بررسی نقش جریان ترجیحی و مواد آلی بر روند انتقال کادموت، سرب و روی در یک خاک لومی آهکی

بحث امامی، غلامرضا ثقفی فیروزآبادی و مهدی شرفزاده

چکیده
موضوع آلودگی خاک توسط مواد شیمیایی باعث افزایش نگرانی‌هایی در مورد محیط زیست شده است. آب‌شویی مواد به آلودگی زیرزمینی و حرضح این مواد در خاک، مشکلات زیادی را برای آلودگی ماتریکس خاک، محلول خاک و آب زیرزمینی زیر آن به وجود می‌آورد. این روی به مظهر بررسی تأثیر جریان ترجیحی (Preferential Flow) ساختار خاک و کمیکس‌های آلی بر تحرک و آب‌شویی فلزات کادموت، سرب و روی از آن‌ها با ساختار فاکتوریل با کلکته‌های خروشده در قالب طرح کارآمد و هماهنگ خاص گرم‌زبان است. تیمارهای خاک دست‌نخورده (O)، دست‌خورده (D) و دست‌خورده جاری (U) به مدت یک سال با محلول‌های خارجی گرم‌زمینی گرم در لایه‌های مختلف کادموت، سرب و روی آب‌شویی شدند و غلظت کادموت، سرب و روی در لوازم مختلف در محلول خروجی اندازه‌گیری شد.

نتایج به دست آمده نشان داد که تفاوت معنی‌داری در سطح آماری یک درصد با یکدیگر در محلول خروجی داشتند و ترتیب تحرک اینها به صورت 

ZN>Ph>Cd

در داشت و غلظت همه عنصر کادموت، سرب و روی در تیمارهای D و U با این دو عنصر از زمان آب‌شویی بیشتر از تیمار یک درصد نداشت. تفاوت معنی‌داری وجود داشت در سطح یک درصد. تفاوت معنی‌داری در محلول خروجی (Pore Volumes) (حجم مادها) (Preferential Flow) در سطح یک درصد نداشت. تفاوت معنی‌داری در محلول خروجی در سطح یک درصد نداشت. تفاوت معنی‌داری در محلول خروجی در سطح یک درصد نداشت. تفاوت معنی‌داری در محلول خروجی در سطح یک درصد نداشت. تفاوت معنی‌داری در محلول خروجی در سطح یک درصد نداشت.
مقدمه
امروزه مشکل آلودگی خاک و آب با فلزات سنگین یکی از عوامل تهدید بنا به تولیدات کشاورزی و حیات نسان و سایر موجودات زندگی است. اگرچه روش‌های شوده که عناصر کمیاب در خاک به دادهای می‌شوند، آب‌شناسی تعدادی از فلزات کمیاب در خاک‌های تیمار شده با لجن مشاهده شده است (10). دودی و والک (5) علامتی از حرفق فلزات کمیاب در پایین‌تر از ناحیه ریشه مشاهده کردند. ون رابی و ون لینون (77) پس از 44 سال بررسی روی خاک‌های تیمار شده با لجن نتیجه گرفتند که حرفق فلزات کاموم و روی در زمین در طول زمان کاهش در حالی که حرفق فلزات مس و سرب افزایش یافت. این امر به دلیل این واقعیت است که سرب و مس با مواد آلی پودن قفی تشکیل می‌دهند و به خاطر شرط کم تجزیه مواد آلی به کننده مصرف می‌شوند. کاموم و روی با مواد آلی پودن ضعیفتری تشکیل می‌دهند و با پایین‌تر تحت تأثیر تجزیه لجن قرار نمی‌گیرند (77).

بررسی‌های بسیاری نشان داده‌اند که آب و املاح در نیبرخ خاک از طریق سیل‌های ترجیحی منتقل می‌شوند (24). این سیل‌های ترجیحی راهی به اثر حفره تسریع اماکه به زیر ناحیه غلظت ریشه فراهم می‌کند. در نتیجه امکان وجود مواد شیمیایی و ماده آلوده‌ای در نهایت آلوده شدن آب زیرزمینی وجود دارد. بر اساس تائید کامور و همکاران (3)، جریان ترجیحی نفس ممکن است انتقال فلزات از نیبرخ خاک دارد. نتایج این پژوهش نشان داد که سنتون خاکی در حالت خاک دست‌توخته، همچنین فلزات را به آب آب اضافه شده جذب کردن. در حالت که سنتون خاکی دست‌توخته، بخشی از فلزات از خاک غیرکردنی، در هر دو نوع خاک دست‌توخته و دست‌توخته ارتفاع سنگین‌ها صامت است. مورد تاکید بررسی‌های تیپ و مکانیات (74) نیز مشخص کرد که همه فلزاتی که به سنتون خاک منتقل می‌شوند پیدا کنند سلول‌های خارج شده. در حالی که سنتون خاک منتقل می‌شود، در سه روز، آلاین دیگر، آلاین در پایین‌تر نهایی فلزات در خاک باشد. علاوه بر این،
مواد و روش‌ها

به مجوز بررسی نقش جریان تجزیه در انتقال فلزات در خاک از خاک دست‌خورده (تیمار I) نمونه‌برداری شد. بندینگ منظور نه عده لپیتیانی با فطر و ارتفاع به ترتیب 20 و 35 سانتی‌متر برش داده شدند. سپس در محل نمونه‌برداری که‌یا ابعاد 20 × 20 سانتی‌متر گرفته شد. جهت سهولت نقل لوله‌ها در خاک، دیواره خارجی آنها به شدت و کرت مورد نظر هر روز سه توده، به مدت یک هفته آب‌پزگرد. سپس لوله‌ها تا عمق 30 سانتی‌متر به آرامی و به‌فناوری دست وارد خاک شدند. سپس خاک محیط خارجی لوله‌ها تا عمق 35 سانتی‌متر به آرامی خرید و لوله‌ها همراه با خاک درون‌شان خارج شدند. زیر آنها با گذاشتن صافی (ولتنم 24) و توری به‌پوشیده شد و حاشیه تیز و منظم گردید. سپس به دیواره لوله‌ها چسبانیده شد و برابر اعمال آزمایشگاهی به آرامی مقتقل شدند.

برای تهیه نمونه‌های خاک دست‌خورده (تیمار D) به مقدار 30 سانتی‌متری همان ناحیه نمونه‌برداری شد. نمونه‌ها هوا خشک شده و پس از کوبیدن از اشک دو میلی‌متری عبور داده شدند. بر اساس جرم مخصوص ظاهری خاک دست‌خورده (سنج (1/3) گرم بر سانتی‌متر مکعب) که به روش کلره‌خی‌تیکی و تیز و منظم به حاشیه تیز و منظم گردید و بر طبق آن خاک از خاک بر پر شدند (3).

محیط دست‌خورده و جنب آن از خاک پر شدند (3). (درصد به معنی خاکی ده‌هاهای ماده آلی (تیمار O) ابدا برای تیمارهای حاولی ماده آلی (تیمار A) دو درصد ماده آلی به روش والکی و بکل (14) از آزادگیری شد که برای 75 درصد بود از آنها به روش یافته ایم تیمار سه درصد ماده آلی در نظر گرفته شد، بقیه ماده آلی از بقایای بسیار قارچ خوراکی که ماده اولیه آن کلس گند بود نامی شد. بنابراین درصد ماده آلی بقایای به دو روش احتراف خشک و والکی و بکل اندیشگری (به ترتیب 3/5 و 5/3 درصد) و میانگین این روش لحاظ شد (53/45). همانند دست‌خورده خاک دست‌خورده، خاک پس از هوا خشک شدن از اشک دو میلی‌متری عبور داده شد و به بقایای بسیار قارچ خوراکی که آسیب شده به تمام مخلوط و بر اساس جرم مخصوص
جدول 1: نتایج تجزیه‌های فیزیکی و شیمیایی خاک

<table>
<thead>
<tr>
<th>درصد ماده آلی</th>
<th>CEC (Cmol.Kg⁻¹)</th>
<th>pH</th>
<th>EC (ds/m)</th>
<th>جرم مخصوص (g.Cm⁻³)</th>
<th>ظاهری</th>
<th>بافت خاک</th>
<th>درصد اجزاء معنی‌دار</th>
<th>شن سبز رس</th>
<th>لوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/7</td>
<td>23/6</td>
<td>1/1</td>
<td>8/2</td>
<td>5/8</td>
<td>1/35</td>
<td>8/2</td>
<td>32/2</td>
<td>22</td>
<td>3/6</td>
</tr>
</tbody>
</table>

این پژوهش به صورت آزمایش‌کردن‌های خردشده در قالب طرح کاملاً تصادفی در سه تکرار انجام شد. تیمارهای اصلی شامل دست خود را دست خود، دست خود را و دست خود را حاوی سی درصد ماده آلی و تیمارهای فرعی شامل محلول‌های با غلظت‌های 10 میلی گرم در لیتر بسیار کم‌آبیسم، سبز و روی بودند. برای تجزیه و تحلیل آماری داده‌ها از نرم‌افزار SAS و SPSS و MSTATC استفاده شد.

نتایج و بحث

مقایسه تحرک و مقادیر فلزات کادمیوم، سرب و روی در محلول خروجی خاک

شکل 1: میانگین غلظت شدن فلز کادمیوم، سرب و روی در محلول خروجی خاک/هک در ترکیب محلول خروجی

در تراکم تیمار در محلول خروجی تیمار D دیده شد که در بررسی تجربیات مقاله نتایج کامبرک و همکاران (22) در امریک و همکاران (9) است. با توجه به نوع اثر در نوع خاک مشاهده گردید که در محلول خروجی تیمار O بیشترین مقادیر بود که با توجه به D و U در سطح نسبتاً کم درصد افزایش معنی‌دار را داشت. نتایج بدین صورت بود. ترکیب به دست آمده در مورد Zn > Pb > Cd صورت گرفت. در تحقیق این فلزات در هکل پیش‌بینی به تحقیق خاک در ترکیب محلول خروجی با نتایج آزمایشات با تفاوت معنی‌داری در سطح نسبتاً کم درصد افزایش معنی‌دار را داشت. بر این اساس تکنیک تحقیق فلزات در این پژوهش به‌عنوان کادمیوم

در مورد کادمیوم و سرب و روی با این نتایج همخوانی ندارد. 

این نتایج احتمالاً به علت مقادیر زیاد روی و سرب قبل از آبشیبی استوانه‌ها (به تریب 10/3 و 3/6

65
پرسی نقص جریان تریچکسی و مواد آلی بر روی اثرات کادموم، سرب و روی ...

غلظت سرب در محلول خروجی تیمار U به طور معنی‌داری بیشتر از تیمار D بود.

بدین ترتیب مشخص شد که تحرک فلزات سنگین در این خاک Pb > Zn > Cd که حاوی ضرر دارد. ماده آلی است به صورت (3)

مطابقت دارد. آنها اظهار کردند که سرب و کمبودسیاه فویل برای را از سطح و ترکیبات آلی محلول‌نری نسبت به کادموم و روی تشکیل می‌دهند. این امر موجب می‌شود که تحرک آنها در خاک کمتر شود ولی فرض پیشینی نیز برای انتقال توسط ترکیبات آلی محلول فراهم می‌شود. همچنین تأثیر ماده آلی بر تحرک فلزات سنگین توسط کوره و همکاران (15) نیز گزارش شده است. آنها یافته‌های آن‌ها اشاره (الکی) در نیبرخ خاک به عنوان ترکیبات کمبودسیاه آلی است. ولی تیار و مکربرای (24) بر توانایی مواد آلی در حذف ترکیبات و مواد آلی استفاده فلزات سنگین حتی در شرایط اسیدی و شرایط کاری (کدام)، این نتایج با داده‌های مورد استفاده در این بررسی نیز معنی‌دار بود. همچنین تأثیرات مات فلزات سنگین در خاک شاخص شد.

مقبوضه غلظت عنصر کادموم، سرب و روی در حجم

(1) کادموم

شکل 3 بررسی انحلال کادموم در حجم مشاهده می‌شود که در تیمار U از آغاز آزمایش تا عبور 3/0 حجم مقدار محلول کادموم (18 ساعت پس از شروع آزمایش) غلظت این عنصر در محلول خروجی آفتاب یافت، ولی در سطح بیک درصد معنی‌دار نبود، ضمن اینکه این مقدار با حجم مقدارهای مناظر در تیمار D و O نیز تفاوت معنی‌داری داشت، که به نظر می‌رسید این افزایش کم در تیمار U به علت تأثیر جریان تریچکسی و وجود ماده‌هایی می‌باشد. این افت افت از نظر (2/3 حجم محلول 3/0 روز پس از شروع آزمایش) غلظت محلول خروجی توسان‌های انسانی در خاک داشته که با احتمال دارد به خاطر ترکیبات کلیسیانی خاص در خاک تریچکسی کننده خاصی را جذب نموده و با سرعت کمتری همراه محلول حکمران کرده، در نتیجه
شکل 1. نمودار میانگین غلظت کادمیوم، سرب و روی در محلول خروجی خاک پس از آب‌شویی

شکل 2. نمودار غلظت عناصر کادمیوم، سرب و روی در تیمارهای مختلف خاک
بررسی نقش عوامل ترجمه و مواد آلی بر روی اندازه‌گیری کادمیوم، سرب و رود ...
ج) روی

شکل ۵ نتایج غلظت روی در محلول خروجی تیمارهای مختلف خاک را نشان می‌دهد. با توجه به این نمودار دیده شد که عصر روی در هنگام یک از حجم منفی‌ها رابطه منفی‌ی می‌گیرد. عصر روی در محلول خروجی تیمارهای مختلف مختلف شاخص دارد و از حجم منفی‌ها تفاوت‌های معنی‌داری با سایر بیان‌های داشته‌دهد. نتایج این به تیمارهای مختلف نشان می‌دهد که تیمارهای بالایی به نظر می‌رسد حجم منفی ۷/۷۵ نقطه شروع انتحا باید با توجه به مطالعه‌ی ذکر شده در مورد غلظت سرب در حجم منفی‌ها و شکل ۴ نشان می‌دهد که غلظت سرب در محلول خروجی تیمار O پیشین مقدار و در تیمار D، U مقدار را داراست و هر سه تیمار نیز در سطح یک تیمار قابل کنترل شروع انتحا منفی در بهترین تیمار بود و بس از آن غلظت عصر روی در محلول خروجی تیمارهای بالا، اگرچه در حجم منفی دو/۴۳/۷ از هشتم پس از شروع آزمایش نقطه غلظت انتحا باید در این تیمار نیز یک حدودی نقطه کمپلکس‌های آلی در تحرک روی نمود پیدا کرد. این نظر نتایج به دست آمده، با توجه برای مفرحی‌های محقق دام‌داران مشخص بود نمود. این نتایج این نظر انگیز و اسکی‌ر (۲۰۰ کریستال) بدون توجه به ویژگی‌های لیگن، روی پایه کمپلکس‌های بادیرانی نسبت به کمپوی شکل‌دهد. بودو و همکاران (۱۵) هم‌سنجی‌ی زیادی بین روی خاک و مقدار محور آلی مشاهده کردند و نتیجه گرفتند که مواد آلی یک جزء مهم در تغذیه روی در خاک‌های آلی است. بالعکس برخی محققین دیگر (۲۱) پایداری کم‌تری را برای کمپلکس‌های روی با مواد آلی ذکر کرده‌اند. نتایج به دست آمده در پی‌روش منافبه بنا بر تناقض به دست آمده از بررسی کامپکو و همکاران (۳) در خصوص خاک دست‌خورده می‌باشد. آنها علاقه‌ای ایجادی‌ی هنگام با عنصر کادمیوم سرب، روی و رس در ستون‌های خاک دست‌خورده حتی پس از یک ماه مشاهده نکردند. احتمالاً علت U درصد نشان داده از این نقطه به بعد همانند تیمار افزایش می‌دارد از حد یک دو دیده شده با دیده‌ی ویژه کوچک‌تر. نتیجه به تاخستن دست‌خورده بود. بررسی مشاهده با تیمار L، حجم منفی ۷/۵ نقطه شروع انتحا برای عصر سرب در تیمار و در نتیجه تأثیر فرآیندهای فیزیکی می‌باشد.

در تیمار O تیمارهای مختلف از آغاز آزمایش تا عبور ۷/۷۵ حجم منفی نوسانات تامپسآ فیزیکی و آزمایش خلصه سرب مشاهده شد. اگرچه در مواردی دریخی از حجم منفی‌ها تفاوت‌های معنی‌داری با سایر بیان‌های داشته‌دهد. نتایج این به تیمارهای بالایی به نظر می‌رسد حجم منفی ۴/۷۵ نقطه شروع انتحا باشد.

با توجه به مطالعه‌ی ذکر شده در مورد غلظت سرب در حجم منفی‌ها و شکل ۴ نشان می‌دهد که غلظت سرب در محلول خروجی تیمار O پیشین مقدار و در تیمار D، U مقدار را داراست و هر سه تیمار نیز در سطح یک تیمار قابل کنترل شروع انتحا منفی در بهترین تیمار بود و بس از آن غلظت عصر روی در محلول خروجی تیمارهای بالا، اگرچه در حجم منفی دو/۴۳/۷ از هشتم پس از شروع آزمایش نقطه غلظت انتحا باید در این تیمار نیز یک حدودی نقطه کمپلکس‌های آلی در تحرک روی نمود پیدا کرد. این نظر نتایج به دست آمده، با توجه برای مفرحی‌های محقق دام‌داران مشخص بود نمود. این نتایج این نظر انگیز و اسکی‌ر (۲۰۰ کریستال) بدون توجه به ویژگی‌های لیگن، روی پایه کمپلکس‌های بادیرانی نسبت به کمپوی شکل‌دهد. بودو و همکاران (۱۵) هم‌سنجی‌ی زیادی بین روی خاک و مقدار محور آلی مشاهده کردند و نتیجه گرفتند که مواد آلی یک جزء مهم در تغذیه روی در خاک‌های آلی است. بالعکس برخی محققین دیگر (۲۱) پایداری کم‌تری را برای کمپلکس‌های روی با مواد آلی ذکر کرده‌اند. نتایج به دست آمده در پی‌روش منافبه بنا بر تناقض به دست آمده از بررسی کامپکو و همکاران (۳) در خصوص خاک دست‌خورده می‌باشد. آنها علاقه‌ای ایجادی‌ی هنگام با عنصر کادمیوم سرب، روی و رس در ستون‌های خاک دست‌خورده حتی پس از یک ماه مشاهده نکردند. احتمالاً علت

U
شکل ۴. منحنی‌های انحنای عنصر سرب در حجم منفذ و تیمارهای مختلف خاک

شکل ۵. منحنی‌های انحنای عنصر روی در حجم منفذ و تیمارهای مختلف خاک
منابع فشران بیشتر از ۱۰ میکروون بود به علت حرکت سرعت تر آب در منابع دشت باعث افزایش سطح و حضور این وسیله. کادیوم، سرب و روی در محلول خروجی این تیمار شد. به همین دلیل وجود مواد آلی بیشتر نمایش افزایش سرعت حرکت کادیوم، سرب و روی کرده که به علت تکثیر پیوندی می‌باشد. با توجه به تأثیر مناسب مختلف مواد آلی مانند کود حیوانی، کمیست و بقایای کثیف در تأمین نمودن مواد آلی خاک و همچنین نقص مواد آلی و شیمی و به طور کلی مدیریت بر ساختار خاک بررسی بیشتر در این زمینه بیشتر می‌باشد.

نتایج تابع این پژوهش در و حال اول، درجه تراکم خاک در سطوح دشتی در بیشتر می‌باشد. علاوه بر این احتمالاً عوامل دیگری مثل pH مقدار و نوع کانی‌های رس، مقدار و نوع ماده آلی، ترکیب ترکیب کاتیونی، درصد آهک و از هم مهتر توزیع خلی و فرح نیز در این مورد تأثیر نوده‌اند. به طور کلی تابع این بررسی نشان داد که مواد آلی و ساختار خاک و ماکروبردا تأثیر زیادی بر خلوص فلزات سبک در محلول خروجی خاک دارند. در تابع این عوامل در آلوده نمودن آلیها زیرزمینی در خاکهای دارای ساختار و مواد آلی زیاد اهمیت بسزایی دارد. در این بررسی مشاهده شد در خاک دست‌خورده‌هایی که دارای ساختار بود و ۳۱ درصد مورد استفاده