بررسی نقش چریان ترجیحی و مواد آلی بر روند انتقال کادمیوم، سرب
و روی در یک خاک لومی آهکی

حجت امامی، غلامرضا ثوافی فیروزآبادی و مهدی شریف\(^1\)

چکیده

موضوع آلودگی خاک توسط مواد شیمیایی باعث انوزشت‌های تغییراتی در مورد محیط زیست شده است. آب‌نشوی مواد به آب‌های زیرزمینی و حركة این مواد در خاک مشکلات زیادی را برای آلودگی ماتریکس خاک، محلول خاک و آب زیرزمینی زیر آن به وجود می‌آورد. از این رو، به منظور بررسی تاثیر چریان ترجیحی (Preferential Flow) ساختار خاک و کمپلکس‌های آلی بر تحرک و آب‌نشوی فلزات کادمیوم، سرب و روی آزمایشی به صورت فاکتوریل با کرت‌های خریده در قالب طرح کاملاً تصادفی با سه تکرار انجم شد.

تیمارهای خاک دست‌نخورده (O)، دست‌خورده (D) و دست‌خورده جامد (U) به مدت یک ماه با محلول‌های حاوی گلوله‌های ۲۰ میلی‌گرم در لیتر عناصر کادمیوم، سرب و روی آب‌نشوی شدند و غلظت کادمیوم، سرب و روی در لواصل زمانی مختلف در محلول خرورجی اندازه‌گیری شد.

نتایج به دست آمده نشان داد که عناصر تفاوت معنی‌داری در سطح آماری یک درصد با یکدیگر در محلول خرورجی داشتند و ترتیب تحرک آنها به صورت Zn>Ph>Cd بود. همچنین بین تیمارهای مختلف غلظت یک درصد در سطح آماری یک درصد تفاوت معنی‌داری وجود داشت و غلظت هر عناصر کادمیوم، سرب و روی در تیمارهای D و U بیشتر از تیمار O بود. غلظت هر عناصر در تیمار با سطح 0.05 تفاوت معنی‌داری مشاهده شد. (Pore Volumes) (حجم مذده) (فاوت معنی‌داری مشاهده شد) در سطح 0.05. به طوری که کادمیوم در تیمارهای D و Oچهارمی‌ما، سرب در سطح 0.05 از تیمارهای در سطح 0.05 و تفاوت معنی‌داری در محلول خرورجی داشت و غلظت روی فقط در تیمار O در زمان‌های مختلف آب‌نشویی روند مشخصی داشت و پس از ۸ روز آب‌نشویی تفاوت معنی‌داری در این تیمار مشاهده شد.

واژه‌های کلیدی: چریان ترجیحی، مواد آلی، خاک دست‌خورده، محلول خرورجی

\(^1\) به ترتیب دانشجوی دکتری و استادیاران خاکشناسی، دانشگاه شریف، دانشگاه تهران

63
مقدمه
امروز، مشکل آلوگی خاک و آب با فلزات سنگین یکی از عوامل تهیه‌کننده‌های پیش‌بینی تولیدتکانی در کشاورزی و حیات‌انسان و سایر موقعیت‌های زندگی است. اگرچه فرصت‌های شیب‌دار نسبی کمبود در خاک نگهداری می‌شوند، اما نوشتاری تعدادی از فلزات کمبود در خاک‌های تیمار شده با لحن مشاهده شده است. (10) دوی سائی و ولک (5). علائمی از حرشیت فلزات کمبود در پایین تر از ناحیه ریشه مشاهده کردنند. در این مقاله، این پس از ۱۴ سال بررسی روی خاک‌های تیمار شده با لحن نتیجه کمبود گرفته که غلظت‌های کادمیوم و روی در زیاب در طول زمان کاهش، در حالی که غلظت‌های مس و سرب افزایش یافته، این امر سبب این وعده است که سرب و مس با مواد آلی پرورده می‌شود. شکل‌بندی مهندسی و حفاری شده زیر مجموعه میده و به حاکمیت سرعت می‌تواند مواد آلی یا کدکان آزمایش می‌شوند. کادمیوم و روی با مواد آلی پرورده ضعیف‌تری ناشی بداند و بیان‌بندی تحت تأثیر تهیه‌کننده لجن قرار نمی‌گیرند. (27)

بررسی‌های سیاسی نشان داده‌ها که آب و اماکن در نتیجه خاک از طریق نسبیه‌ای تجهیز منفعت می‌سوزند. (4) این مشکلات کمبود و تزریق اطراف اصلاح به زیر ناحیه نقش زیادی را دریافت می‌کنند. در نتیجه امکان وجود مواد شیمیایی و در نهایی آلوده شدن آب زیست‌محیط وجود دارد. بر اساس نتایج کامبیوک و همکاران (9)، حیاتیت تجهیز نشین ممکن است انتقالات از نتیجه خاک دارد. نتایج این پژوهش نشان داد که خاک‌های نسبتاً خاک‌های دنشانده در نتیجه تزریق فلزات در خاک‌های انتخابی از ۳۵ سانتی‌متر بود.

نتایج بررسی تیل و مکرره (24) نشان می‌دهد که همه فلزات که به سطح خاک معدنی اضافه شدند چنانکه سریع‌تر از سرویس خاک پیش خارج شدند. این نشان داد که خاک از فلزات در خاک‌های می‌باشد. علاوه بر این،
مواد و روش‌ها

به منظور بررسی نقش جریان تریگری در انتقال فلزات در
خاز، از چهار دست‌خورده (تیمار) نمونه‌برداری شد. به دنبال
منظور نه عده لی‌الی این بافت و انتقال به ترتیب 20 و 35
سانتی‌متر بر می‌رود داده شدند. سپس در محل نمونه‌برداری کرئی
با ابعاد 20×20×20 متری رنگ شد. جهت سهم‌گیری لوله‌ها در خاز،
دیواره خارجی آنها نیز بود و کرت مورد نظر هر روز سه توده
به مدت یک هفته آپاری گردید. سپس لوله‌ها تا عمق 30 سانتی
متری به آرامی و با فشار دست وارد خاز شدند. سپس خاز
محیط خارجی لوله‌ها تا عمق 35 سانتی‌متری به آرامی حفر شد
و لوله‌ها همراه با خاز درون‌شان خاز شدند. زیر آنها با کمک
صفا (نامه 42) و توری‌پوششند حالت و حاشیه توری‌ها توسط
چسب به دیواره لوله‌ها چسبانده شد و برای انجام آزمایش‌ها به
آزمایشگاه متصل شدند.

برای تعیین مقداری خاز دست‌خورده (تیمار D) در عمق
0 تا 30 سانتی‌متری همان ناحیه نمونه‌برداری شد. نمونه‌ها هوا
خاز شده و پس از کوبیدن از اکتا دو میلی‌متری عبور داده
شدند. بر اساس جرم مخصوص ظاهری خاز دست‌خورده
(1/35 گرم بر سانتی‌متر مکعب) که به روش کلروکس نمایی شد
و حجم سان خاز دست‌خورده تا ارتقای 30 سانتی‌متری
محیط‌بندی گردید و بر طبق آن خاز 35 بر سانتی‌متر
درصد مایع 30 سانتی‌متری و با کناره‌ربار (42) دانه‌گیری
شد که برای این‌جا به مدت 18 ساعت در یخ‌بار گردید.
برای این‌جا به مدت 18 ساعت در یخ‌بار گردید.

25-30 و 15/100 میلی‌گرم بر لیتر بود.

علاقه بر این بخش از ویژگی‌های خاز از جمله یافته به
روش پیت (13). جرم مخصوص ظاهری به روش کلروکس و
بوشباشن دنا با تاریکی اکست (12). همکار به روش کل‌سیستمی پی‌پا
کردن کلسیم مولکول pH (19). در گل اشباع (14). توسط
دستگاه هدایت سنت در عصاره اشباع (14). ظرفیت تبادل
کاتیونی به روش باور (14) و محتوی رطوبتی خاز و توزیع
خlez و فرض با دستگاه مصرفات شاریر ادامه‌گیری و معمولی
شدند. که نتایج تغییرات فیزیکی و شیمیایی خاز در جدول
1 نشان داده شده است.

بررسی نقش جریان تریگری و مواد آلی بر روی انتقال کادمویم، سرب و روی ...
نتایج و بحث

مقایسه تحرک و مقادیر فلزات کادیوم، سرب و روی در محلول خروجی خاک

در نظر گرفتن تیمارهای مختلف خاک همانگونه که در شکل 1 مشخص است، غلظت عناصر در محلول خروجی تیمار کمترین مقدار آنها در محلول خروجی تیمار D بیشتر شد که مشابه تایپ کامبرک و همکار (22) و امریق و همکاران (9) است. با توجه به نوع عنصر و نوع خاک مشاهده گردید که در محلول خروجی تیمار کبیشترین مقدار بود که با آن در سطح بک درصد افزایش معنی داری را نشان داد. تایپ به دست آمده در مورد تحرک سرب در تیمار O با تایپ سایر محیط‌های مطالعه یکسان بود. Cu > Pb > Zn > Cd ترتیب به دست آمده در مورد عنوان کردنان در pH بالا حلالیت اسیدهای فولیک و در pH خاک در این ارایش می‌باشد و جوینت تیمار تکانده یکسان باشد. Cu > Pb > Zn > Cd ترتیب به دست آمده در مورد عنوان کردنان در pH بالا حلالیت اسیدهای فولیک و در pH خاک در این ارایش می‌باشد و جوینت تیمار تکانده یکسان باشد. Cu > Pb > Zn > Cd ترتیب به دست آمده در مورد عنوان کردنان در pH بالا حلالیت اسیدهای فولیک و در pH خاک در این ارایش می‌باشد و جوینت تیمار تکانده یکسان باشد. Cu > Pb > Zn > Cd ترتیب به دست آمده در مورد عنوان کردنان در pH بالا حلالیت اسیدهای فولیک و در pH خاک در این ارایش می‌باشد و جوینت تیمار تکانده یکسان باشد. Cu > Pb > Zn > Cd ترتیب به دست آمده در مورد عنوان کردنان در pH بالا حلالیت اسیدهای فولیک و در pH خاک در این ارایش می‌باشد و جوینت تیمار تکانده یکسان باشد.
پررسی نقش جریان ترجمه و مواد آلی بر روی اندازه کادمیوم، سرب و روی...

غلط سرب در محلول خروجی تیمار U به طور معنی‌داری بیشتر از تیمار D بود.

بدین ترتیب مشخص شد که تحرک فلزات سنگین در این خاک Pb > Zn > Cd که حاوی سرب درصد آتی است به صورت می‌باشد. این روند با ناپایدار بودن کادمیوم و ورود روی به سرب گزارش شده است. آنها بیان کرده‌اند که مولکول‌های سنگین تا حدی تیمار کمترین مقدار را داشته، که با نتایج آن است. این امر موجب می‌شود که تحرک آنها در خاک کمتر شود و این فرصت بیشتری نیز برای انتقال ترکیبات آلی محلول فراهم می‌شود. همچنین تأثیر ماده آلی بر تحرک فلزات سنگین توسط کورن و همکاران در این بحث توجه شد که این تحقیق به عنوان یک مدل کیمیکس‌های آلی است. ولی تیمار و مکربرد (21) بر توانایی مواد آلی در حذف مورد حمل ترکیبات و قابلیت استفاده فلزات سنگین حتی در شرایط استیم‌زد تأکید کرده‌اند. این نتایج با داده‌های دست‌آمده از این پرسی در مورد حمل کردن تیمار و کادمیوم در تیمار O مطابقت دارد که احتمالاً به خاطر ویژگی عنصر و تقابل وسیع کم آنها یجاد شکل کیمیکس‌های محلول با مواد آلی می‌باشد. البته وسیع‌تر با نویسی تأثیر منتفی‌واری در تحرک يا C/N می‌تواند تأثیر منتفی‌واری در تحرک یا C/N و تکه‌های فلزات سنگین در خاک شاته‌اند.

طبقه‌بندی فلزات عناصر کادمیوم، سرب و روی در حجم (Pore Volume) منفی (af) کادمیوم

شکل ۳ مانندی انجمن کادمیوم را در حجم منفی‌ها و تیمارهای مختلف خاک تنها می‌دهد. مشاهده می‌شود که در تیمار خاک U از آغاز آزمایش تا عبور ۳۳ حجم منفی محلول کادمیوم (۱۸ ساعت پس از شروع آزمایش) گلظت این عنصر در محلول خروجی افزایش یافته و در سطح بالا درصد معمولاً تا ۳۰ درصد در این باقی مانده‌ها نمایش داده شده‌است. در تیمارهای D و O نیز تفاوت معنی‌داری نداشت. به علت تأثیر جریان می‌رسید این افزایش می‌تواند در تیمار U به علت تأثیر جریان ترجیحی و وجود ماکزیم‌ها و دیدن این نتایج به بعد نا عبور ۱۳۵ حجم منفی (۳ روز پس از شروع آزمایش) گلظت محلول خروجی توانسته باشد که نشان داد به عملاً این برخی از کدام‌ها به عنصر چنین نموده و با سرعت کمتری همراه محلول حکمران کرده، در نتیجه...
شكل 1. نمودار میانگین غلظت کادمیوم، سرب و روی در محلول خروجی خاک پس از آب‌شویی

شكل 2. نمودار غلظت عناصر کادمیوم، سرب و روی در تیمارهای مختلف خاک
شکل ۳: منحنی‌های انحلال عنصر کادمیوم در حجم معنی‌دار و تیمارهای مختلف خاک

حرکت عنصر را نیز به تأخیر انداخته‌اند. پس از ثبت‌یابی این ذرات در خاک و یا خروج آنها از خاک، سرع‌ت‌ حرکت آنها نیز افزایش یافته است. از این رو به نظر می‌رسد پس از عبور \(1/22\) حجم مندё محصول کادمیوم از خاک U پس از عبور (خروج ذرات کلوتیدی از خاک) رخ داد و انحلای منحنی شروع شد. زیرا این پس غلظت در محلول خروجی با حجم منفی‌های قابلی تفاوت معنی‌داری را در سطح یک درصد تأثیر داد.

طبق نظر امیری و همکاران (9) مکانیسم‌های فیزیکی حرق‌ت فلزات سنگین، رسوایی کلوتیدی و ذرات رس هستند که با حرق‌ت محلول خاک، فلزات را منتقل می‌کنند و همچنین طوری که اشاره شده به نظر می‌رسد در این برسی این مکانیسم‌ها باعث انحلای غلظت کادمیوم در محلول خروجی \(D\) پس از عبور \(1/22\) حجم مندی محلول شده‌اند. در تیمار خاک بر خلاف تیمار U تا قبل از عبور \(1/24\) حجم منفی محلول
جریان ترجیحی توسط محققین مختلف از جمله دودی و همکاران (ابنیهوس و همکاران، ۲۰۲۲)، گلاس و همکاران (۱۱) و کانگ (۱۶) شناخته شده است. در مورد نقش کمپیلکس‌های آلم بر حاکم فلزات سگین، کامپوک و همکاران خاتم قابلیت نسبت به PH نیز عنوان کردند که موانع آلم فلز در سطح یک واحد (۱۱) اسیدی محلول ترند و در نتیجه تنش آپشین آنتی‌هیپ به زیادت PH است و از آنجا که تردید محلول متفاوت باشد. یک تحقیق بعدی کمپیلکس‌های آلم با مشاهده گلفید کمپیلکس در محلول خروجی تیمار U و مقایسه آن با دیگر کمپیلکس‌های سبز، Mکروپرامیک و همکاران (۱۸۸) نیز عنوان کردند که ممکن است دیگر کمپیلکس‌های آلم تأثیرات نامناسب به فرمه محلول در آیند. کورت و همکاران (۱۵) نیز کمک‌رسان کرده سکره برخ از فلزات از تیمار

خیات با علت تنش کمپیلکس‌های آلم است.

(ب) سرب

با توجه به شکل ۴ دیده می‌شود که در تیمار خاک U از آغاز آزمایش تا عبرت ۲۲ حجم منفی (۱۲ ساعت پس از شروع آزمایش) بین حجم منفی‌های هیچ گونه تفاوت معنی‌دار وجود نداشت. از این زمان به بعد تا عبرت ۴۵ و حجم منفی (۱۱) روی پس از شروع تیمار. سرب نوسانات نامناسب گاهی به صورت افزایشی و گاهی کاهشی نشان داد که با هم اتفاق معنی‌داری در سطح آماری یک درصد داشتند. ولی پس از آن غلظت سرب در محلول خروجی افزایش پایه که در اکثر موارد تفاوت معنی‌داری در دارای سطح یک درصد دارا بودند. همچنین به نظر می‌رسد حجم منفی (۷/۵۵) نقطه شروع انزیم در U تیمار در U و D باشند. از این نمی‌توان به بعد دیگر تیمار D علتهای داشت. و لیست نسبت به تیمار D از حجم منفی (۲/۵) تا عبرت ۱۹ روز پس از شروع آزمایش (۱۹) کاهش معنی‌داری نسبت به آن نشان داد.

در تیمار U از آغاز آزمایش تا عبرت ۴۸ حجم منفی.

غلظت محلول خروجی اختلاف معنی‌داری را در سطح یکی شیب‌ها که در انتقال اساله مؤثرترین ذکر می‌گنگند. در حداکشی دست‌خورده به عنکبوت‌کار بودن منافذ خاک صرعت حاکم محلول در خاک کم بوده و نتیجه به عنکبوت‌کار کم محلول خاک فرصت مناسب برای وقوع واکنش‌های شیمیایی مانند جذب فلزات موجود در محلول خاک توسط ذرات ریز خاک وجود داشته، در نتیجه غلظت فلزات در محلول خروجی کاهش می‌یابد.

در تیمار U از آغاز آزمایش تا عبرت ۳۳

حجم منفی محلول (۱۸ ساعت پس از شروع آزمایش) غلظت کمپیلکس در محلول خروجی افزایش یافته ولی فاقد تفاوت معنی‌دار بوده و این افزایش کم احتمالاً به علت تشکیل کمپیلکس‌های محلول از شروع آزمایش می‌باشد. مشابه تیمار U در این تیمار نیز تا روز پس از شروع آزمایش (۱/۲ حجم منفی) اختلاف معنی‌داری در غلظت کمپیلکس محلول خروجی دیده نشد، ولی پس از آن غلظت افزایش معنی‌داری داشت و به نظر می‌رسد نقطه شروع انزیم حجم منفی (۲/۲) بایستد. به طوری که قبلاً آماره شد پس از یک نقطه منفی به شدت می‌کاهد. مهم‌ترین تأثیر بحرکت اصلاح انسانی اشکال‌و‌شکل و ترکیب‌دهی کامپوک و همکاران (۱۲) بر کمک‌رسان کرده کامپوک و همکاران (۱۰) شناخته شده است. این تأثیر به طور ویرانی در منابع آتش‌زدایی حاکم فلزات دارند، با توجه به اینکه در اینجا کنونی بررسی می‌شود، نتایج تبدیل کانوک آلی زیادی بحرکت فلزات دارد.

نتایج جریان ترجیحی و کمپیلکس‌های آلی را بر حاکم کامپوک مشاهده می‌شود که غلظت کامپوک در محلول خروجی مشاهده می‌شود که غلظت کامپوک در محلول خروجی ۱۲/۲ دیده می‌شود. مشابه دیگر حاکم از حجم منفی‌های مختلف به طور معنی‌داری بشرت از تیمار D در حجم منفی (۲/۲) زودتر از تیمار U (حجم منفی ۲/۴) و (۲/۴) آغاز گشته است. نتایج جریان ترجیحی و کمپیلکس‌های آلی بر حاکم کامپوک مشخص می‌شود.
بررسی نقش تریچوجی و مواد آلی بر روی انعقاد کادمیوم، سرب و رود...
شکل 2: منحنی‌های انحای عنصر سرب در حجم منفذا و تیمارها مختلف خاک

شکل 3: منحنی‌های انحای عنصر روی در حجم منفذا و تیمارها مختلف خاک
بررسی نقش جریان تریجی و مواد آلی بر روی انتقال کادیوم، سرب و روی...

منافذ قطرشان بیشتر از ۱۰ میکرون بوده و خود حذف حرکت سریع تر آب در منافذ دوست‌داره افراشته‌های غلظت‌های سه دیگری مثل pH مقدار و نوع کانال‌های رسی مقدار و نوع ماده آلی، اثرات تبدیل کاتیونی در حد اکنون هست و به هم معنی توزیع خلک و فرح نیز در این مورد تأثیر نیروی دارد.

به طور کلی تأثیر این بررسی نشان داد که مواد آلی و ساختار خاک و ماکروپوره تأثیر زیادی بر غلظت فلزات سبکی در محلول خروجی خاک دارند در تجربه این عوامل در آلوده نمودن آلی‌های زیرزمینی در خاک‌های دارای ساختار و مواد آلی زیاد اهمیت بسزایی دارند به این ترتیب می‌توان در خاک دست‌نخورده که دارای ساختار بود و ۳۱ درصد

منابع مورد استفاده