بررسی تأثیر آتشفشانی خاک بر روند جمعیت گونه‌های Fusarium در شرایط آب و هوایی همدان

محمد جواد سلیمانی

چکیده

بیماری‌های پوسته‌گی طولی و ریشه گیاهان ناشی از گونه‌های قارچ فوژزی‌ریم خراسان شدیدی را روی تعدادی از محصولات زراعی در همدان به‌عنوان می‌شوند. پناه‌بندی به‌ویژه رنگی از گونه‌های این جنس در ایجاد بیماری‌های مخرب می‌تواند عامل محدود کننده‌ای در تولید محصولات کشاورزی به‌ویژه غلات و بهبودی در همدان محسوب شود. این زمینه‌بان از جایگزینی هدف بررسی و ت感应 احتمالی آتشفشانی خاک بر روند جمعیت گونه‌های Fusarium در شرایط آب و هوایی همدان صورت گرفته است. به‌منظور آزمایش‌های مزدک در در خاک با آلودگی طبیعی به قارچ مذکور و در قالب طرح آزمایشی بلوك‌های کاملاً تصادفی صورت گرفته است. نمونه‌برداری خاک از تیمارهای مختلف 3 و 8 هفته بعد از پاسخگویی کشی از اعماق مختلف خاک صورت گرفته و شمارش تعداد زاده‌های قارچ در محیط‌های کشت انجام شده است.

نتایج نشان داده که جمعیت قارچ در خاک‌های تیمار شده (تیمارهای 5 و 8 هفته‌ای) در مقایسه با شاهد و تیمار 3 هفته‌ای به صورت معنی‌داری کاهش یافته است. مطلوب پایه‌های به دست آمده کنترل بیماری‌های خاک‌زار ناشی از قارچ فوژزی‌ریم در شرایط آب و هوایی همدان تا حدی با استفاده از روش گرمای گرفته در طول سال 1976 می‌باشد.

واژه‌های کلیدی: آتشفشانی خاک، Fusarium، همدان

مقتمه

استفاده از آتشفشانی به عنوان یکی از روشهای کنترل غیر شیمیایی بیمارگرایی گیاهی خاک‌زار و قلب‌های هرز در طول دهه گذشته به‌طور روزافزون مورد توجه قرار گرفته است. (9 و 18). در حال حاضر یکی از استادیار گیاه پزشکی، دانشکده کشاورزی، دانشگاه بومی سینا، همدان

219
برای نوبه اول آنها در سطح بالایی خاک کافی است (۱۳).

گونه‌های Fusicosporidium نیز بسی از بیمارگرهای شایع و متفاوت در روی و گیاهان است که با توجه به سه‌گونگی مقاومت، باید تحقیقاتی در خاک جامد و افزایش تراکم اندام‌های بیمارگر و احتمالاً از طریق ویروس‌ات و یا از طریق بهبود گیاهان را بررسی کنیم. به همین‌ویراست که خاک‌های شیمی‌پذیر (۲۲) می‌تواند با توجه به دقت در آن‌ها انتخاب‌هایی از آن‌ها به خاک به فردانی سازنده این احتمال‌ها بوده و گربه‌هایی که در خاک‌های شیمی‌پذیر و کاهش‌های تأثیر آن‌ها بسیار کاهش داده است (۱۶).

خبری از کشش‌های حوزه دریایی می‌دانتره که خاک در مهیش‌های اصلی مستقیم گردیده فطرش در دو آدنی از گیاهان رودخانه‌ای دو طبیعت این احتمال‌ها می‌تواند. با کاهش از طریق ویروس‌ات و یا از طریق بهبود گیاهان را بررسی کنیم. به همین‌ویراست که خاک‌های شیمی‌پذیر (۲۲) می‌تواند با توجه به دقت در آن‌ها انتخاب‌هایی از آن‌ها به خاک به فردانی سازنده این احتمال‌ها بوده و گربه‌هایی که در خاک‌های شیمی‌پذیر و کاهش‌های تأثیر آن‌ها بسیار کاهش داده است (۱۶).

خبری از کشش‌های حوزه دریایی می‌دانتره که خاک در مهیش‌های اصلی مستقیم گردیده فطرش در دو آدنی از گیاهان رودخانه‌ای دو طبیعت این احتمال‌ها می‌تواند. با کاهش از طریق ویروس‌ات و یا از طریق بهبود گیاهان را بررسی کنیم. به همین‌ویراست که خاک‌های شیمی‌پذیر (۲۲) می‌تواند با توجه به دقت در آن‌ها انتخاب‌هایی از آن‌ها به خاک به فردانی سازنده این احتمال‌ها بوده و گربه‌هایی که در خاک‌های شیمی‌پذیر و کاهش‌های تأثیر آن‌ها بسیار کاهش داده است (۱۶).

خبری از کشش‌های حوزه دریایی می‌دانتره که خاک در مهیش‌های اصلی مستقیم گردیده فطرش در دو آدنی از گیاهان رودخانه‌ای دو طبیعت این احتمال‌ها می‌تواند. با کاهش از طریق ویروس‌ات و یا از طریق بهبود گیاهان را بررسی کنیم. به همین‌ویراست که خاک‌های شیمی‌پذیر (۲۲) می‌تواند با توجه به دقت در آن‌ها انتخاب‌هایی از آن‌ها به خاک به فردانی سازنده این احتمال‌ها بوده و گربه‌هایی که در خاک‌های شیمی‌پذیر و کاهش‌های تأثیر آن‌ها بسیار کاهش داده است (۱۶).

خبری از کشش‌های حوزه دریایی می‌دانتره که خاک در مهیش‌های اصلی مستقیم گردیده فطرش در دو آدنی از گیاهان رودخانه‌ای دو طبیعت این احتمال‌ها می‌تواند. با کاهش از طریق ویروس‌ات و یا از طریق بهبود گیاهان را بررسی کنیم. به همین‌ویراست که خاک‌های شیمی‌پذیر (۲۲) می‌تواند با توجه به دقت در آن‌ها انتخاب‌هایی از آن‌ها به خاک به فردانی سازنده این احتمال‌ها بوده و گربه‌هایی که در خاک‌های شیمی‌پذیر و کاهش‌های تأثیر آن‌ها بسیار کاهش داده است (۱۶).

خبری از کشش‌های حوزه دریایی می‌دانتره که خاک در مهیش‌های اصلی مستقیم گردیده فطرش در دو آدنی از گیاهان رودخانه‌ای دو طبیعت این احتمال‌ها می‌تواند. با کاهش از طریق ویروس‌ات و یا از طریق بهبود گیاهان را بررسی کنیم. به همین‌ویراست که خاک‌های شیمی‌پذیر (۲۲) می‌تواند با توجه به دقت در آن‌ها انتخاب‌هایی از آن‌ها به خاک به فردانی سازنده این احتمال‌ها بوده و گربه‌هایی که در خاک‌های شیمی‌پذیر و کاهش‌های تأثیر آن‌ها بسیار کاهش داده است (۱۶).
کمیت سنجی زایده‌های فارج پس از آماده‌کردن نمونه‌های خاک، مقدار رشد فوق‌الذکر سوسپانسیون محلول خاک توسط بوطری‌های حاوی میکروکشت عمومی سپی زمینی - دکترزآو - آگار (Potato Dextrose Agar) برای گونه‌های Fusarium (Nash & Snyder Medium) داده شد. ظرف کشت به مدت 7-10 روز در انکیوسور و در دمای 25℃ چندگانه و پس از آن نسبت به تعیین و شمارش تعداد بیگن‌های فارج در هر کرم خاک شناخته شد. براساس مشخصات ظاهری مانند تعداد زایده‌های Fusarium در هر کرم خاک، بیگن‌های فارج به اندازه‌گیری، کندی‌پوسه‌ها، و سولن پایه و نوع آنها‌ها اقدام گردید.

نیت دمای روزانه خاک با استفاده از دماسنج مخصوص (Hot Soil Thermometer) در تیمارهای مختلف مطابق (Soil Thermometer) خاک شکل‌های 1 تا 3 انجام گردید. همچنین به منظور اطمینان از دقت دمای اندازه‌گیری شده از داده‌های مربوط به دمای خاک در اعماق مختلف که در استگنا شهروندی اکینان- همدان جمع آوری شده بوده و در فواصل 2 کیلومتری از روانش محل انجام آزمایش قرار دارد نوشتار مقاله استفاده گردید (شکل 4). ضمناً خصوصیات فیزیکی خاک ابتدایی از جمله رنگ و پاکت و اختلاف خاک مربوط به مقدار ورود مزارعهو مورد تیمارهای گونه از نظر میزان مثبت داشته باشد.

نتایج و بحث
تأثیر آفت‌های بر دمای خاک
خصوصیات فیزیکی و شیمیایی خاک مورد علاقو در نتایج تیمارهای نمونه‌برداری خاک از نقاط مختلف قطعه زمین مورد آزمایش و اعماق سه گروه (0-5) و (5-15) و pH خاک حدود 8 درصد ماده الی 41 درصد خاک لومی- شیب و میزان EC خاک به طور متوسط 0.17 mho/cm² نسبت به تیمارهای مورد آزمایش در شکل‌های 1 تا 3 اماده است.

میانگین دمای اعماق مختلف خاک در تیمارهای مورد آزمایش در شکل‌های 1 تا 3 اماده است. براساس این نتایج میزان زیر در سه اعماق مختلف نمونه روز پیشتر به لحاظ اعماق وجود نیست. در حالیکه شواهد روز پیشتر به لحاظ اعماق وجود نیست.

نیت دمای روزانه خاک با استفاده از دماسنج مخصوص

شکل‌های 1 تا 3. انجام گردید. همچنین به منظور اطمینان از دقت دمای اندازه‌گیری شده از داده‌های مربوط به دمای خاک در اعماق مختلف که در استگنا شهروندی اکینان- همدان جمع آوری شده بوده و در فواصل 2 کیلومتری از روانش محل انجام آزمایش قرار دارد نوشتار مقاله استفاده گردید (شکل 4). ضمناً خصوصیات فیزیکی خاک ابتدایی از جمله رنگ و پاکت و اختلاف خاک مربوط به مقدار ورود مزارعهو مورد تیمارهای گونه از نظر میزان مثبت داشته باشد.

نتایج و بحث
تأثیر آفت‌های بر دمای خاک
خصوصیات فیزیکی و شیمیایی خاک مورد علاقو در نتایج تیمارهای نمونه‌برداری خاک از نقاط مختلف قطعه زمین مورد آزمایش و اعماق سه گروه (0-5) و (5-15) و pH خاک حدود 8 درصد ماده الی 41 درصد خاک لومی- شیب و میزان EC خاک به طور متوسط 0.17 mho/cm² نسبت به تیمارهای مورد آزمایش در شکل‌های 1 تا 3 اماده است. براساس این نتایج میزان زیر در سه اعماق مختلف نمونه روز پیشتر به لحاظ اعماق وجود نیست. در حالیکه شواهد روز پیشتر به لحاظ اعماق وجود نیست.

نیت دمای روزانه خاک با استفاده از دماسنج مخصوص

شکل‌های 1 تا 3. انجام گردید. همچنین به منظور اطمینان از دقت دمای اندازه‌گیری شده از داده‌های مربوط به دمای خاک در اعماق مختلف که در استگنا شهروندی اکینان- همدان جمع آوری شده بوده و در فواصل 2 کیلومتری از روانش محل انجام آزمایش قرار دارد نوشتار مقاله استفاده گردید (شکل 4). ضمناً خصوصیات فیزیکی خاک ابتدایی از جمله رنگ و پاکت و اختلاف خاک مربوط به مقدار ورود مزارعهو مورد تیمارهای گونه از نظر میزان مثبت داشته باشد.
پلاستیک شفاف بوده است (شکل 1 نا ۳). هدایت میانگین دما در تیمار با پلاستیک شفاف در عمق ۵ سانتی‌متری حاکم خاک به میزان ۲۷ درجه سانتی‌گراد رسیده که بالاتر از دمای کشیده (Lethal heat) برای بسیاری از قارچ‌های خشک بوده.

شکل ۱. دمای خاک در عمق ۵ سانتی‌متری در تیمارهای مورد آزمایش (بررسی ۳ در نتایج سال۱۳۷۹)

شکل ۲. دمای خاک در عمق ۱۵ سانتی‌متری در تیمارهای مورد آزمایش (بررسی ۳ در نتایج سال۱۳۷۹)
تأثير آفات دهی بر میزان جمعیت گونه‌های فوزاریوم وضعیت آلودگی خاک و جمعیت اندام‌های قارچی در خاک مزرعه مورد آزمایش قبل از شروع پلاستیک‌کشی با تعیین میزان پرگنه‌های قارچ در هر گرم خاک در جدول 1 آمده است. همان‌طور که در متن جدول نشان داده شده است میانگین جمعیت پرگنه‌های قارچ فوزاریوم در تیمارهای مختلف و در اعماق مختلف خاک تفاوت معنی‌داری با یکدیگر نداشت و

کرت های مورد آزمایش ثبت شده (به جز یک مورد که ثبت دما در صبحگاه صورت گرفته) دما خاک در عمق 5 سانتی متری هم در تیمارهای با پلاستیک‌سیاه و هم در پلاستیک شفاف بیش از 37.5 درجه سانتی‌گراد بوده است. به طور میانگین دما خاک در عمق 5 سانتی متری در طول مدت آزمایش معادل 31.8 و 31.7 درجه سانتی‌گراد بوده است. به طور میانگین شفاف پلاستیک بوده است.
جدول ۱: میانگین جمعیت فیروزهای فورازیوم در گرم خاک خشک (1000 x 1000 CFU/g) در فیروزهای مختلف خاک

<table>
<thead>
<tr>
<th>عمق خاک به سانتی‌متر</th>
<th>تعداد کلی فیروزهای در گرم خاک (CFU/g)</th>
<th>فیروزهای شفاف</th>
<th>فیروزهای سیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰-۵</td>
<td>۲/۱۰۶</td>
<td>۲/۸۵</td>
<td>۴/۸۷</td>
</tr>
<tr>
<td>۱-۵</td>
<td>۳/۸۰</td>
<td>۳/۷۹</td>
<td>۴/۸۰</td>
</tr>
<tr>
<td>۲-۵</td>
<td>۳/۷۹</td>
<td>۴/۸۰</td>
<td>۵/۸۰</td>
</tr>
</tbody>
</table>

امیدوار هر ریفی با حروف مشابه در سطح احتمال ۱ درصد اختلاف معنی‌داری ندارند.

این آبودگی طبیعی خاک به اندام‌های تک‌نیکی گونه‌های Fusarium,
در حد قابل قبول بوده است.

در پایان دوره سه هفته‌ای آب‌افزایی با استفاده از
پلاتسیکن سیاه و شفاف تعداد جمعیت زاده‌اوهای فورازیوم در
این تیمارها اختلاف معنی‌داری با شاهد نداشت است.

ولی ادامه آب‌افزایی در طول دوره‌های ۵ و ۶ هفته‌های به طور
معنی‌داری (P < 0/01) کاهش جمعیت زاده‌اوهای فورازیوم در
هر دو تیمار پلاتسیکن سیاه و شفاف سبب گردیده است، که این
نتایج مشابه با یافته‌های کان و همکاران (۱۲ و ۱۳) و بهمن و
همکاران (۱۶) است که گزارش کرده‌اند که با افزایش طول
دوره آب‌افزایی خاک، بازدهی و کارایی آن در کاهش جمعیت
عوامل بیماری خاکرد بهبود می‌یابد.

این نتایج همچنین منطقی با گزارش‌هایی است که آورو و
همکاران در سال ۱۹۶۶ (۸) می‌بر کنترل جمعیت فورازیوم و
افرازیوم محلول ناشی از کاربرد کوتاه مدت آب‌افزایی در خاک می‌تواند محصولات مختلف باشد. براساس این
پرورشی دی‌اوهای خاک را و روتیت آن را گزارش کرده‌اند که با ایجاد تنش در کاهش نرخ رقابت زاده‌ایهای فورازیوم در خاک‌های فورازیوم‌دهی شده تنش یافته این می‌باشد.

شکل ۴: نمودار وضعیت یافته‌ای از گونه‌های فورازیوم

فیروزهای سیاه و فیروزهای شفاف از بین گرفته شده و از میان گونه‌های دیگر که در این تیمارها وجود دارند و

فوام‌ها و منابع خاصی در وضعیت دمایی منطقه‌ای وجود ندارند و

بنا بر این انتخاب می‌رود که با اعمال یک دوره آب‌افزایی به ۵ و ۶ هفته‌های

هفتگی که از تیمارهای ماندگار (پس از برداشت محصولات زمستانه)

شرح و در آخر سه خاک پایان می‌یابد، نتایج به‌هی بستگی از کنترل

۲۲۵
جدول ۲: میانگین جمعیت گرگه‌های قاره فوزیوم در گرم‌های شاخ‌کش (CFU/g) بعد از استرس‌کشی در اعماق مختلف خاک در تیمارهای مختلف آزمایش

<table>
<thead>
<tr>
<th>طول دوره آفات‌دهی</th>
<th>عمق خاک در تیمارهای مختلف (cm)</th>
<th>شاهد</th>
<th>هفته‌های 1</th>
<th>هفته‌های 2</th>
<th>هفته‌های 3</th>
<th>هفته‌های 4</th>
<th>هفته‌های 5</th>
<th>هفته‌های 6</th>
<th>هفته‌های 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0-20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20-40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40-60</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>60-80</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>80-100</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

شکل ۵: رابطه همبستگی بین میانگین دمای روزانه خاک در عمق ۳-۰ سانتی‌متری در مزرعه تیمار شاهد و در ایستگاه هوشمندی اکیان در ماه‌های نوامبر-تری‌میلادی

همبستگی بین میانگین دمای خاک در مزرعه و ایستگاه اکیان در سال ۱۳۷۹

شایع بیمارگرهای مهم خاک‌زایان از جمله باکتری‌ها در منطقه قم است. بررسی می‌نماید.

سباغزاری

بیدن و سبلی از حویل معاونت پژوهشی دانشگاه بوعلی سینا از همدان که ابتدا می‌تواند برای انجام این پژوهش را فراهم نموده است. تشرک و فروماینگ می‌گردد. از محتوی اداره هوشمندسی استان همدان به خاطر در اختیار فاراد اطلاعات هوشمندسی کمک‌هایی را داد. همچنین از سرگرم خانم مهندس لیلا کاشفی کارشناس گیاهپزشکی و همکاران معدوست همکاری بسیاری نموده‌اند. سپاسگزاری می‌نماید.

جمعیت فزاری Fusarium در خاک قرنی‌شده، با توجه به رابطه بیش‌تر همبستگی دمای روزانه در عمق ۳-۰ سانتی‌متری خاک در مزرعه مورد آزمایش و دمای خاک ایستگاه هوشمندی اکیان در ماه‌های انجام آزمایش که در شکل ۵ نشان داده شده است. در نتیجه گیری کلی در خصوص شرایطی که آزمایش در آن صورت گرفته از جمله نوع و بافت خاک و نیروی میانگین دمای به دست آمده می‌توان به پیکان‌های بودن شرایط در ایستگاه و مزرعه پی برد. با اطمینان بیشتری نسبت به تعمیم نتایج آزمایش در نقاطی با شرایط زیانی و مکانی مشابه اقدام نمود. در عین حال انجام آزمایش‌های بیشتر در مدتها زمانی مناسب برای ارزیابی تأثیر آفات‌دهنده یک روزی

246
منابع مورد استفاده

1. درویش نیا، م. ع. علیزاده، و. هف. محمدی گل ته. ۱۳۷۷. گونه‌های فورازیوم و قارچ‌های مرتبط با پوسته‌گی طویل‌های و ریشه در استان لرستان. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران، کرج.

2. رویش بخش، اف. و. جای: ارشاد. ۱۳۷۹. وقوع فورازیوم روی ریشه و طوفه گندم در مناطق سردسیر استان ایلام. خلاصه مقالات چهاردهمین کنگره گیاه‌پزشکی ایران، اصفهان.

3. ظاهرخانی، ک. ع. علیزاده، ر. راهی نزار و. ع. شریفی تهرانی. ۱۳۷۷. عوامل زیستی فورازیومی نیشکر در استان خوزستان. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران، کرج.

4. وفا، س. ح. و. ر. علی نزار و. م. درویش نیا. ۱۳۸۰. گونه‌های فورازیوم همراه ریشه و طوفه گندم و جو در استان خوزستان. مجله علمی کشاورزی. ۲۴: ۱۰۱-۱۲۵.

