بررسی نقش جریان ترجیحی و مواد آلی بر روند انتقال کادمیوم، سرب و روي در یک خاک لومي آهکی

حجت امامي، غلامرضا ثوافی فروزان، فریدون زندی و مهدی شرنفان

چکیده
موضوع آلودگی خاک توسط مواد شیمیایی باعث افزایش نگرانی هایی در مورد محیط زیست شده است. ابزارهای مواد به آلدهای زیرزمینی و حركت این مواد در خاک، مشکلات زیادی را برای آلودگی ماتریکس خاک، محلول خاک و آب زیرزمینی زیسر آن به وجود می‌آورد. از این روی به منظور بررسی تأثیر جریان ترجیحی (Preferential Flow) ساختن خاک و کمیته‌های آلی بر تحرک و ابزارهای فلزات کادمیوم، سرب و روی از آزمایش به صورت فاکتوریل با کمیته‌های خخص‌سازی در قابل طرح کاملاً تصادفی با سه تکرار انجام شد.

تیمارهای خاک دست‌نخورده (D) و دست‌خورده (O) به مدت یک ماه با محلول‌های حاوی فلزات‌های ۲۰ میلی‌گرم در لیتر عناصر کادمیوم، سرب و روی آب‌شیوعی شدند و غلظت کادمیوم، سرب و روی در لوازیم مختلف در محلول خروجی اندازه‌گیری شد.

نتایج به دست آمده نشان داد که عناصر تفاوت معنی‌داری در سطح آماری یک درصد با یکدیگر در محلول خروجی داشتند و ترتیب تحرک آنان به صورت Zn > Pb > Cd بود. هم چنین بین تیمارهای مختلف فلزات در سطح آماری یک درصد تفاوت معنی‌داری وجود داشت و غلظت هر عنصر کادمیوم، سرب و روی در تیمارهای D و U بیشتر از تیمار O بود. در علاوه بر این بین نواحی زمانی آب‌شیوعی (Pore Volumes) تفاوت معنی‌داری مشاهده شد (در سطح ۱%). به طوری که کادمیوم در تیمارهای D و U به ترتیب ۳ و ۱ روی پس از آب‌شیوعی تفاوت معنی‌داری را در محلول خروجی نشان داد. ولی سرب در هر سه تیمار خاک ۱۱ روی پس از آب‌شیوعی تفاوت معنی‌داری در محلول خروجی ۰ به ترتیب دانشجوی دکتری و استادیاران خاکشناسی، دانشکده کشاورزی، دانشگاه تهران

واژه‌های کلیدی: جریان ترجیحی، مواد آلی، خاک دست‌نخورده، محلول خروجی
مقدمه
امروزه مشکل آلودگی خاک و آب با فلزات سنگین یکی از عوامل تهدید‌بردار زندگی انسان و حیات انسان و سایر موجودات زنده است. اگرچه فضای سطحی که عناصر کمیاب در خاک نگهداری می‌شوند، آب‌شوری تعدادی از فلزات کمیاب در خاک‌های تیمار شده با لجن مشاهده شده است (20). دودی و ولک (5) علائمی از حمل و نقل فلزات کمیاب در پایین‌تر از ناحیه ریشه مشاهده کردند. و ناراب و وینلیون (27) پس از 14 سال بررسی ریو خاک‌های تیمار شده با لجن نتیجه گرفتند که نگهداری کادمیوم و ریو در زاویه در طول زمان کاهش در حالی که نگهداری و سرب افزایش یافته است. این امر دلیل این واقعیت است که سرب و مس با مواد آلی بیوند قوی تشکیل می‌دهند و به خاطر سرعت کم تجزیه مواد آلی به کنده‌هاز مس. کادمیوم و ریو با مواد آلی بیوند ضعیفتری تشکیل می‌دهند و با پاک‌سازی نتیجه تأثیر تجزیه لجن قرار نمی‌گیرند (27).

بررسی‌های سیاسی نشان داده‌اند که آب و املاک در ت傍‌بخ خاک از طریق مسیر‌های ترجیحی منقل‌سازی می‌شوند (4). این مسیرهای ترجیحی راهی برای حمل و نقل املاک به زیر را می‌باشند. ریشه فراهم می‌گردد. در نتیجه امکان وجود مواد شیمیایی در نهایت آلوده شدن آب زیرزمینی وجود دارد. بر اساس تئوری کامپوکو و همکاران (4)، جریان‌های تخریبی نقش مهمی در انتقال فلزات از ت傍‌بخ خاک دارد. نتایج این پژوهش نشان داده‌اند که در خاک کادمیوم دست نخورده، همچنین را که به آنها اضافه شده جذب کردن. در حالی که در ستون‌های خاک کادمیوم، مشاهده شده که به خاک‌های دردسردار انتقال شده‌اند. تک‌بیمه در سرتاسر دو نوع خاک دست‌خورده و دست‌نخورده انتقال‌ستون‌ها سانتی‌متر بود.

نتایج بررسی تئوری و مکانیک (24) نشان داده‌اند که همه فلزات که به سطح خاک معدنی اضافه شدند خشک سیری ۱/۴ است از ستون‌های خاک پیت خارج شدند. بنابراین همه مواد آن‌ها قابلیت تحرك فلزات در خاک می‌بانند. عملوله بر این نقش کرده‌اند.
مواد و روش‌ها

به منظور بررسی نقش جریان ترجمه در انتقال فلزات در خاک، از خاک یکدست خورده (تیمار) نمونه برداری شد. به‌دست‌آمده‌ها منظور نه عددهای پیش اینجا با فاقد و انتخاب به ترتیب 20 و 35 نمونه‌بندی داده شدند. سپس در محل نمونه‌بندی کردن، با ابعاد 2×10 متر، سه جایگاه ضعف شده در خاک مورد بررسی قرار گرفتند. با استفاده از یک هم‌گی‌کار گردی، سپس لوله‌ها از شرکت سه، به مدت یک هفته آبیاری گردید. سپس جاک مطلق یک عمق 30 سانتی‌متری به آرامی و با فشار دست وارد خاک شدند. سپس خاک محیط خارجی لوله‌ها را عمق 35 سانتی‌متری به آرامی خورش شد و لوله‌ها همراه با خاک درون‌شان خارج شدند. زیر آنها با کاغذ صافی (وامن) و توری پوشش شد و حاشیه تغییری توسط چسب به دیوار لوله‌ها چسبانیده شد و برای انجام آزمایشات به آزمایشگاه منتقل شدند.

(1) برای اینجاهایی که ساختار خاک به درستی-دوست (تیمار) می‌باشد (بر اساس دیسک‌های داتوازی) 30 سانتی‌متری از سطح کاپیسوم سرب و رژه به ترتیب 200، 250، 300 و 1/5–10/1 میلی‌گرم به دوی‌پر بوی و استفاده برای این برخی از ویرگ‌ها خاک از جمله بافت به

روش بیت (13). جرم مخصوص ظاهری به رس شلوخ و بلوش داین با بارانی‌های (12). آمک به رس‌های کلسیم‌ولی به ترتیب (16). ترکیب کلسیم معداد (19) و pH توسط

شکل. در گل اشباع (14). ظرفیت تبادل کاتیونی به روش بار (14) و نکته بسط شکافته اضافه‌کردن و مماسه

خزل و فرج با استفاده صفحات شرایط اندازه‌گیری و مماسه‌کردن. نتایج نسبی‌های فیزیکی و شیمیایی خاک در جدول

1 نشان داده شده است.

به منظور بررسی نقش جریان ترجمه در انتقال فلزات در خاک، از خاک یکدست خورده (تیمار) نمونه برداری شد. به‌دست‌آمده‌ها منظور نه عددهای پیش اینجا با فاقد و انتخاب به ترتیب 20 و 35 نمونه‌بندی داده شدند. سپس در محل نمونه‌بندی کردن، با ابعاد 2×10 متر، سه جایگاه ضعف شده در خاک مورد بررسی قرار گرفتند. با استفاده از یک هم‌گی‌کار گردی، سپس لوله‌ها از شرکت سه، به مدت یک هفته آبیاری گردید. سپس جاک مطلق یک عمق 30 سانتی‌متری به آرامی و با فشار دست وارد خاک شدند. سپس خاک محیط خارجی لوله‌ها را عمق 35 سانتی‌متری به آرامی خورش شد و لوله‌ها همراه با خاک درون‌شان خارج شدند. زیر آنها با کاغذ صافی (وامن) و توری پوشش شد و حاشیه تغییری توسط چسب به دیوار لوله‌ها چسبانیده شد و برای انجام آزمایشات به آزمایشگاه منتقل شدند.

(1) برای اینجاهایی که ساختار خاک به درستی-دوست (تیمار) می‌باشد (بر اساس دیسک‌های داتوازی) 30 سانتی‌متری از سطح کاپیسوم سرب و رژه به ترتیب 200، 250، 300 و 1/5–10/1 میلی‌گرم به دوی‌پر بوی و استفاده برای این برخی از ویرگ‌ها خاک از جمله بافت به

روش بیت (13). جرم مخصوص ظاهری به رس شلوخ و بلوش داین با بارانی‌های (12). آمک به رس‌های کلسیم‌ولی به ترتیب (16). ترکیب کلسیم معداد (19) و pH توسط

شکل. در گل اشباع (14). ظرفیت تبادل کاتیونی به روش بار (14) و نکته بسط شکافته اضافه‌کردن و مماسه‌کردن. نتایج نسبی‌های فیزیکی و شیمیایی خاک در جدول

1 نشان داده شده است.
جدول 1. نتایج تجزیه‌های فیزیکی و شیمیایی خاک

<table>
<thead>
<tr>
<th>میلی‌گرم در کیلوگرم خاک</th>
<th>درصد ماده آلی</th>
<th>CEC</th>
<th>pH</th>
<th>جرم مخصوص ظاهری (g.Cm^-3)</th>
<th>درصد اجزای معنی‌دار</th>
<th>شن نسبت</th>
<th>رس</th>
<th>لوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/6</td>
<td>1/1</td>
<td>8/2</td>
<td>5/6</td>
<td>1/35</td>
<td>22</td>
<td>3/2</td>
<td>3/2</td>
<td>3/2</td>
</tr>
</tbody>
</table>

این پژوهش به صورت آزمایش کرده‌های خردشده در قالب طرح کاملاً تصادفی در سه تکرار انجام گرفته شد. تیمارهای اصلی شامل حاوی سد درصد ماده آلی و تیمارهای فرعی شامل مخلوط‌های با غلظت‌های 20 میلی‌گرم در لیتر سد هستند. سرب و روی بودند. بر آن تجزیه و تحلیل آماده شده‌ای از نرم‌افزار SAS و SPSS و MSTATC استفاده شد.

نتایج و بحث

مقاومه تحريك و مقاپس‌های فلزات کادمیوم، سرب و روی در محلول خورشی خاک

شکل 1 میانگین غلظت سه فلز کادمیوم، سرب و روی در محلول خورشی خاک‌ها از دو نوع تیمارهای خاک نشان می‌دهد که سد فلز تفاوت معنی‌داری در محلول خورشی تیمار 0 بیشترین مقادیر بود که با درصد D و U در محلول خورشی مافت مورد نظر داشت. در این اساس اکتشافات جدید در این امر از مورد Zn + Pb > Cd صورت می‌گرفت، بود. ترکیب با دست آمده در مورد تحرک این فلزات در خاک متناقض با نتایج آزمایش و همکاران (8). است. آن‌ها ترکیب چربی اختصاصی فلزات سنتی بر اساس شعاع هیدرات را با صورت Pb>Cd>Zn > Cu این اثر اندازه‌گیری کرده‌اند. شکل 1 برابر ان ترکیب خاصه که معکوس روند جذب می‌باشد. در مورد کادمیوم و سرب با این نتایج همخوانی ندارد. این تناقض احتمالاً به علت مقاپس‌های زیاد روی و سرب قبل از آب‌شویی ستون‌ها (به ترتیب 0/3 و 0/6
در پروسه نقش جریان ترکیجی و مواد آلی بر روی انقلاک کادمیوم، سرب و روی...
شکل ۱. نمودار میانگین غلظت کادمیوم، سرپ و روی در محلول خروجی خاک پس از آب شویی.

شکل ۲. نمودار غلظت عناصر کادمیوم، سرپ و روی در تیمارهای مختلف خاک.
بررسی نقش جریان ترجمی و مواد آلی بر روی اندازه‌گیری کادمیوم، سرب و روحی...
کلمه‌گرایی آرایه‌بندی‌های مختلف محدودیت‌ها و سیاست‌های مختلف محاسباتی مانند:

- محدودیت‌ها
- سیاست‌های محاسباتی

نتایج غیرمستقیم از این کلمه‌گرایی شامل دستورالعمل‌های محاسباتی مختلف و درست‌العمل‌های آنها است.
پرسی نقش جریان ترجمه و مواد آلی بر روی انثال کادوموئی سرب و روز

ج) روز

شکل 5 نتایج غلظت روي در محلول خرچنگ تیمارهای مختلف

درصد نشان داد از این نقطه به بعد همانند تیمار

عطرین افزایش دارای روند داد به دلیل وجود نظریه نخستین.

نیست به خاک دست خود به پیدا. با توجه به نتیجه ل. تیمار U

دست خود به پیدا. در نتیجه تأثیر فلزات فیزیکی می‌باشد.

D

در تیمار O تیمارهای قبیل از آغاز آزمایش تا

4/75 حجم محلول نامی خاص کاهش و افزایش غلظت

سرپ مشاهده شد. اگرچه در مواردی برخی از حجم محلول

تفاوت‌های معنی‌داری با سایر آنها نداشتند، ولی همان‌طور که

فقط در روی مشخص و وجود داشته. در این تیمار نیز همانند

تیمارهای قبیل به نظر می‌رسد حجم محلول 4/75 نقطه شروع

انحا باید.

با توجه به مطالب ذکر شده در مورد غلظت سرب در

محصول محلول و شکل 2 مشاهده می‌شود که غلظت سرب در

محول خرچنگ تیمار O بیشترین مقدار و در تیمار D

مقدار را داراست و هر سرب تیمار O و D , U نیز در سطح یک

درصد با یکدیگر تفاوت معنی‌داری داشتند. نباید این نظر به

می‌رسد کمپلکس‌های آلی قبیل ویژه‌ای در تحرک عصر سرب

در خاک دارند و حکمت آن را تسریع نمی‌کند. پرون و همکاران

را برای لیگان‌های آلی Cu > Zn > Cd (2) نیز ترتیب

ذکر کردند. این ترتیب در \(pH \) عامل تحرک کمپلکس‌های

الانتر\(pH \) فاکس، محلول بود کمپلکس‌های در

محلول محلول ویژه‌ای در تحرک عصر سرب در

\(pH \) هفت می‌دانند که جنون خاک در این باره بالای (0/76)

نباید به نظر می‌رسد این عامل نیز باعث افزایش سرب در

پنتون و همکاران (8) بُر اساس

شروع هیدراتات، پیشروی میزان جذب را به عنوان قدر

نتیجه به جذب توسط اکسیدهای به علت تمبیل زیاد این عصر نسبت به جذب

توسط ذرات خاک بی‌بیش و در نتیجه جذب اختصاصی آن

و بستگی زیادی به \(pH \) و استاتژی‌های زیادی در خاک

و میر. (1) نیز نتیجه گرفتند که سیلیکات‌های لاپا به به جذب

کمپلکس‌های آلی قبیل ویژه‌ای در تحرک عصر سرب

\(pH \) نیز می‌دانند که جنون خاک در این باره بالای (0/76)

یر این تیمار را داراست و هر سرب تیمار O و D , U نیز در سطح یک

\(pH \) هفت می‌دانند که جنون خاک در این باره بالای (0/76)

یر این تیمار را داراست و هر سرب تیمار O و D , U نیز در سطح یک

\(pH \) هفت می‌دانند که جنون خاک در این باره بالای (0/76)

یر این تیمار را داراست و هر سرب تیمار O و D , U نیز در سطح یک
شکل 2. منحنی‌های انحنای عنصر سرب در حجم منفذ‌ها و تیمارهای مختلف خاک

شکل 3. منحنی‌های انحنای عنصر روی در حجم منفذ‌ها و تیمارهای مختلف خاک
بررسی نقش جریان ترجیحی و موارد آلی بر روند انتقال کادیوم، سرب و روی

منافع چترشان بیشتر از ۱۰ میکرون بوده بعین حکم جزیره‌ای آب در منافع درست باعث افزایش دفعه ستاره‌های عنصر کادیوم، سرب و روی در محلول خروجی این تیمار شد. همچنین وجود موارد آلی بیشتر نیز باعث افزایش شرط حکم کادیوم، سرب و روی کردن که بی‌سابقه می‌باشد. با

توجه به تأثیر منافع مختلف موارد آلی مانند کود خوراکی، کمبود و افزایش گیاهی در تأمین نیازهای موارد آلی خاک و همچنین نقش موارد آلی و شکم و به طور کلی مدیریت بر ساختار خاک بررسی بیشتر در این زمینه پیشنهاد می‌شود.

نتایج نهایی این پژوهش در وهله اول، درجه تراکم خاک در ستون‌های دست‌خورده بی‌پاس. علاوه بر این احتمالاً عوامل دیگری مثل pH مقدار و نوع کانال خاکی و مقدار و نوع ماد آلی، طرفین تبادل کاتیونی، درصد آلک و از همه مهم‌تر توزیع خلی و فرخ تبر این امر بی‌تأثر نبوده‌اند.

به طور کلی نتایج این بررسی نشان داد که موارد آلی و ساختار خاک و ماکروبیورها تأثیر زیادی بر خلقت فلزات سبک در محلول خروجی خاک داردند. بنابراین، قابلیت خاص و آلوه در مورد آلی زیرزمینی در خاک‌های دارای ساختار و موارد آلی اهمیت بسزایی دارد. در این بررسی مساحتی شد در خاک دست‌خورده که دارای ساختار بود و ۳۱ درصد.

منابع مورد استفاده