مقایسه توانایی تولید گندم زمستانه از آب در منطقه مشهد

محمد مهدی نخجوانی مقدم و بیژن قهرمان

چکیده
به منظور تعیین توانایی تولید گندم زمستانه (رقم/3) از آب، آزمایشی در منطقه مشهد در قالب طرح یک‌های کامل تصادفی شامل ۹۰ واحد، تیمار اول بر اساس آب‌رسانی در تمامی مراحل رشد گیاه (تیمار شاهد)، تیمار برآسی قطر آب در مراحل شیبگیاه، قفل رشد و دو تیمار با ترکیب آب برآسی کاهش یکسان میزان آب داده شده با میزان ۳۰ و ۶۰ درصد در طول فصل رشد نسبت به تیمار شاهد انجام داده شدند. به طور کلی تنش آب سبب نشت که مقایسه ناپذیری بود. در رشته دانه‌بندی و گل‌دهی گندم زمستانه به ترتیب حساس‌ترین مراحل قفل رشد به تنش رطوبتی می‌باشد. با مقایسه ضرایب حساسیت به دست آمده در پژوهش حاضر با مقادیر گزارش شده توسط سایر محققین مختلفی متفاوتی مشاهده شد که احتمالاً نشان دهنده تغییرات فیزیکی فیزیک و اجتماعی در منطقه مشهد است.

واژه‌های کلیدی: گندم زمستانه، تنش آب، ضرایب حساسیت، تابع تولید، مشهد

مقدمه
در منطقه خشک و نیمه خشک، آب مهم‌ترین عامل محدود کننده برای توسعه کشاورزی می‌باشد. در این منطقه آب کمبود آب که ناشی از نیاز به کم‌صورتی دارد به منظور کاهش مصرف آب و بهبود کارکرد کشاورزی در حال حاضر به خشکی گیری گردیده و سال‌ها گذشته در منطقه مشهد کشور، مصرف در مکعب آب در سال بیش از ۸۳ میلیارد متر مکعب آب در سال بیش از

یک ترتیب داشته‌ایم

1. به ترتیب دانشجوی سایق کارشناسی ارشد و دانشیار آبیاری، دانشکده کشاورزی، دانشگاه فردوسی مشهد

27
\[
\frac{\text{Ya}}{\text{Ymax}} = \prod_{i=1}^{\lambda} \left(1 - \frac{\text{ETa}}{\text{ETmax}} \right)^{\frac{1}{\lambda_i}}
\]

تعداد محصول از آب، تابع ریاضی است که بینگاره رابطه بین مقدار آب داده شده و محصول تولیدی در گیاهان زراعی می‌باشد. تابع تولید در میانگین مختلف به دو صورت ارائه می‌شود. تابع گروه اول در مقیاس فصل رشد ارائه می‌شود.

\[
\frac{\text{Ya}}{\text{Ymax}} = \prod_{i=1}^{\lambda} \left(1 - \frac{\text{ETa}}{\text{ETmax}} \right)^{\frac{1}{\lambda_i}}
\]

که در آن \(\lambda \) ضریب حساسیت گیاه به نشانه رشد در محصول رشد آب و ام\(\lambda_i \) حداقل عملکرد گیاه در فصول رشد (تن در هکتار)\(\text{ETa} \) عملکرد واقعی محصول (تن در هکتار)\(\text{ETmax} \) مقدار آب مصرفی گیاه در شرایط واقعی در محصول رشد آب و ام (متر مکعبی)\(\text{Y} \) عملکرد حاصل ضرب و \(n \) تعداد مراحل رشد مخصوص گیاه است.

\[
\text{Y} = \prod_{i=1}^{\lambda} \left(1 - \frac{\text{ETa}}{\text{ETmax}} \right)^{\frac{1}{\lambda_i}}
\]

که در آن \(\text{ETa} \) مقدار واقعی مصرفی گیاه و \(\text{ET} \) مقدار معیاری مصرف آب در طول دوره رشد گیاه بر حداکثر شدن محصول تأثیر اساسی دارد. در تابعی که با توجه به زمان محصول برداشته می‌شود، با در نظر گرفتن حساسیت‌های مختلف مراحل رشد نسبت به یکدیگر، کل درجه رشد به مراحل مختلف تقلیل می‌شود. در این رابطه، تابع محصول به صورت حاصل ضرب نسبت‌های تعریق به تعریق حداکثر و یا نسبت‌های تیغیری تعریق به تیغیری تعریق حداکثر توسط محصولات مختلف ارائه شده‌اند (6). با دانستن ضرایب حساسیت نسبی گیاه می‌توان با اعمال مدل‌برداری صحیح تشخیص داد که در صورت کمبود آب در جه میلیونی از رشد گیاه نش رش رطوبتی را بد اعمال کرده که کنترل صادق به گیاه وارد شود که مصرفی محصول به حداکثر برسد.

\[
\text{Y} = \prod_{i=1}^{\lambda} \left(1 - \frac{\text{ETa}}{\text{ETmax}} \right)^{\frac{1}{\lambda_i}}
\]

جنس (1) برای گیاه‌های که دارای سلول مشخصی از رشد مانند جوانه زنی، رشد رویی، گل‌دهی و تولید محصول
مقايسه تولید گندم زمستانه از آب در منطقه مهد

مراحل حساس گندم در منطقه مهد و مقایسه آن با تحصیلات پیشینان انجام گردیده است.

مواد و روش‌ها

به منظور تعیین تولید گندم زمستانه از آب (رقم 13) و حساسیت آن به نش رطوبتی، آزمایشی در دانشکده کشاورزی دانشگاه فردوسی مشهد با عرض 36 بر فراز ایالات 240 درجه و در ارتفاع 925 متر از سطح دریا در سال زراعی 1381-82 انجام شد. تیمارهای آزمایشی عبارت بودند از:
1. آبیاری کردن بدون نش رطوبتی در طول دوره انتظار (تیمار شاهد).
2. آبیاری کردن قبل آب در مرحله جوانه‌زنی
3. آبیاری کردن قبل آب در مرحله ساقه‌دهی
4. آبیاری کردن قبل آب در مرحله رشد و دانه‌بندی
5. آبیاری کردن قبل آب در مرحله رشد و سبک‌سازی دانه
6. آبیاری کردن قبل آب در مرحله کلیه شده
7. آبیاری کردن قبل آب در مرحله کلیه شده و دانه‌بندی
8. آبیاری کردن قبل آب در مرحله کلیه شده و ساقه‌دهی و دانه‌بندی
9. آبیاری کردن قبل آب در مرحله کلیه شده و دانه‌بندی و دانه‌سازی

برگ و ارتفاع گیاه در دو نمونه اصلی بر علائم، نمایه سطح گونه و ارتفاع گیاه در این آزمایش بررسی شد. اثرات آن در مرحله مختلف رشد گندم زمستانه انجام داده، به این ترتیب رشد گندم زمستانه به نش رطوبتی در مرحله مختلف رشد در منطقه چندانی متفاوت نیست. به علت محدودیت منابع آب در منطقه، نش رطوبتی به سه‌دسته آب می‌تواند در این مرحله سودمند است. این نتیجه تحقیقات دیگر هم‌اکنون صیغه‌های دیگری از انجام نمی‌شود.

بر اساس گزارش‌هایی، جدایی از گیاهان شده نمی‌تواند به نتیجه‌های وارونی بررسی شود و شرایط آب و هوا در حساسیت مکانی از گیاهان در این آزمایش به‌نوعی متفاوت از گیاهان (رقم 13) و حساسیت آن به نش رطوبتی بررسی گردید. این نتیجه در بخش‌های مختلف رشد و در این شرایط، می‌تواند به صورت دستی و تجربی در دانشگاه کشاورزی بدند.
جدول 1. خصوصیات فیزیکی لایه‌های مختلف خاک

<table>
<thead>
<tr>
<th>ظرفیت زراعی</th>
<th>وزن مخصوص ظاهری (گرم بر سانتی‌متر مکعب)</th>
<th>عمق خاک (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>باتلاق خاک</td>
<td>21.33</td>
<td>100</td>
</tr>
<tr>
<td>مصداق زرینی</td>
<td>21.64</td>
<td>20</td>
</tr>
<tr>
<td>مصداق زرینی</td>
<td>22.84</td>
<td>10</td>
</tr>
<tr>
<td>مصداق زرینی</td>
<td>23.23</td>
<td>1.2</td>
</tr>
</tbody>
</table>

لاهی‌های خاک در اعماق 50 پایین، به عمق 40 سانتی‌متر در هر متر مربع برای هر کرت، با فواصل خطوط 20 سانتی‌متری انجام گردیدند. برای محاسبه بیلاد آب خاک در طول آزمایش از بلوند گیاهی و استنیش شده که در اعماق 0، 15، 30، 45 و 60 سانتی‌متری شده بودند استفاده شد. در این آزمایش متوالی در مهندین 13 روز است. بنابراین برای به‌داخالت رسیدن احتمال تشخیص در تیمار شاهد از روز آماری 10 روز استفاده شد. قبل از آپارتمی، رطوبت عمق 20 درصد شده بود. در این مدت، برای هر کرت در هر متر مربع برای هر کرت، به روش تقسیم‌بندی 20 سانتی‌متری کمبو کرده و به روش تغییرات تعدادهای خاک انجام گرفت. به‌منظور هم‌ارتباط بین تیمارهای آزمایشی از یک ترکیب زمانی آپارتمی استفاده شد. نخستین آپارتمی در تاریخ 1387/8/21 و آخرین آن در تاریخ 1388/3/18 انجام گرفت. در این پژوهش، به‌ویژه در آخرین عمق ریشه مشترک برای 20 سانتی‌متر در اول دوره گل دهی بر اساس مشاهده‌های حداقل عمق ریشه، گیاهان 10 سانتی‌متر در زمان کشت و تغییرات بین گیاهان خاک ریشه روند در نظر گرفته شد. برای تغییرات عمق در هر دوره زمانی، از نرم‌افزار طراحی خاک NatGeo و مکانیابی نرم‌افزار اطلاعات از رابطه بسط داده شده فاصله راتو و همکاران (12) محاسبه شدند.

نتایج و بحث

در پژوهش حساسیت به توجه به پیشنهاد دوری‌سازی و کساد (۶) شش مرحله یافته شد. برای گندم زمستانی در نظر گرفته شد. پس از برداشت نمونه‌های گیاهی بر اساس مشاهده‌های مراحل فنولوژی مختلف رشد گیاه از یکی‌گیگ تکثیک و زمان رسیدن به هزار دانه روم مورد کاشت (۳۷ گرم) و بر اساس ۰۴۰، دانه در هر متر مربع برای هر کرت و با فواصل خطوط 20 سانتی‌متری انجام گردیدند. برای محاسبه بیلاد آب خاک در طول آزمایش از بلوند گیاهی و استنیش شده که در اعماق 0، 15، 30، 45 و 60 سانتی‌متری شده بودند استفاده شد. در این آزمایش متوالی در مهندین 13 روز است. بنابراین برای به‌داخالت رسیدن احتمال تشخیص در تیمار شاهد از روز آماری 10 روز استفاده شد. قبل از آپارتمی، رطوبت عمق 20 درصد شده بود. در این مدت، برای هر کرت در هر متر مربع برای هر کرت، به روش تقسیم‌بندی 20 سانتی‌متری کمبو کرده و به روش تغییرات تعدادهای خاک انجام گرفت. به‌منظور هم‌ارتباط بین تیمارهای آزمایشی از یک ترکیب زمانی آپارتمی استفاده شد. نخستین آپارتمی در تاریخ 1387/8/21 و آخرین آن در تاریخ 1388/3/18 انجام گرفت. در این پژوهش، به‌ویژه در آخرین عمق ریشه مشترک برای 20 سانتی‌متر در اول دوره گل دهی بر اساس مشاهده‌های حداقل عمق ریشه، گیاهان 10 سانتی‌متر در زمان کشت و تغییرات بین گیاهان خاک ریشه روند در نظر گرفته شد. برای تغییرات عمق در هر دوره زمانی، از نرم‌افزار طراحی خاک NatGeo و مکانیابی نرم‌افزار اطلاعات از رابطه بسط داده شده فاصله راتو و همکاران (12) محاسبه شدند.

نتایج و بحث

در پژوهش حساسیت به توجه به پیشنهاد دوری‌سازی و کساد (۶) شش مرحله یافته شد. برای گندم زمستانی در نظر گرفته شد. پس از برداشت نمونه‌های گیاهی بر اساس مشاهده‌های مراحل فنولوژی مختلف رشد گیاه از یکی‌گیگ تکثیک و زمان رسیدن به
مقایسه تولید گندم زسته‌انه از آب در منطقه مشهد

تهیه متفاوت، عامل‌رگه انداده‌گیرین شده هر تهیه (برلسب کیلوگرم در هکتار) بر میزان حجم آب دریافتی همین تهیه (برلسب متر مکعب در هکتار) تقسیم شد. پارامترهای مورد استفاده در تعبیه روابط فرآیند جدول 4 ارائه شدند. بنابراین

جهت تولید نتایج (جدول 3 و 4) که تنش آبی سبب شد تا

تغییر خروجی در مقدار توسعه ریشه و در بعضی از شرایط در

كل عمق خاک نسبت به ایده‌سازی که آب کافی دریافت

کرده‌اند به سمت رطوبت کمتر کشیده شود. در این شرایط بعضاً

مقدار نفوذ عمیق به صورت منفی محاسبه شد. البته مقدار نفوذ

عمیق منفی به جر در بعضی موارد خاص بیشتر در دوره‌هایی از

فصل رشد که یک عمق به تنش آبپوش و هم چنین مقدار بارندگی

نگهداری بوده و حالت آبی خاک،

مقدار بارندگی تجربه - تعریق واقعی گیاه‌تربیتی شد. مقدار فصلی

بازار - تعریق در تیمار به گوناگونی از

روی حاصل ضرب گیاهی و تبخیر - تعریق گیاه جمعی

با استفاده از نرم افزار 2 (Ref- ET Ver 2) و بر اساس آمار آب و

هوایی مشهد محاسبه شد. تابیت نشان داد که سه روش

پنمن - فاکتور اصلی شده، نمن - فاکتور و تاشی فاکتور به ترتیب با

1/41، 0/041، 0/63، 0/17 و 0/61 سانتی‌متر به سبب روش‌ها

مقدار تهیه بر روی بلوان آبی خاک دارند. این روند آب‌تاب

ادعا کرد که گندم در تهیه ساده تحت تنش قرار گرفته است.

آنلاین بیشتر در پژوهش‌های جدید مقدم (5) ارائه شده است.

مقدار بارندگی - تعریق واقعی گیاه در تهیه‌های مختلف در جدول

5 نشان داده شده است.

تغییر تولید در میانس نفل شرود

مقدار تولید گندم زسته‌انه به صورت تعیین

شده. در حالت اول، روابط عملکرد گیاه (در جدول سطح با در

واحد آب) با میزان آب داده شده به گیاه و میزان تبخیر - تعریق

گیاه تعیین شده‌اند. برای محاسبه عملکرد در واحد آب در
جدول 2. فواصل زمانی ثبت شده، عمق ریشه گندم و میزان بارندگی در مراحل مختلف رشد گندم

<table>
<thead>
<tr>
<th>مراحل رشد</th>
<th>جوانه زنی</th>
<th>پنجه زنی</th>
<th>ساقه دهی</th>
<th>گل دهی</th>
<th>دانه بندی</th>
<th>رسیدن دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول مراحل (روز)</td>
<td>15</td>
<td>25</td>
<td>67</td>
<td>6/7</td>
<td>1/95</td>
<td>0/4</td>
</tr>
<tr>
<td>متوسط عمق ریشه (سانتی‌متر)</td>
<td>10</td>
<td>120</td>
<td>120</td>
<td>66</td>
<td>1/95</td>
<td>0/4</td>
</tr>
<tr>
<td>میزان بارندگی (سانتی‌متر)</td>
<td>15/10</td>
<td>25/25</td>
<td>4/24</td>
<td>0/9</td>
<td>0/4</td>
<td>0/4</td>
</tr>
</tbody>
</table>

شامل دوره خواب زمستانی به مدت 95 روز

جدول 3. مقدار آب موجود تا عمق 180 سانتی‌متری خاک در تیمارها و زمان‌های مختلف رشد گندم (سانتی‌متر)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مرحله رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>جوانه زنی</td>
<td>2/9</td>
</tr>
<tr>
<td>پنجه زنی</td>
<td>2/9</td>
</tr>
<tr>
<td>ساقه دهی</td>
<td>3/24</td>
</tr>
<tr>
<td>گل دهی</td>
<td>3/24</td>
</tr>
<tr>
<td>دانه بندی</td>
<td>3/24</td>
</tr>
<tr>
<td>رسیدن دانه</td>
<td>3/24</td>
</tr>
</tbody>
</table>

جدول 4. مقدار آب موجود درعمق توسه ریشه خاک در تیمارها و زمان‌های مختلف (سانتی‌متر)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مرحله رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>جوانه زنی</td>
<td>2/9</td>
</tr>
<tr>
<td>پنجه زنی</td>
<td>2/9</td>
</tr>
<tr>
<td>ساقه دهی</td>
<td>3/24</td>
</tr>
<tr>
<td>گل دهی</td>
<td>3/24</td>
</tr>
<tr>
<td>دانه بندی</td>
<td>3/24</td>
</tr>
<tr>
<td>رسیدن دانه</td>
<td>3/24</td>
</tr>
</tbody>
</table>

نیاز به تقویت داشتن که تابع تولید فصلی آن مشابه توابع تولید متداول باشد. در حالت دوم، روابط به صورتی باید تعیین شوند. بدین‌گونه، مقداری مثبت از مقدار نسبت کاهش عملکرد دانه (1-Yf/Yfmax) در حداقل سطح و در حداقل آب محاسبه شده است. همین‌چنین نسبت کاهش طی‌پر (1-ET/ETmax) محاسبه و در روابط مربوط به عناوین متغیر مستقل در نظر گرفته شد. مقدار فاکتور (1-Yf/Yfmax) کلی
جدول ۵. پارامترهای محاسبه شده در تیمارهای نه گانه برای تغییر روابط عملکرد با آب آبیاری و تبخیر - تعرق

<table>
<thead>
<tr>
<th>عملکرد دانه در واحد آب</th>
<th>تبخیر-تعارف</th>
<th>آب آبیاری</th>
<th>تیمار</th>
<th>ET</th>
<th>I (سانتی متر)</th>
<th>ET _c (سانتی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(کیلوگرم بر متر مکعب آب)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>4658</td>
<td>0</td>
<td>71/37</td>
<td>62/55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>4238</td>
<td>0</td>
<td>68/79</td>
<td>61/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>5638</td>
<td>0</td>
<td>68/79</td>
<td>64/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>5231</td>
<td>0</td>
<td>60/31</td>
<td>59/88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>5885</td>
<td>0</td>
<td>64/12</td>
<td>55/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>6496</td>
<td>0</td>
<td>60/25</td>
<td>59/58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>6173</td>
<td>0</td>
<td>60/55</td>
<td>79/26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>6067</td>
<td>0</td>
<td>60/55</td>
<td>75/04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>4138</td>
<td>0</td>
<td>55/53</td>
<td>38/77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱. روابط عملکرد گیاه گندم زمستانه با آب آبیاری و تبخیر تعرق
چ جدول 6 ارائه شده. در این مدل نیز با توجه به مقاله های متغیرها و با استفاده از نرم افزار SIGMA PLOT (Ver 7) رگرسیون گزینه انجام شد و سپس از آزمون های متعدد روابط بین نسبت کاهش عامل دانه و نسبت کاهش کل ماهی خشک در واحد سطح و در واقع آب با نسبت کاهش تبخیر تعریف به ترتیب مطالعات روابط 9، 11 و 12 تعیین شدند. در شکل 2 مقاله اندیشه کیهان و تخمینی روابط فوق نشان داده شده است. خطوط رگرسیون با احتمال 5% (روابط 9 و 11 در واحد سطح و روابط 10 و 12 در واقع آب) هستند.

پ) توابع تولید در مقایسه درون قسمی (تولید زمانی تولید) در تحقیق حاضر برای تولید سیمان حساسیت (Lb) کیسه از روابط جنسی (10) (رباط 1 و نیری 1 نیوترونیك (11) (رباط 3) استفاده شد. برای تولید ضرایب b با استفاده از رابطه، ایندا مقاله تبخیر - تعریف در تیمارهای نیا ماندن و در مراحل مختلف رشد گیاهی (جدول 7) تعداد تیمارهای مختلف محاسبه شد. در پژوهش حاضر تعداد تیمارهای تحت تاثیر آب بیشتر از تعداد مراحل رشد گیاه و در تعداد معادلات بیشتر از تعداد مجوزهای (ضرایب b) در مراحل برنامه فصل رشد کرد. بنابراین امکان حل دستگاه ها در شش محصول از طریق ریاضی و محاوقی کمپیوتر بنا بر اشاره جداد ضرایب b از روش بهینه سازی استفاده شد. بندها مدل بر اساس داده های رابطه 8 (VER.8) LINGO و با هدف به دست آوردن ضرایب b که م Corinth خطا را در معادلات هست گاه ایجاد کنند، ضرایب b از رابطه مختلف محاسبه شدند. تاکنون سه مدل دو در جدول 8 ارائه شدهاند. در این جدول همچنین مقایسه ای بین ضرایب حساسیت به دست آمده از طریق رابطه جنسی (10) با سایر مقالات مشابه صورت گرفته است. با مقایسه ضرایب حساسیت به دست آمده از رابطه آب و هوا و قهرمان (2) و هم چنین هفتاهای آرین (25) مساح می شود که بر خلاف دو مقاله مورد که مرحله گل دهی را حساس ترین مرحله به تاثیر آبی می نویسد، در پژوهش حاضر مرحله دانه بندی حساس ترین مرحله فصل رشد به دست آمد است. در بین دو مقاله میزان ضرایب حساسیت به دست آمده توسط آبخض و قهرمان (25) در مجموعه تطبیق پیشتری با ضرایب به دست آمده در پژوهش حاضر دارد. این مدل نیز علت است که رقم مورد استفاده توسط آنها یک مشابه رقم مورد استفاده در تحقیق حاضر می باشد. البته بین ضرایب حساسیت به دست آمده توسط آبخض و قهرمان (25) در مراحل نسبت کاهش کل ماهی خشک و نسبت کاهش تبخیر فصل رشد و ضرایب به دست آمده در این پژوهش تفاوت هایی نیز وجود دارد. این اختلاف خصوصا در مراحل گل دهی و رشد
جدول ۶. پارامترهای محاسبه شده در تیمارهای نه‌گانه برای تعیین روابط نسبت کاهش عملکرد دانه و کل ماده خشک با نسبت کاهش تبخیر- تعرق

<table>
<thead>
<tr>
<th>نسبت کاهش کل ماده خشک [Y / Y_{max}]</th>
<th>نسبت کاهش عملکرد دانه [1 - Y_{g} / Y_{g_{max}}]</th>
<th>تیمار</th>
<th>در واحد اب</th>
<th>در واحد سطح (کیلوگرم در هکتاور)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>8</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.02</td>
<td>0.63</td>
<td>2</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.04</td>
<td>0.93</td>
<td>3</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
<td>0.13</td>
<td>4</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.08</td>
<td>0.21</td>
<td>5</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.10</td>
<td>0.29</td>
<td>6</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.12</td>
<td>0.37</td>
<td>7</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.14</td>
<td>0.45</td>
<td>8</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.16</td>
<td>0.53</td>
<td>9</td>
<td>0.00</td>
<td>0.05</td>
</tr>
</tbody>
</table>

شکل ۲. رابطه نسبت کاهش عملکرد دانه و کل ماده خشک با نسبت کاهش تبخیر- تعرق

35
ضرایب، اختلاف زیادی مشاهده می‌شود که علت این امر نیز
شاید به سبب شرایط اقیمی متفاوت و همچنین اختلاف در
نوع وارتئگی گذن پایه باشد. تحقیک‌ها که در رابطه با ضرایب حسابی
به‌سته آمده در مقاله زاهدان (14) قابل ذکر می‌باشد، این است که
یک ضرایب حسابی را برای ارائه بهره‌برداری و رسیدگی
راه‌اندازی گذن زمان‌های در صورت منفی محاسبه نموده است. این امر
شناسانده آن است که هنگام افزایش گذن در مراحل تأخیر می‌باشد.
بر عکس این گذن زمان‌های در تحقیق انجام شده توسط وی دانشجو
است. با این وجود چون درجه نشان داده، نوع وارتئگی و شرایط
القیمی در مطالعه مدرک برای مشخص نمی‌باشد. بنابراین
نحوه استفاده دقیق برای انجام داد.
با توجه به این که محاسبه تبدیل نشان دهند که در تحقیق‌ها
دوره‌های مختلف رشد گیاه و در تیمارهای مختلف نیز توسط
معادلات ایجاد گردیده است و می‌تواند دقیق باشد. آن همین‌طور
می‌باشد که با‌این‌نمی‌باشد. تاریخ‌های افتتاحیه گذن در نظر گرفته
با توجه به این که تاریخ‌های افتتاحیه گذن در نظر گرفته شده.
که در کل رشد نشان داده می‌باشد. این امر نشان می‌دهد که افزایش تعداد تیمارهای حاضر در تحقیق حاضر نسبت به
مطالعه انجام شده توسط حاضر نسبت به مطالعه انجام شده
(2) تأثیر زیادی در تفاوت ضرایب حسابی بسیار است. مطالعه نادر.

مقاله ضرایب به دست آمده در پژوهش حاضر با

یافته‌های آرین (3) مشخص می‌سازد که اگر چه در مطالعه،
مراحل گلدهی و بعد از اندازه‌برداری را حساسیت مراحل
فصل رشد نسبت به نشان آبی می‌کند. ولی رفتار
زیادی بین ضرایب این دو تحقیق وجود دارد. دلایل زیادی
می‌باشد. این نسبت به این امر نیز می‌باشد. در این
پژوهش با یافته‌های آرین (3) متفاوت. شاید یکی از دلایل
اختلاف مربوط به کمیت مورد استفاده و دلیل دیگر می‌باشد
که مورد استفاده توسط آرین (3) به دست آمده در حالی که رقیم مورد استفاده در تحقیق
مانا می‌باشد.

با مقاله ضرایب حسابی بسیار است. مطالعه توسط هیل و
همکاران (9) و زاهدان (14) با ضرایب به دست آمده در این
تحقیق، در ترتیب دوره‌های حساس به نشان می‌باشد.

1384
جدول 7: میزان عملکرد گیاه (کیلوگرم در هکتار)، تیمار- تعرق گیاه، آب داده شده و آب داده شده مهاری آب زهکشی (تظفح عمیق) در تیمارها و مراحل مختلف رشد گیاه

<table>
<thead>
<tr>
<th>مرحله رشد</th>
<th>رشدندگی ساده‌دهی</th>
<th>رشد‌نژادی</th>
<th>جوانی‌زندی</th>
<th>عملکرد گیاه (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETc1 (Wa1)</td>
<td>ETc2 (Wa2)</td>
<td>ETc3 (Wa3)</td>
<td>ETc4 (Wa4)</td>
<td>ETc5 (Wa5)</td>
</tr>
<tr>
<td>[Wa6...dp6]</td>
<td>[Wa6...dp6]</td>
<td>[Wa6...dp6]</td>
<td>[Wa6...dp6]</td>
<td>[Wa6...dp6]</td>
</tr>
<tr>
<td>(kg/ha)</td>
<td>(kg/ha)</td>
<td>(kg/ha)</td>
<td>(kg/ha)</td>
<td>(kg/ha)</td>
</tr>
<tr>
<td>15/63</td>
<td>15/28</td>
<td>14/12</td>
<td>19/11</td>
<td>4/87</td>
</tr>
<tr>
<td>(12/07)</td>
<td>(15/89)</td>
<td>(12/68)</td>
<td>(22/97)</td>
<td>(5/31)</td>
</tr>
<tr>
<td>(12/15)</td>
<td>(14/12)</td>
<td>[21/88]</td>
<td>[23/94]</td>
<td>[2/42]</td>
</tr>
<tr>
<td>15/59</td>
<td>15/39</td>
<td>14/54</td>
<td>18/47</td>
<td>4/46</td>
</tr>
<tr>
<td>15/39</td>
<td>15/24</td>
<td>14/67</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>15/80</td>
<td>15/18</td>
<td>14/18</td>
<td>18/48</td>
<td>6/28</td>
</tr>
<tr>
<td>15/60</td>
<td>15/10</td>
<td>12/60</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>14/98</td>
<td>14/39</td>
<td>6/88</td>
<td>18/41</td>
<td>4/78</td>
</tr>
<tr>
<td>14/87</td>
<td>14/61</td>
<td>18/41</td>
<td>4/78</td>
<td>2/19</td>
</tr>
<tr>
<td>13/81</td>
<td>13/19</td>
<td>12/65</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>13/85</td>
<td>13/19</td>
<td>12/65</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>12/62</td>
<td>12/62</td>
<td>10/60</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>12/58</td>
<td>12/57</td>
<td>10/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>12/45</td>
<td>12/48</td>
<td>9/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>12/40</td>
<td>12/48</td>
<td>9/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/59</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/54</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/51</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/50</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/49</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/48</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/47</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/46</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
<tr>
<td>11/45</td>
<td>11/59</td>
<td>8/54</td>
<td>[22/98]</td>
<td>[2/43]</td>
</tr>
</tbody>
</table>
جدول 8 مقایسه ضرایب حساسیت گذشته زمستان به دست آمده در مراحل مختلف رشد با تابع سایر مطالعات انجام شده

<table>
<thead>
<tr>
<th>مرحله</th>
<th>رابطه 1 (جنین (10۰))</th>
<th>رابطه 2 (تیتریزی و ریزفسکی (11))</th>
</tr>
</thead>
<tbody>
<tr>
<td>مطالعه</td>
<td>آبخر و همکاران (11)</td>
<td>آبخر و همکاران (11)</td>
</tr>
<tr>
<td>حاضر</td>
<td>خاکر</td>
<td>رصد</td>
</tr>
<tr>
<td>1/76</td>
<td>0/877</td>
<td>0/878</td>
</tr>
<tr>
<td>0/367</td>
<td>0/142</td>
<td>0/110</td>
</tr>
<tr>
<td>0/414</td>
<td>0/298</td>
<td>0/84</td>
</tr>
<tr>
<td>0/39</td>
<td>0/237</td>
<td>0/10</td>
</tr>
<tr>
<td>0/216</td>
<td>0/110</td>
<td>5/10</td>
</tr>
<tr>
<td>0/154</td>
<td>0/111</td>
<td>0/51</td>
</tr>
<tr>
<td>0/177</td>
<td>0/111</td>
<td>0/51</td>
</tr>
</tbody>
</table>

جدول 9 مقایسه ضرایب حساسیت گذشته و گذشته زمستان به دست آمده در مراحل مختلف رشد

<table>
<thead>
<tr>
<th>مرحله</th>
<th>رابطه 4 (رازو و همکاران (12))</th>
<th>رابطه 6 (دورنیاوس و کسیم (16))</th>
</tr>
</thead>
<tbody>
<tr>
<td>مطالعه</td>
<td>حاضر</td>
<td>رصد</td>
</tr>
<tr>
<td>0/724</td>
<td>0/286</td>
<td>0/724</td>
</tr>
<tr>
<td>*</td>
<td>0/224</td>
<td>0/224</td>
</tr>
</tbody>
</table>

* فالید عدد

قابل توجیه کمتر هستند. این امر شاید به دلیل در نظر گرفتن تغییرات ذخیره رطوبت خاک باشد. اسکیتا این مدل چون تبخیر تعریق را ملاک قرار نه دهد، خیلی قابل استفاده نیست. در جدول 8 ضرایب به دست آمده با استفاده از رابطه 2 در پژوهش حاضر و مطالعه آبخر و همکاران (2) ارائه شده است. با مشاهده ضرایب به دست آمده توسط آبخر و همکاران (2) مشخص می‌شود که این نیز با استفاده از رابطه 2 حساسیت حساسیت به دست آمده در دو مطالعه مرسور

حساسیت گیاه در مراحل مختلف رشد به دست آمده در اینجا نیز یک دستگاه هست مدل مهول وجود داشته که با استفاده از نرم‌افزار LINGO (Ver 8) می‌توان از طریق تعیین جواب‌هایی که کمترین خطای را در مدل‌های ایجاد کنند، ضرایب حساسیت به دست می‌باشد. شاخص برای مدل 1 که مدل 1 دانشبنی حساسیت مرحله به دست آمده شاخص ضرایب به دست آمده با استفاده از رابطه 2 نشان می‌دهد که مدل 1 حساس به دقت به روز رسانی می‌باشد. هم چنین ضرایب به دست آمده از طریق رابطه 2 در مقایسه ضرایب حاصل از مدل 1 به‌طور میزان
نتیجه‌گیری

مقایسه مدل‌های برآورد عملکرد گندم زمستانه نشان داد که مدل‌های برآورد عملکرد در واحد سطح دارای ضریب همبستگی بالاتری نسبت به مدل‌های برآورد عملکرد در واحد آب می‌باشند. همین‌طور ضرایب حساسیت به دست آمده از رابطه جنسی (30) نشان داد که مراحل دانه‌بندی و گلده گندم زمستانه به ترتیب مراحل تولید مصرف آب به نش رطوبتی می‌باشند. با مقایسه ضرایب به دست آمده در تحقیق حاضر با مقایسه کرگر شده توسط سایر محققین، اثبات کسب در این مطالعه قرار داشته که به احتمالاً اثری مورد استفاده، شرایط اقلیمی متفاوت، دسته تنش اعمال شده و نش رطوبتی عوامل ناشناخته ممکن است این اختلافات را توجیه کند.

منابع مورد استفاده

1. آبخزه، 1381. تعیین ضرایب حساسیت گیاه کندم زمستانه به تنش رطوبتو. پایان نامه کارشناسی ارشد آب‌یاری، دانشگاه کشاورزی، دانشگاه فردوسی مشهد.
3. آبخزه، 1371. بررسی مدل کاپیتو مدل‌پردازی برنامه‌های آب‌یاری. پایان نامه کارشناسی ارشد آب‌یاری، دانشگاه امام رضا (ع)، مشهد، 220 صفحه.
4. آبخزه، 1372. بررسی استفاده از دانشگاه امام رضا (ع)، مشهد، 220 صفحه.
5. تحقیقات مقدم، م. 1378. بررسی آب‌یاری در مراحل مختلف گیاه کندم زمستانه و تعیین ضرایب حساسیت گندم. پایان نامه کارشناسی ارشد آب‌یاری، دانشگاه کشاورزی، دانشگاه فردوسی مشهد.
