مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان)

با استفاده از نظریه زئوستاناتیستیک

2- کورکیچینگ

چهارگرد محمدی

چکیده

توجه و تحلیل داده‌های شوری نشان داد که پراکنش مکانی نمونه‌های شوری در اعماق مختلف نیم‌خاک به هم وابسته می‌باشند. در جهت تخمین این مشخصے در عمق سوم میباشد. بدین منظور از روش کورکیچینگ استفاده شده است. به منظور ارایابی نتایج حاصل از کورکیچینگ به نمونه سه جهت تحقیق شوری، این روش با استفاده از داده‌های نیم‌خاک با تابع کورکیچینگ معمولی مقایسه گردید.

نتایج نشان می‌دهد که کورکیچینگ طی‌رفت‌گذاری‌های روشن و قطعی، برتری اندکی نسبت به کورکیچینگ معمولی دارد. این امر را می‌توان ناپیوستگی‌ی بین متغیر اولیه و متغیرهای کمکی از نظر تعداد نمونه‌ها و همچنین پکانیت تغییر واریانس‌های شوری در اعماق مختلف دانست. با در نظر گرفتن پیچیدگی روش کورکیچینگ و مشکل بودن بردار واریانس‌های محاسبه شده توسط مدل LMC، نتیجه‌گیری می‌شود که در جهت شرایط کاربرد روش کورکیچینگ معمولی از اریجین برخوردار می‌باشد.

واژه‌های کلیدی - هم‌سنجی مکانی، واریانس و جواب، مدل LMC، کورکیچینگ

مقدمه

تغییرات مکانی هدایت الکتریکی عصاره اشباع در سه عمق متفاوت نیم‌خاک، با استفاده از نظریه ماتریس‌های مکانی مورد مطالعه قرار گرفت (1). در آن مطالعه ساختار تغییرات مکانی شوری، با محاسبه و ترسیم واریانس‌های مختلف شناسایی و تحلیل با استفاده از این اطلاعات میزان شوری در نقاطه که نمونه‌برداری نشده بود با روش کورکیچینگ تخمین و

- استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران
در توریزموستاتیستیک این حالت را اصطلاحاً هم پستگی می‌کنند (1). از نظر عملی وجود همبستگی مکانی بین چند متغیر حائز اهمیت است. زیرا هر متغیر حاوی اطلاعات سودمندی در ارتباط با متغیر دیگر به دست می‌آید. حالاتی که می‌توان از آن اطلاعات جهت افزایش میزان دقیق و صحت تخمین و برآورد متغیر مورد نظر استفاده نمود. این کار با استفاده از روش کوکریجینگ امکان یافته می‌شود.

در بعضی از مواقع ممکن است از یک متغیر به دلایلی مانند مشکل بودن نمونه‌گیری و یا گران بودن اندازه‌گیری آزمایشگاهی، به یک انتخاب کافی نمونه‌برداری نشده باشد. بر اساس این نتیجه انتخاب آماری را با دقت مورد نظر انجام داد. در چنین مواردی می‌توان با اعمال روش‌های همبستگی مکانی بین متغیر و متغیر دیگر، که آن به خوبی نمونه‌برداری شده است، تخمین اصلاح و دقت آن را بالا برد. به طور مثال، وکلین و همکاران (9) از رابطه بین بافت خاک و میزان آب قابل دسترس و آب تغییر در شده در مکس 36/70 مگاپاسکال، جهت تخمین درصد مخلوط رس، سیلت و شن خاک استفاده کردند. همبستگی میزان رطوبت ورین خاک با نتایج درصد از متغیر ثانویه درجه حرارت و درصد شر لایه سطحی حاصل از توزیع روش کوکریجینگ تخمین زده شده است (12). مقایسه جامعه بین روش‌های مختلف برآورد آماری متغیر که به اندازه‌گیری نمونه‌گیری نشده باشد، با استفاده از رابطه مکانی بین متغیر با متغیرهای ثانویه دیگری که به تعداد بیشتری نمونه‌گیری شده است، توسط احمد و مارسیلی (2) صورت گرفته است.

1- Co-regionalization 2- Co-kriging 3- Cross-variogram
مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان)

ناریب به همراه حداکثر واریانس تخمین خواهد بود. چنین تخمینگری را میتوان به شکل زیر نشان داد:

\[Z_i (x_i) = \sum_{i=1}^{N_1} \lambda_i Z_i (x_i) + \sum_{j=1}^{N_2} \lambda_j Z_j (x_j) \] \[\text{[1]} \]

در مدل‌های بالا، \(\lambda_i \) پیش‌تیابی بین‌گر تعداد نمونه‌ای متغیرها اولیه و ناپذیری است که در تخمین متغیر اولیه در مولفه \(x_i \) به کار می‌گیرد، \(\lambda_j \) و \(\Delta_j \) عبارتند از وزن‌های آماری اختصاص داده شده به این داده‌ها است. مانند کریجینگ، عملیاتی هستند رساندن واریانس کوکریجینگ با استفاده از تکنیکی لگرانژ صورت می‌پذیرد و واریانس تخمین کوکریجینگ را میتوان به صورت زیر نشان داد:

\[\text{Var} \left[\tilde{Z} (X_i) - Z (X_i) \right] = \sum_{i=1}^{N_1} \lambda_i \rho \left(X_i, X_i \right) \] \[+ \sum_{j=1}^{N_2} \lambda_j \rho \left(X_i, X_j \right) + \mu \] \[\text{[2]} \]

نتایج و بحث

ضرایب همبستگی بین داده‌های شوری در اعماق مختلف در حدود ۱ آمده است. نتایج حاکی از وجود همبستگی نسبتاً قوی و مثبت بین میزان شوری در اعماق مختلف می‌باشد. همبستگی بین لایه‌های مجاور بیشتری از لایه‌های دور از هم است.

واریوگرافی جهان‌نما داده‌های شوری، پس از تبدیل لگاریتمی، در هرم به همراه واریوگرام‌های جهان‌نما داده‌های آنها در شکل ۱ نشان داده شده است. بررسی ظاهری این واریوگرام‌ها نشانگر این واقعیت است که تمامی آنها می‌توان با استفاده از LMC مدل کروی توصیف نمود. بنابراین با استفاده از روش واریوگرام‌های مزوبر مدل و پارامترهای آنها شکل ارث‌پذیری و حدآستانه محسوس است. در تمامی این مدل‌ها از دامنه تایپ ۱۲ کیلومتر استفاده شده است. مقایسه این واریوگرام‌ها نشان‌گذار شباهت ظاهری بیشتر بین آنها می‌باشد.

\[-Z_i (x_i+h) \} \{ Z_i (x_i+h) \} \]

که در آن \(N(h) \) تعداد جفت‌های \(\{ Z_i (x_i+h) \} \{ Z_i (x_i+h) \} \) را نشان می‌دهد.

\[\text{بای‌محماسی موفق یک واریوگرام دو جانبه به تعویض می‌باشد} \]

توجهی قاطع نمونه‌برداری شده مشترک تیآمانت می‌باشم. از سوی دیگر چنتای‌های همبستگی بین دو متغیر ضعیف‌ترین گروه واریوگرام دو جانبه معیار شده کافی مانند منظوره جهت تجزیه و تحلیل‌های بعدی خواهد بود (۲).

1- Auto variogram
2- Double spherical
3- Linear Model of Co-regionalization

Downloaded from iipp.iut.ac.ir at 5:59 IRDT on Wednesday July 31st 2019
روش کریجینگ و کوکریجینگ، میزان شوری در محلهایی که دارای داده‌های معیار بوده‌اند، تخمین زده شد. در روش کوکریجینگ، جهت تخمین میزان شوری در یک عمق، از داده‌های شوری در عمق دیگر به عنوان متغیرهای ثانویه استفاده شده است. سپس با استفاده از مقدار تخمینی از هر دو روش و مقدار حقیقی شوری و با استفاده از معیارهای آماری زیر اقدام به مقایسه دو روش فوقالنگری گردید: ۱. قدر مطلق میانگین خطای تخمین (AMEE).

به منظور بررسی و مقایسه روش کریجینگ با روش کریجینگ، از مجموعه داده‌های معیار (N = ۵۰) استفاده گردید (۱). از آن جایی که تعداد نمونه‌ها در هر عمق تقییاً یکسان بوده است بنابراین در این مطالعه مهم نین دایل جهت به کارگیری روش کوکریجینگ تلاش در جهت دخیل نمودن ارتباط مکانی بین داده‌های شوری در اعماق مختلف به منظور تخمین بهتر شوری شوری در منطقه مطالعاتی می‌باشد. بدین ترتیب با استفاده از دو

1. Absolute Mean Estimation Error
جدول ۱- ضرایب همبستگی بین داده‌های شوری در اعماق مختلف

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>عمق ۵۰-۵۰ سانتی‌متر</th>
<th>عمق ۱۰۰-۱۵۰ سانتی‌متر</th>
<th>عمق ۵۰/۸۵</th>
<th>عمق ۱۰۰/۲۲</th>
<th>عمق ۵۰/۸۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸۵</td>
<td>۳۹/۱/۷</td>
<td>۱۲/۷</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>۰/۸۵</td>
<td>۳۹/۱/۷</td>
<td>۱۲/۷</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶/۷/۴</td>
<td>۱۱/۳</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶/۷/۴</td>
<td>۱۱/۳</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶/۷/۴</td>
<td>۱۱/۳</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۱۹/۵/۸</td>
<td>۹/۰</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۱۹/۵/۸</td>
<td>۹/۰</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۱۹/۵/۸</td>
<td>۹/۰</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
</tbody>
</table>

جدول ۲- نتایج حاصل از مقایسه دو روش کوکچیک گ و کوکچیک گ بر روی داده‌های میانگین

<table>
<thead>
<tr>
<th>r</th>
<th>MSEE</th>
<th>AMEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸۵</td>
<td>۳۹/۱/۷</td>
<td>۱۲/۷</td>
</tr>
<tr>
<td>۰/۸۵</td>
<td>۳۹/۱/۷</td>
<td>۱۲/۷</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶/۷/۴</td>
<td>۱۱/۳</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶/۷/۴</td>
<td>۱۱/۳</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶/۷/۴</td>
<td>۱۱/۳</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۱۹/۵/۸</td>
<td>۹/۰</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۱۹/۵/۸</td>
<td>۹/۰</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۱۹/۵/۸</td>
<td>۹/۰</td>
</tr>
</tbody>
</table>

می‌شود این است که کوکچیک گ هیچ گونه ارتجاعی در تخمین شوری اعمتیق خاک در مقایسه با کوکچیک گ معمولی از خود نشان نداده است. از نظر نظری، در شرایط مشخصی کوکچیک گ در مقایسه با کوکچیک گ هیچ گونه هبودی در امر تخمین به دست نمی‌دهد. ولی تعداد نمونه‌ها باید هر دو متغیر اولیه و ثانویه تقریباً یکسان باشد و همچنین در شرایطی که واریانس از نظر شکل و نوع برخی داده‌ها به یکدیگر متناسب و شبیه به هم باشند نتایج حاصل از روش کوکچیک گ و کوکچیک گ معمولی یکسان خواهد بود. (۵). در مطالعه حاضر به نظر می‌رسد که وارد شاخص فوق اعث به دست آورده نتایج تقریباً یکسان در دو روش شده است.

که در آن MSEE = \frac{1}{N} \sum_{i=1}^{N} \left(x_i - \hat{x}_i \right)^2

که در آن N تعداد نمونه‌های میانگین خاک در هر می‌سنجی دارد. AMEE بودن مقدار دلالت بر تاریک بودن میانگین دارد. همچنین مجدور میانگین خطای تخمین را می‌توان طبق رابطه [۵] محاسبه نمود:

MSEE = \frac{1}{N} \sum_{i=1}^{N} \left(x_i - \hat{x}_i \right)^2

این معیار آماری نشان‌گر نقطه تخمینگر به‌ویژه با حذف مقدار عددی خود را دارا باشد.

جدول ۲ نتایج حاصل از مقایسه دو روش کوکچیک گ و کوکچیک گ برای اعماق مختلف خاک می‌باشد. همان‌گونه که این شکل نشان می‌دهد در مقایسه با ۱- Mean Square Estimation Error ۲- Pearson Correlation Coefficient.
شکل ۲- نیمرو شوری تخمین‌زده شده توسط روش‌های کریژینگ (OK) و کوکریژینگ (COK) در مقایسه
با نیمرو واقعی شوری (Test data) در منطقه مطالعاتی

روش به مراتب ساده‌تر کریژینگ معمولی نشان‌داده است.

نیمرو حقیقی شوری، هر دو روش کریژینگ و کوکریژینگ تقریباً نیمرو شوری یکسانی را پرآورده نموده‌اند. گرچه از نظر تئوریک در روش کوکریژینگ همبستگی ساختار مکانی بین متغیرها به وضوح در نظر گرفته می‌شود، لیکن نتایج‌های میان این نکته است که مقادیر تخمین‌زده شده توسط کریژینگ معمولی بدنون در نظر گرفتن وجود چنین روابطی تابع استوار و نامتغیری است. نتایج مشابهی توسط ولتر و گولارد (۱۹۷۰) به دست آمده است. با توجه به نتایج حاصله می‌توان یک نمودار گرچه روش کوکریژینگ از نظر مبانی نظری بسیار قوی و قابل توجهی است، لیکن در این مطالعه هیچ گونه مزیتی نسبت به

منابع مورد استفاده

۱- محمدی، ج. ۱۳۷۷. مطالعه تغییرات مکانی شوری شاخ در منطقه‌های هم‌مرز (خوزستان) با استفاده از نظریه زوئستایستیک.