مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان)

با استفاده از نظریه زئوستاتیستیک

2- کوکریچینگ

چهارگرد مهدی

چکیده

تجزیه و تحلیل داده‌های شوری نشان داد که پراکنش مکانی نمونه‌های شوری در ابعاد مختلف نیم‌خاک به ممکن بوده است. در چندین حالتی داده‌های مزبور را می‌توانهم به‌مدت مکانی دانست. این بدان معناست که مقادیر شوری در یک عمل به‌خصوص حاوی اطلاعات اهمیتی درباره وضعیت شوری در گذر از اطلاعات به منظور بهره‌برداری در کدام از ابعاد نیم‌خاک استفاده نمود. هدف از این مطالعه بررسی اثرات استفاده از اطلاعات مربوط به شوری در عمق نیم‌خاک جهت تعیین این مشخصه در عمق سوم می‌باشد. بدین منظور از روش کوکریچینگ استفاده شده است. به منظور ارزیابی نتایج حاصل از کوکریچینگ به نوع وسیله‌ای جهت تهیه نمونه‌های شوری این روش با استفاده از داده‌های معمولی با مدل کوکریچینگ معمولی مقایسه گردید.

نتایج نشان می‌دهد که کوکریچینگ دقیقتر می‌باشد. این امر را می‌توان ناشی از عدم تفاوت بین متغیر اولیه و متغیرهای کمکی از نظر تعداد نمونه‌ها و همچنین پیکانیت نما و ارای‌گرایانه‌ی شوری در ابعاد مختلف دانست. با مدل کوکریچینگ روش کوکریچینگ و مشکل بودن پرداز واریوگرام‌های مشاهده شده توسط مدل LMC، نتیجه‌گیری می‌شود که در چندین شرایطی کاربرد روش کوکریچینگ معمولی از ارجعت برخوردار می‌باشد.

واژه‌های کلیدی - همبستگی مکانی، واریوگرام دو جانبه، مدل LMC، کوکریچینگ

مقدمه

تغییرات مکانی هدایت الکتریکی عصاره اشباع در سه عمل متغییر نیم‌خاک با استفاده از تئوری متغیرهای مکانی مورد مطالعه قرار گرفت (1). در آن مطالعه ساختار تغییرات مکانی شوری، به‌مدت بوده و ترسیم واریوگرام‌های متفاوت شناسایی و نهایتاً با استفاده از این اطلاعات میزان شوری در نقطه‌که نمونه‌داری شده بود، با روش کوکریچینگ تعیین و

* - استادیار گروه گیاهشناسی، دانشکده کشاورزی، دانشگاه شهید چمران
از اهمیت زیادی پرخوردار است. به عنوان مثال، ولز و گولارد
(10) از همبستگی بین میزان رطوبت خاک و مکشیای مختلف
اعمال شده به میزان بهره وری مخلوط شرایطی خاک، در نقاط که
نمونه‌برداری نشده این است. از این‌چنین، کریگرگیش در اثر
تعداد نمونه‌های پیدا شده، از آن جایی که تخمین
میزان رطوبت در مکشیای مختلف می‌باشد، با کاهش نشان
یاکتهای به صورت یکنواختی کاهش یافته، لذا با رشد
کریگرگی در توان تجربه‌های ابتدایی را در پی آن نقل تخمین آماری
تضمین نمی‌نماید.

در بعضی از مواقع ممکن است از یک متغیر به
دلالی، مانند مشکل بودن نمونه‌گیری و یا گران بودن
اندازه‌گیری آزمایشگاهی، به اندازه کافی نمونه‌برداری نشده
باشد. در این‌جا، اگر نمونه‌برداری را با دقت مورد
نظر انجام داد، در بنچ مارودی می‌توان با دقت نوع
همبستگی مکانی این متغیر و متغیر دیگری که آن
به خوبی نمونه‌برداری شده است، تخمین آن اصلاح و
دقت آن را بالا ببرد. به طور مثال، واکلین و همکاران
(9) از رابطه بین بافت خاک و میزان آب قابل دسترس و آب
تغییرات شده در مکش 3/33-‌مگاهراس، چهت
تخمین دارد. یافتن میزان رطوبت و زنی خاک با
استفاده از دو متغیر ثانوی درجه حرارت و درصد شن لایه
سطحی خاک، توسط روش کریگرگی تخمین زده شده
است (12). مقایسه جامعه پیشین روش‌های مختلف نمونه‌برداری
آماری متغیری که به اندازه کافی نمونه‌گیری نشده باشد، با
استفاده از رابطه مکانی این متغیر و متغیرهای ثانوی
دیگری که به تعداد پیشنهادات نمونه‌گیری شده است، توسط
احمد و ماریسلی (مدرسی) (۱۳) صورت گرفته است.

1- Co-regionalization 2- Co-kriging 3- Cross-variogram
مطالعه تغییرات مکانی شوری کاک در منطقه رامهرمز (خوزستان)

نابری، به همراه حداکثر واریانس تخمین خواهد بود. چنین تخمین‌گری را می‌توان به شکل زیر نشان داد:

\[\hat{Z}_1(X_\text{c}) = \sum_{i=1}^{N_1} \lambda_{1i} Z_1(X_i) + \sum_{j=1}^{N_2} \lambda_{2j} Z_2(X_j) \]

در ماحاله بالا، \(N_1 \) به ترتیب بیانگر تعداد نمونه‌های متغیرهای اولیه و \(N_2 \) به تعداد همه کاراکترهای به عنوان متغیر اولیه در موفقیت \(Y \) به کار گرفته شده و \(\lambda_{1i} \) و \(\lambda_{2j} \) عبارتند از وزن‌های آماری اختصاص داده شده به این داده‌ها است. همانند کرویچکس، عملیاتی حداکثر سرشاری و/یا کرویچکس با استفاده از تنکبندی سرشاری صورت می‌پذیرد. واریانس تخمین کرویچکس را می‌توان به صورت زیر نشان داد:

\[\text{Var} \left[\hat{Z}(X_\text{c}) - Z(X_\text{c}) \right] = \sum_{i=1}^{N_1} \lambda_{1i}^2 \sigma^2_{X_1} + \sum_{j=1}^{N_2} \lambda_{2j}^2 \sigma^2_{X_2} + \sigma^2_\epsilon \]

نتایج و بحث
ضرایب همبستگی بین داده‌های شوری در اعماق مختلف در جدول 1 آمده است. نتایج حاکی از وجود همبستگی نسبتاً قوی و مثبت بین میزان شوری در اعماق مختلف می‌باشد. همبستگی بین لاک‌های مجاور بهتر از لاک‌های دور از هم است.

واریوگراف‌های جداسازی داده‌های شوری، پس از تبدیل دقت‌سنجی در هر فیلتر به همراه واریوگراف‌های دو جداسازی آنها در شکل 1 نشان داده شده است. بررسی ظاهری این واریوگراف‌ها بیانگر این واقعیت است که همگینی آنها را می‌توان با استفاده از LMC مدل کروی توصیف نمود. بنابراین با استفاده از روش واریوگراف‌های مزرعه مدل و پارامترهای آنها شامل اثر قطعات و حدآستان‌های محاسباتی گردید. در تمامی این مدل‌ها از دامنه‌ای که تایید 13 کیلومتر استفاده شده است. مقایسه این واریوگراف‌ها نشان‌گرد شیب هم‌ما فاصله بین آنها می‌باشد.

چنانچه داری از متغیر \(Z_1(X) \) باشیم در این صورت واریوگراف داده‌های را به صورت رابطه (h) نشان می‌دهد. می‌توان به صورت زیر نمود.

\[\frac{1}{N} \sum_{i=1}^{N} \left(Z(X_i) - Z(X_i+h) \right) \]

که در آن \(N \) تعداد نمونه‌های \(h \) و \(h \) به ترتیب بیانگر تعداد نمونه‌های متغیرهای اولیه و ثانویه است که در تخمین متغیر اولیه در موقعیت \(X \) به کار گرفته شده و \(h \) به عنوان تابعی از قابلیت \(h \) نشان می‌دهد. می‌توان به صورت زیر تابع نمود.

\[Z(X_i+h) = \frac{1}{N} \sum_{i=1}^{N} \left(Z(X_i) - Z(X_i+h) \right) \]

را نشان می‌دهد.

پایان می‌شود.

نتایج حاکی از وجود نشان‌گری کرویچکس که گویند مدل نمونه واریوگراف‌های تجربی است. این دوباره به عنوان گوی همبستگی بین داده‌های شوری در اعماق مختلف، این دوباره به عنوان گوی همبستگی بین داده‌های شوری در اعماق مختلف است که می‌تواند داده‌های شوری در اعماق مختلف را با دقت و سرعت نشان دهد.

1- Auto variogram
2- Double spherical
3- Linear Model of Co-regularization
روش کرگنیچ (a) و کوکرگنیچ (b) میزان شویی در محلهایی که دارای داده‌های معیار بوده‌اند تخمین زده شد. در روشنی کرگنیچ، بخش تخمین میزان شویی در یک عمق، از داده‌های شویی در عمق دیگر به عنوان ممیزه‌ای ناپذیره استفاده شده است. سپس با در اختیار داشتن مقدار تخمینی از هر دو روش و مقدار حقیقی شویی و با استفاده از معیارهای آماری زیر اقدام به مقایسه دو روش فوق انجام گردید: ۱- مقدار میانگین خطای تخمین (AMEE).

1-Absolute Mean Estimation Error
جدول 1- ضرایب همبستگی بین داده‌های شوری در ابعاد مختلف

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>عمق 0-50 سانتی‌متر</th>
<th>عمق 0-100 سانتی‌متر</th>
<th>عمق 0-150 سانتی‌متر</th>
<th>عمق 0-22 سانتی‌متر</th>
<th>عمق 0-85 سانتی‌متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>0/72</td>
<td>0/72</td>
<td>0/72</td>
<td>0/72</td>
</tr>
</tbody>
</table>

جدول 2- نتایج حساب از مقایسه روش کریجینگ و کورکریجینگ بر روی داده‌های می‌باشد

<table>
<thead>
<tr>
<th>r</th>
<th>MSEE</th>
<th>AMEE</th>
<th>عمق (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/85</td>
<td>0/85</td>
<td>12/7</td>
<td>0-50</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>11/2</td>
<td>50-100</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>11/2</td>
<td>100-150</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>11/2</td>
<td>0-150</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>11/2</td>
<td>0-22</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>11/2</td>
<td>0-85</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>11/2</td>
<td>0-5</td>
</tr>
<tr>
<td>0/72</td>
<td>0/72</td>
<td>11/2</td>
<td>0-0</td>
</tr>
</tbody>
</table>

1- Mean Square Estimation Error
2- Pearson Correlation Coefficient
نمودهای مورد استفاده

1- محمدی، ج. 1377. مطالعه تغییرات مکانی شوری خاک در منطقه اهواز (خوزستان) با استفاده از نظریه زوثاستاتیستیک.

