم، بهترین میزان پراکسیداسیون جربی دیده شد (۷۹٪) در ۱۵۰ میلی‌مول کلرید سدیم و رو به روهمت و چهار‌نفر افزایش معنی‌دار نسبت به روز اول داشت، و در دانه‌الهای قزوینی و سرخسی این طور نبود.

پراکسید هیدروژن
در جدول ۴ نتایج تیمارهای کلرید سدیم بر میزان جذب پراکسید هیدروژن در برج دانه‌الهای پایه‌های پسته‌ای در مقدار بی‌سی زرم بالا شد. نتایج نشان داد کاربرد کلرید سدیم به مقدار ۱۵۰ میلی‌مول، لیزر معنی‌دار در دانه‌الهای قزوینی و سرخسی و قزوینی در روز چهاردهم پس از اعمال تیمارهای کلرید سدیم ۱۵۰ و ۱۵۰ میلی‌مول در لیزر، کاهش فعالیت آنریم نسبت به روز اول و هفتگ در ۱۵۰ میلی‌مول این کاهش کامل شد. بهترین درصد افزایش فعالیت آنریم در دانه‌الهای قزوینی و سرخسی در روز هفتم پس از اعمال تیمار کلرید سدیم ۱۵۰ میلی‌مول (به ترتیب ۱۴ و ۲۰ درصد) ولی در دانه‌الهای به، روز اول پس از اعمال تیمار کلرید سدیم ۱۵۰ میلی‌مول بیشترین فعالیت آنریم مشاهده گردید (۳۶ درصد نسبت به شاهد) که بهترین میزان فعالیت آنریم در مقایسه با سایر افراد بهتر بود. بررسی فعالیت آنریم نشان داد در دانه‌الهای به، روز اول و روز دوم فعالیت آنریم در دانه‌الهای قزوینی و قزوینی و دانه‌الهای به، به شاهد نسبت به افزایش میزان فعالیت آنریم و در دانه‌الهای به، کاهش دیدن در افزایش افزایش یافته آنریم در دانه‌الهای به، نسبت به دانه‌الهای قزوینی و قزوینی و دانه‌الهای به، به شاهد و

تاریخ
فعالیت آنریم
جدول ۱ ها در ترتیب نشاء دانه‌ای آثار کلرید سدیم بر میزان فعالیت و درصد فعالیت آنریم لیپوکسی‌زنا در برج دانه‌الهای پایه‌های پسته‌ای مشاهده شد. افزایش قسمتی سدیم به میزان ۱۵۰ و ۱۵۰ میلی‌مول در لیزر، موجب افزایش فعالیت آنریم نسبت به شاهد گردید (جدول ۱) در کلیه سطوح کلرید سدیم، بهترین درصد افزایش فعالیت آنریم لیپوکسی‌زنا در دانه‌الهای به صورت قوت (جدول ۱) در دانه‌الهای سرخسی و قزوینی در روز چهاردهم پس از اعمال تیمارهای کلرید سدіم ۱۵۰ و ۱۵۰ میلی‌مول ۲۰ درصد کاهش در فعالیت آنریم نسبت به روز اول و هفتگ در دانه‌الهای به، در سطح کلرید سدیم ۱۵۰ میلی‌مول این کاهش کامل شد، بهترین درصد افزایش فعالیت آنریم در دانه‌الهای قزوینی و سرخسی در روز هفتم پس از اعمال تیمار کلرید سدیم ۱۵۰ میلی‌مول (به ترتیب ۱۴ و ۲۰ درصد) ولی در دانه‌الهای به، روز اول پس از اعمال تیمار کلرید سدیم ۱۵۰ میلی‌مول بیشترین فعالیت آنریم مشاهده گردید (۳۶ درصد نسبت به شاهد) که بهترین میزان فعالیت آنریم در مقایسه با سایر افراد بهتر بود. بررسی فعالیت آنریم نشان داد در دانه‌الهای به، روز اول و روز دوم فعالیت آنریم در دانه‌الهای به، به شاهد و
جدول ۱. آثار کلرید سدیم و زمان بر فعالیت آنزیم لیپوکسیژن (پیکومول هیدروپروکسی اتان کادنیزین) اسید در دیقیه در گرم وزن نازه برق در برق پایه‌های پسته

<table>
<thead>
<tr>
<th>کلرید سدیم (میلی‌مول)</th>
<th>مدت زمان (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۵۰</td>
</tr>
<tr>
<td></td>
<td>۷۵</td>
</tr>
<tr>
<td></td>
<td>۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>به‌ه</th>
<th>۱۶۸/۳۰</th>
<th>۱۲۵/۳۱</th>
<th>۱۰۵/۳۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>به‌ه</td>
<td>۱۷۲/۳۸</td>
<td>۱۲۴/۳۹</td>
<td>۱۱۱/۴۱</td>
</tr>
<tr>
<td>به‌ه</td>
<td>۱۲۵/۴۰</td>
<td>۱۱۱/۴۵</td>
<td>۱۱۱/۴۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سرخس</th>
<th>۱۵۰/۷</th>
<th>۱۱۱/۳۸</th>
<th>۷۵/۲۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرخس</td>
<td>۱۴۷/۴۳</td>
<td>۱۰۰/۳۶</td>
<td>۷۵/۲۷</td>
</tr>
<tr>
<td>سرخس</td>
<td>۱۰۰/۴۱</td>
<td>۱۰۰/۴۱</td>
<td>۷۵/۲۷</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فلوئونی</th>
<th>۱۵۰/۷</th>
<th>۱۰۰/۴۱</th>
<th>۷۵/۲۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>فلوئونی</td>
<td>۱۰۰/۴۱</td>
<td>۷۵/۲۷</td>
<td>۷۵/۲۷</td>
</tr>
<tr>
<td>فلوئونی</td>
<td>۷۵/۲۷</td>
<td>۷۵/۲۷</td>
<td>۷۵/۲۷</td>
</tr>
</tbody>
</table>

۴۵ میلی‌مول موجب بیشترین میزان تولید پراکسید هیدروژن در دانه‌ال‌های بنه در روز چهاردهم شد.

بحث

افزار کلرید سدیم موجب افزایش پراکسیداسیون چربی در بخش هم‌ویای دانه‌ال‌های پایه‌های پسته گردد و میزان مولن دی ۷۵ میلی‌مول موجب بیشترین میزان تولید پراکسید هیدروژن در دانه‌ال‌های بنه در روز چهاردهم شد.

۲۷۹/۲۴۵ و ۲۷۹/۲۴۵. در روز چهاردهم و پس از کاربرد تیمار کلرید سدیم ۱۵۰ میلی‌مول، تأثیر محدودی در میزان تولید پراکسید هیدروژن بین دانه‌ال‌های سرخس و بنه وجود داشت. در دانه‌ال‌های فلوئونی با کاربرد تیمار کلرید سدیم ۱۵۰ میلی‌مول، میزان تولید پراکسید هیدروژن در روز‌های اول، هفتم و چهاردهم تفاوت معناداری نشان داد. کاربرد تیمار کلرید سدیم
جدول 3. آثار کلرید سدیم و زمان بر میزان آلدهید (ناترومولار در گرم وزن تبرگ) در برگ دانه‌های پایه یک دستگاه

<table>
<thead>
<tr>
<th>مدت زمان (میلی مول)</th>
<th>کلرید سدیم (میلی مول)</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰</td>
<td>۷۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۴/۲/۸۸</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۵۶/۲/۹۸</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۵۷/۹/۴۸</td>
<td>۷</td>
</tr>
<tr>
<td>سرخس</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۳۶/۸/۵۶</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۳۹/۲/۸۲</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>۴۸/۲/۵۶</td>
<td>۷</td>
</tr>
<tr>
<td>طویش</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۳۹/۸/۹۰</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۴۲/۹/۴۰</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>۵۰/۳/۰۶</td>
<td>۷</td>
</tr>
</tbody>
</table>

* میانگین‌های که در هر رخیف و با ستون دارای حروف مشابه می‌باشند، تفاوت معنی‌داری در سطح ۵٪ آزمون تک‌نوازند.

جدول ۴. آثار کلرید سدیم و زمان بر میزان جذب پراکسیدهیدروژن (H₂O₂) (در برگ دانه‌های پایه یک دستگاه در طول زمان ۳۹۰ نانو‌ثانیه)

<table>
<thead>
<tr>
<th>مدت زمان (میلی مول)</th>
<th>کلرید سدیم (میلی مول)</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰</td>
<td>۷۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۴/۲/۸۸</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۵۶/۲/۹۸</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۵۷/۹/۴۸</td>
<td>۷</td>
</tr>
<tr>
<td>سرخس</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۳۶/۸/۵۶</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۳۹/۲/۸۲</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>۴۸/۲/۵۶</td>
<td>۷</td>
</tr>
<tr>
<td>طویش</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۳۹/۸/۹۰</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۴۲/۹/۴۰</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>۵۰/۳/۰۶</td>
<td>۷</td>
</tr>
</tbody>
</table>

* میانگین‌های که در هر رخیف و با ستون دارای حروف مشابه می‌باشند، تفاوت معنی‌داری در سطح ۵٪ آزمون تک‌نوازند.

آلدهید (MDA) که شاخص انجمام پراکسیدهیدروژن (Peroxid) و سویا (۱۵) می‌باشد، گزارش شده است. هم چنین تفاوت در میزان تولید مالاتون در آلدهید که برای نخستین بار در گونه‌های پستان گزارش شده، نشان می‌دهد این شاخص می‌توان به عنوان یکی از معیارهای پژوهشگران در تجربه‌های (۲۶) برخی از اسید اسید (۱۲) و سویا (۱۵) در پاسخ به کلرید سدیم افزایش معنی‌داری داشت (جدول ۳). نتایج مشابهی در مورد اثر تنش کلرید سدیم بر افزایش میزان مالاتون در آلدهید و پراکسیدهیدروژن چربی توسط سایر
گرینگش گیاهان مهاجر به کلرید سدیم مورد استفاده قرار داد. در اینجا نتایج این پژوهش نشان داد که در دانه‌های به پراکسیداسون هیبریدیت نسبت بیو دیگر انجام شد و در پراکسیداسون بی‌بی به پاپ دیگری انجام شد. افزایش میزان پراکسیداسون چربی و تولید مالون دی آلدهید بیشتر در ارقام حساس نسبت به کلرید سدیم در برقلال (13)، کنوم (23) و نوت (23) مورد تأیید قرار گرفته است. افزایش میزان رادیکال‌های آزاد (20) و افزایش فعالیت آنزیم لیپوکسین زنات (11) و 12 از مهم‌ترین دلایل پراکسیداسیون چربی می‌باشد.

اگرچه در مورد تأثیر پراکسیداسیون در دانه‌های پراکسیداسیونی ناشی از پراکسیداسیون هیبریدیت گیاه در حاضر را به عنوان بستگی سوداگر مورد استفاده قرار می‌دهند و ترسکبی نشان Neshan
بحث

1. باین نسبت ب. 1375. رکود بذر و اثر اسید ژیریلیک بر رشد دانه‌ها دو گونه وحشی پسته. پایان نامه کارشناسی ارشد باغبانی، دانشگاه کشاورزی، دانشگاه شیراز.

3. جیدری، م. 1377. مطالعه اثرات کاری گیاهی بر ویرانی داره گروه و بذر و هم چنین رشد دانه‌ها در پایه به کاری گیاهی و تنظیم کننده‌ای رشد گیاهی در گونه‌های پسته. پایان نامه کارشناسی ارشد باغبانی، دانشگاه کشاورزی، دانشگاه شیراز.

