مقایسه توانای تولید گندم زمستانه از آب در منطقه مشهد

محمد مهدي نخجوانی مقدم و بیژن قهرمان

چکیده
به منظور تعیین توانای تولید گندم زمستانه (رتبه 3/0) از آب، ژنومیشی در منطقه مشهد در قلب طرح بلوک‌های کامل تصادفی شامل نه تیمار و در هر تیمار انجا شد. تیمار اول بر اساس آبیاری در تمام مراحل رشد گیاه (تیمار شاهد) و تیمار براساس قطع آب در مراحل شناسنامه و گسترش نشان که تیمار شاهد نسبت به تیمار همبسته بیشتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری نسبت به مدل‌های برآورده عاملکرد در حالت سطح شرایط همواره بالاتری

وازه‌ها کلیدی: گندم زمستانه، نش آب، ضرایب حسابی، تابع تولد، مشهد

مقدمه
در منطقه خراسان و به نمایانگر آب مهمترین عامل محدود کننده برای توسعه کشاورزی می‌باشد. در این منطقه نیز نیاز به کمیابی آب که تا ناکامی از عوامل کلیمی‌تولیدی منطقه است مشکلاتی را برای توسعه کشاورزی در این منطقه بری یکدیگر است. بهره‌مندی از آب‌های استحصالی به‌دست آمده نیز باعث شده تا اراضی کشوری تحت پوشش قرار گیرند. در حال حاضر بخش کشاورزی کشور ما با مصرف 83 میلیارد متر مکعب آب در سال بیش از

1. به ترتیب دانشجوی سابق کارشناسی ارشد و دانشیار آبیاری، دانشگاه کشاورزی، دانشگاه فردوسی مشهد

27
هستند (مانند اغلب گیاهان زراعی) تابع تولیدی به شرح زیر بیشتر نمود:

\[
\frac{Y_a}{Y_{max}} = \prod_{i=1}^{n} \left(\frac{ETa}{ET_{max}} \right)^{\lambda i}
\]

که در آن \(\lambda_i \) ضریب حساسیت گیاه به نشانه رطوبتی در مرحله رشد ۱ام \(Y_{max} \) و چکنگ‌گر عملکرد گیاه در فصل رشد (تن در هکتاری) عملکرد واقعی محصول (تن در هکتاری) \(Y_a \):

\[
\frac{ETa}{ET_{max}}
\]

: مقدار آب مصرفی گیاه ای در شرایط واقعی در مرحله رشد ۱ام (سانتی متری) \(\lambda_i \) : مقدار مصرفی گیاه در شرایط بالقوه در مرحله رشد ۱ام (سانتی متری) \(\Pi \) : عملکرد حاصل ضرب و \(n \) تعداد مراحل رشد اکتیوی گیاه است.

که در آن \(Wp \) مقدار واقعی مصرف گیاه و

\[
W = \prod_{i=1}^{n} \left(\frac{W_i}{W_{max}} \right)
\]

که در آن \(W_i \) مقدار واقعی مصرف گیاه و

\[
1 - \frac{Y_a}{Y_{max}} = K_y \left(1 - \frac{ETa}{ET_{max}} \right)
\]

که در آن \(K_y \) ضریب حساسیت در مرحله مشخصی از رشد است. این رابطه تهیه یک مرحله از رشد ساده است. رانو و همکاران (۱۵) رابطه فوق را به شکل غیر خطی زیر برای لحاظ کردن تأثیر مراحل مختلف رشد گیاهان بسط دادند:

\[
Y_a \frac{Y_{max}}{Y_{max}} = \prod_{i=1}^{n} \left(1 - K_y \left(1 - \frac{ETa}{ET_{max}} \right) \right)
\]

دو روش‌ها و پرتوی‌ها (۷) مراحل پرتویی از نظر نشان رطوبتی را برای گیاهان زراعی و علف‌ها ارائه کردند. آنها مراحل حساس رشد نشان مراحل تشکیل سیلر و دو هفته قبل از گرده افشانی معرفی نمودند. در حالی که در تحقیقی که طی ۱۰۰ رشد مانند جوانی زنی، رشد رویشی، گل‌دهی و تولید محصول
مقاله تولید گندم زمستان از آب در منطقه مشهد

پیشینان انجام گردیده است.

مواد و روش‌ها

به منظور تعیین توانایی تولید گندم زمستان از آب (رقم ۳/۷۳ در طول دوره رشد کشت شتابک) در دانشکده کشاورزی دانشگاه فردوسی مشهد با عرض جغرافیایی ۳۵° ۲۶ دقیقه شمالی، طول جغرافیایی ۵۹° ۵۹ شرقی و ارتفاع ۹۶۵ متر از سطح دریا در سال زراعی ۱۳۷۸-۱۳۸۰ اجرا شد. تیمارهای آزمایشی عبارت بودند از: T۱ آبیاری کریک بدون تشیع رطوبتی در طول دوره رشد (تیمار شاهد)، T۲ آبیاری کریک با قطع آب در مراحل جوان حنی، T۳ آبیاری کریک با قطع آب در مراحل ساقه‌های توده، T۴ آبیاری کریک با قطع آب در مراحل ساقه‌های دانه‌بندی، T۵ آبیاری کریک با قطع آب در مراحل رسیدن دانه، T۶ آبیاری کریک با ۲۰ درصد آب کمتر نسبت به تیمار شاهد در کل فصل رشد و T۷ آبیاری کریک با ۵۰ درصد آب کمتر نسبت به تیمار شاهد در کل فصل رشد.

قبل از کاشت گیاه‌ها از اعماق مختلف خاک مزرعه نمونه‌گیری و سپس خصوصیات فیزیکی خاک مزرعه در لایه‌های مختلف تعیین شدند (جدول ۱). پس از عملیات اولیه آماده‌سازی زمین، تعداد ۲۷ کرت به ابعاد ۲ × ۲ متر به روش دستی و توسط کارگر آباد شد. قبل از آغاز عملیات کودپاش کردن آزمایشی با استفاده از دو نوع کود فسفات آمونیوم و اوره (سرکر) انجام شد.

رقم گندم مورد اسناده در پروهوش ۵/۷۳ به‌ویژه این رقم شرکه از ارگانیسمی اورگانیک Spn/Med/Camaa/3/Nzr آمریکا و رقمی نسبت به بلند، کاملاً مقابله به خواص‌های و سرمایه مقدار به نگهداری زرد و حساس به رنگ فهمور می‌باشد. کلیه کردهای آزمایشی در تاریخ ۱۳۸۱/۸/۲۰ به‌طور یکسان کشت شدند. کشت با ۲۵ هکتار به صورت دستی و با توجه به وزن سال، زانگ و اویس (۸۳) در ناحیه مدارسی شمالی داشتن به این تئیه رسدند که مراحل حساس سرده گندم به تنش آبی مرحله پوزش شدن ساقه‌ها، مرحله گل‌دهی و در ادامه مرحله پر نشان داده‌است. تئیه نام‌گذارگان با تئیه گزارش شده توسط دورانیس و پرویز طاقی چندان ندارد. آنها هم چنین دریافتند که تنظیم گندم به میزان بارندگی و توسعه بارندگی در خلال فصل روش بستگی دارد و تنظیم رطوبتی را می‌توان در سال‌های خشک در مرحله کاشت بذر و در سال‌های مرتوب با نسبتاً بالا میزان بارندگی در اواخر بهار کرد.

فهرست و پیام‌های مختلف فراوانی مختلف یا برای گندم زمستان به دست آمده‌اند. آریان (۳) ضرایب حساسیت گندم زمستان به تنظیم رطوبتی در مراحل مختلف رشد در شرایط بارانگ (سالانه آبی ۶۹–۷۳) را تعیین و ارائه کرده است. آبگیر و فهرست (۸) در پروهوش که می‌توانند بررسی اثر تنظیم آب در مراحل مختلف رشد گندم زمستان انجام داده، به این تئیه ردیدند که تنظیم در مرحله خوش‌گذری، پنج‌بندی و ساقه‌دهی، بیشترین تأثیر را بر تربیت بر عامل‌های نما، سطح برگ و ارتفاع گیاه دارد. آنها هم چنین ضرایب حساسیت گندم زمستان به تنظیم آب را در مراحل مختلف رشد محاسبه و ارائه کرده‌اند. زانگ (۱۴) به ماحصول ضرایب حساسیت گندم زمستان به تنظیم رطوبتی در مراحل مختلف رشد در منطقه خیمه پرآبی، تئیه گرفته که ضرایب حساسیت مفید به‌ویژه امراد در مراحل پنج‌بندی و ساقه‌دهی دانه نشان می‌دهد که تنظیم آبی ملامت در این مراحل سودمند است. این تئیه با تحقیقات دیگر هم‌آهنگی با نتایج ندارد.

از آنجا که پروهوش‌های انجام شده بنابر به تئیه واحدی در مورد مراحل مختلف رشد گندم زمستان به تنظیم رطوبتی نشده است و با توجه به محصولات منابع آبی و همچنین اهمیت گیاه گندم به عنوان یک محصول استراتژیک، پروهوش‌ها که با تهیه تعیین توانایی تولید گیاهان گندم زمستانه (رقم ۳/۷۳/۵) از آب، میزان تأثیر بر تحقیقات پیشین و تعیین
جدول 1. خصوصیات فزاییکی لایه‌های مختلف خاک

<table>
<thead>
<tr>
<th>لایه‌های خاک در اعماق</th>
<th>وزن مخصوص ظاهری (گرم بر سانتیمتر مکعب)</th>
<th>خاک</th>
<th>(درصد ونی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.25</td>
<td>25/35</td>
<td>20/25</td>
</tr>
<tr>
<td>800</td>
<td>0.27</td>
<td>25/35</td>
<td>20/25</td>
</tr>
<tr>
<td>1200</td>
<td>0.30</td>
<td>25/35</td>
<td>20/25</td>
</tr>
</tbody>
</table>

چپ‌سینن‌آب‌دی‌، (فاصله‌ای بین راه‌های هر کرت در هر دوره زمانی در اعماقی که از این راه‌های H Esperanza، وبسیاری از این راه‌های H Esperanza، Webb}
مقایسه توانی تولید گندم زسته‌انه از آب در منطقه مشهد

تیمارهای مختلف عامل‌دردگیری شده هر تیمار (رحسپ کیلوگرم در هکتار) بر میزان حجم آب دریافتی همان تیمار (رحسپ متر مکعب در هکتار) تقسیم شد. پارامترهای مورد استفاده در تغییرات مکانیق برجهد در جدول‌ها ارائه داده شد. نتایج انددازه‌گیری رطوبت نشان داد (جدول ۴) که تنش آبی سبب شد تا نیم‌پر رطوبت در عملولی تعیین شود. به لحاظ مقایسه بین آنها، روش‌های مختلف رطوبت کنترل انجام شد. در این شرایط بعضی مقایسه نفوذ عمقی مشابه به صورت منفی محاسبه شد. بهینه مقایسه نفوذ عمقی مشابه به جر در بعضی موارد خاص پیشنهاد و در دوره‌های از فصل رشد که گیاه تحت تنش آبی بوده و همچنین مقایسه انجام شد.

الف) عملکرد دانه با آب آپارایی

\[Y_g(\text{kg/ha}) = \frac{\text{I} - 3.0}{\text{I} + 2222} \quad [\text{V}] \]

\[R^1 = \frac{\text{I}}{30} \quad P = \frac{\text{I}}{6} \]

\[Y_g(\text{kg/m}^2) = \frac{\text{I}}{\text{I} - 0.5} \quad [\text{V}] \]

\[R^1 = \frac{\text{I}}{26} \quad P = \frac{\text{I}}{22} \]

در شکل ۱ مقایسه انددازه‌گیری شده و تعیینی روابط فوک با احتمال کمتر از ۵ درصد نشان داده شده است.

ب) عملکرد دانه با تبخیر - تعرق

\[Y_g(\text{kg/ha}) = \frac{\text{I} - 3.0}{\text{I} + 2222} \quad [\text{V}] \]

\[R^1 = \frac{\text{I}}{30} \quad P = \frac{\text{I}}{6} \]

\[Y_g(\text{kg/m}^2) = \frac{\text{I}}{\text{I} - 0.5} \quad [\text{V}] \]

\[R^1 = \frac{\text{I}}{26} \quad P = \frac{\text{I}}{22} \]

در شکل ۱ مقایسه انددازه‌گیری شده و تعیینی روابط فوک با احتمال کمتر از ۵ درصد نشان داده شده است.

تعدادهای تولید در مقصود فصل رشد

؟

مقدارهای تولید در پژوهش حاضر به صورت تعداد تغییر شدند. در حالی اول، روابط عملکرد گیاه (در) واحد سطح پیش یا در واحد آب (با) میزان آب داده شده به گیاه و میزان تبخیر - تعرق گیاه تعیین شدند. برای محاسبه عملکرد در واحد آب در

۳۱
جدول 2. فاصله زمانی تیم شده، عمق ریشه دندان و میزان بارندگی در مراحل مختلف رشد گندم

<table>
<thead>
<tr>
<th>مرحله رشد</th>
<th>جوانه زنی</th>
<th>پنجه زنی</th>
<th>ساقه دهی</th>
<th>کل دهی</th>
<th>دانه بندی</th>
<th>رسیدن دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول مرحله (روز)</td>
<td>112</td>
<td>33</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>متوسط عمق ریشه (سانتی متر)</td>
<td>15</td>
<td>72</td>
<td>62</td>
<td>75</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>میزان بارندگی (سانتی متر)</td>
<td>1/15</td>
<td>7/9</td>
<td>1/95</td>
<td>3/5</td>
<td>4/5</td>
<td></td>
</tr>
</tbody>
</table>

*شامل دوره خواب زمنیاتی به مدت 95 روز

جدول 3. مقدار آب موجود تا عمق 180 سانتی متری خاک در تیمارهای انگلیسی و در انواع مختلف رشد گندم (سانتی متر)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مرحله رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

جدول 4. مقدار آب موجود در عمق توسه ریشه خاک در تیمارها و زمان‌های مختلف (سانتی متر)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مرحله رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

*اعداد پر نگ کشان دندان، میزان آب خاک در طی مراحل تحت تنش است.
جدول ۵. پارامترهای محاسبه شده در تیمارهای نه‌گاه برای تجییه روابط عملکرد با آب آبیاری و تیخر-تعرق

<table>
<thead>
<tr>
<th>Yg (kg/ha)</th>
<th>نسبت کاهش تیخر-تعرق</th>
<th>ET</th>
<th>I (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>در واحد سطح</td>
<td>در واحد آب</td>
<td>ETc (سانتی‌متر)</td>
<td>[1-ET/ETm]</td>
</tr>
<tr>
<td>۵۰</td>
<td>۹۰</td>
<td>۲۵</td>
<td>۰۶۴</td>
</tr>
<tr>
<td>۸۱</td>
<td>۹۸</td>
<td>۲۵</td>
<td>۰۴۳</td>
</tr>
<tr>
<td>۸۹</td>
<td>۹۷</td>
<td>۲۵</td>
<td>۰۱۲</td>
</tr>
<tr>
<td>۷۶</td>
<td>۹۲</td>
<td>۲۵</td>
<td>۰۱۳</td>
</tr>
<tr>
<td>۷۵</td>
<td>۹۱</td>
<td>۲۵</td>
<td>۰۱۳</td>
</tr>
<tr>
<td>۶۶</td>
<td>۹۱</td>
<td>۲۵</td>
<td>۰۱۸</td>
</tr>
<tr>
<td>۸۰</td>
<td>۹۱</td>
<td>۲۵</td>
<td>۰۱۷</td>
</tr>
<tr>
<td>۸۴</td>
<td>۹۱</td>
<td>۲۵</td>
<td>۰۱۷</td>
</tr>
<tr>
<td>۷۷</td>
<td>۹۱</td>
<td>۲۵</td>
<td>۰۲۲</td>
</tr>
<tr>
<td>۷۷</td>
<td>۹۱</td>
<td>۲۵</td>
<td>۰۲۲</td>
</tr>
</tbody>
</table>

晓 ۱. روابط عملکرد گیاه گندم زمستانه با آب آبیاری و تیخر-تعرق
جدول 6 ارائه شده. در این مراحل نیز با در نظر گرفتن مقدار
متغیرها و با استفاده از نرم افزار (7)
رگرسیون گام‌یافته شد و پس از آن نهایی متعدد روابط بین
نسبت کاهش عملکرد دانه و نسبت کاهش کل ماده خشک در
واحد سطح و در واحد آب با نسبت کاهش تبخیر - تعرق به
ترتیب مقدار روابط 16، 11 و 12 تعیین شدند. در شکل 3
مقدار انداژه‌گیری شده و تخمینی روابط فوق نشان داده شده
است. خطوط رگرسیون با احتمال 5% (روابط 9 و 11) در
واحد سطح و روابط 10 و 12 در واحد آب هستند.

<table>
<thead>
<tr>
<th>ج) نسبت کاهش عملکرد دانه با نسبت کاهش تبخیر - تعرق</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{Y_g}{Y_{g_{max}}} = \frac{Y_{t}}{Y_{t_{max}}} = 1$</td>
</tr>
<tr>
<td>$Y_{g_{max}} = \frac{1}{2}(1 - ET/ET_{max}) - 0.06 - 0.06$</td>
</tr>
<tr>
<td>($R^2 = 0.88$, $P = 0.001$)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>د) نسبت کاهش کل ماده خشک با نسبت کاهش تبخیر - تعرق</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{Y_t}{Y_{t_{max}}} = \frac{Y_{g}}{Y_{g_{max}}} = 1$</td>
</tr>
<tr>
<td>$Y_{t_{max}} = \frac{1}{2}(1 - ET/ET_{max}) - 0.06 - 0.06$</td>
</tr>
<tr>
<td>($R^2 = 0.88$, $P = 0.001$)</td>
</tr>
</tbody>
</table>

روابط به دست آمده در حال حاضر و رابطه عملکرد دانه و واحد سطح با میزان آب
داده شده گیاه در سطح تبخیر - تعرق و همچنین روابط نسبت
کاهش عملکرد دانه و نسبت کاهش کل ماده خشک در واحد
سطح با نسبت کاهش تبخیر - تعرق از ضریب تنبیه مثبتی با یابی
برخوردار است. ولی در عرض رابطه عملکرد دانه و واحد آب
از دقت کافی برخوردار نیست. این نتایج و فهرمان (2) نیز
ضرایب همبستگی پایینی را برای روابط بین عملکرد و
متغیرهای مستقل در واحد آب گزارش کرده. فرم کلی روابط
به دست آمده توسط آنها با روابط به دست آمده در این تحقیق
هم‌ارتباطی دارد.
جدول ۶ پارامترهای محاسبه شده در تیمارهای نه گانه برای تعیین روابط نسبت کاهش عملکرد دانه و کل ماده خشک با نسبت کاهش تبخیر- نترس

<table>
<thead>
<tr>
<th>تیمار</th>
<th>1-ET/ET_{max}</th>
<th>1-Y_{g/Y_{g, max}}</th>
<th>1-Y_{t/Y_{t, max}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۰۱</td>
<td>۰/۱۴۸۰</td>
<td>۰/۰۵۰۹</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۱۲۱۹</td>
<td>۰/۰۹۳۳</td>
<td>۰/۰۹۶۱</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۰۹۶۱</td>
<td>۰/۱۲۷۸</td>
<td>۰/۱۲۷۸</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۱۳۴۹۶</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۱۳۹۳۷</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
</tr>
<tr>
<td>۶</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
</tr>
<tr>
<td>۷</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
</tr>
<tr>
<td>۸</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
</tr>
<tr>
<td>۹</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
<td>۰/۱۴۹۷</td>
</tr>
</tbody>
</table>

شکل ۷ رابطه نسبت کاهش عملکرد دانه و کل ماده خشک با نسبت کاهش تبخیر- نترس
ضرایب، اختلاف زیادی مشاهده می‌شود که علت این امر نیز شاید به سبب شرایط اقیمی متغیر و همچنین اختلاف در نوع ورودی گندن باشد. نتایج که در بالا به ضرایب حساسیت به‌دست آمده می‌تواند زاگنه (14) قابل ذکر می‌باشد. این است که این مقدار از این مشخص نمی‌باشد. بنابراین نمی‌توان اظهار نظر قطعی تیم و انجام داد.

با توجه به اینکه محاسبه تبخر - تعرق واقعی در دوره‌های مختلف رشد گیاه و در تیمار‌های مختلف نیز توسط معاونتی بیان آی می‌باشد، و تبعیض دقت عامل منبع به دریافت نتایج نیست، بنابراین این امر می‌تواند در استفاده از معادله چنین (10) می‌شود. از طرف دیگر مقدار آب داده شده به گیاه در دوره‌های مختلف، ترتیب رشد به آسانی منابع شاید، همراه با نسبت طبیعی و ریزین‌پیک (11) که برای تعیین ضرایب حساسیت از مقدار آب داده شده به گیاه به چگونگی زمان تبخر - تعرق قیام استفاده می‌گردد. مورد استفاده قرار گرفت. در پژوهش حاضر از آنجا که تیمارهای آزمایشی که روانی طراحی شده بود که هنگام مقدار آی در آزمایش‌های گوناگون تبخری شده یا در مرحله مشخصی از شروع داده شده. بنابراین مقدار Wa در این مراحل مقدار صفر بوده که این امر تابع خطا در محاسبه ضرایب حساسیت می‌شود. این روش با Wa-Dp)/(Wm-Dp) در رابطه 2 و نسبت Wa/Wm که در العاصمة عوارض از تبخر - تعرق استفاده شد. در این نسبت با Wa پیامدهای آپ آپارادی و پارادیگم در ارائه Wa-Dp و Wa-Wm قرارشده، زیرا به‌ویژه از مقدار نفوذ عمقی مولکولی داخل Wa-Dp و Wa-Wm پیامدهای و در ارائه Wa-Dp و Wa-Wm به‌ویژه تیمارهای و مراحل مختلف رشد گیاه در جدول 7 ارائه شده‌اند. با استفاده از این مقادیر و رابطه 2، نیز ضرایب

دانه به طور قابل توجه مشاهده است. این تفاوت شایان تایید از شرایط اقیمی در سال‌های اندازه‌گیری تحقیقات مربوط به این تفاوت. بررسی انجام شده توسط آی‌آکس (1) و آی‌آکس (1) آن‌ها تأثیر نشان دهند که در مراحل شکسته، هر فصل گرفته یا نه در تحقیق

حارض علاوه بر در نظر گرفتن تأثیر فوق، تأثیر نشان آب به میزان 20 و 60 درصد در کل مورد تیرگی در تحقیق ضرایب

حساسیت گیاه گیاه در نظر گرفته‌اند. دیگر منظور بررسی اینکه آی‌آکس (2) تأثیری پژوهش حاضر نسبت به مطالعه انجام شده توسط آی‌آکس و توکار (2) (تأثیر (1) و آی‌آکس (1) توکار) تأثیر دو تیمار 8 و 9 در تیمارهای که در کل مورد تحقیق، تنش بودن، مصالح شنی‌که ضرایب به دست آمده در این

ضرایب تفاوت زایدی مقدار قابل توجه نداستند. این امر نشان می‌دهد که تغییرات تعداد تیمارها در تحقیق حاضر نسبت به مطالعه انجام شده توسط آی‌آکس و توکار (2) (تأثیر زیایه در تفاوت ضرایب حساسیت به‌دست آمده تارد.

مقایسه ضرایب به دست آمده در پژوهش حاضر با یافته‌های آرین (3) مشخص می‌سازد که اگر چه هر دو مطالعه، مراحل گاهی و پیوند آن دانلندی را حساسیت‌های مراحل فصل رشد نسبت به نشان آبی می‌کند، ولی نتایج زیادی بین ضرایب این دو تحقیق وجود دارد. لازم زیادی ممکن است سبب اختلاف ضرایب به دست آمده در این پژوهش با یافته‌های آرین (3) باشد. شاید یکی از دلایل اختلاف مربوط به‌طور گذشته مورد استفاده دگر دیگر میزان تنش اعمال شده در مطالعه باشد. رقم مورد استفاده توسط آرین (3) (عدل بود در حالی که رقم مواد استفاده در تحقیق حاضر (53) C با مقایسه ضرایب حساسیت به‌دست آمده توسعه هیچ و همکاران (5) و زاگنه (14) با ضرایب به‌دست آمده در این تحقیق، هم در ترتیب دوره‌های حساسیت به نشان و هم در مقایر
جدول 7 میزان عملکرد گیاه (کیلوگرم در هکتار) تبخیر- تعرق گیاه آب داده شده و آب داده شده منهای آب زهکشی (تفویح عمیق) در تیمارها و مراحل مختلف رشد گیاه

<table>
<thead>
<tr>
<th>مرحله رشد</th>
<th>عملکرد گیاه (kg/ha)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ETc₆ (Wa6) [Wa6 – Dp6]</td>
<td>ETc₅ (Wa5) [Wa5 – Dp5]</td>
</tr>
<tr>
<td>1زهکشی</td>
<td>658 (4/6)</td>
<td>638 (4/6)</td>
</tr>
<tr>
<td>2زهکشی</td>
<td>458 (4/6)</td>
<td>458 (4/6)</td>
</tr>
<tr>
<td>3زهکشی</td>
<td>358 (4/6)</td>
<td>358 (4/6)</td>
</tr>
<tr>
<td>4زهکشی</td>
<td>258 (4/6)</td>
<td>258 (4/6)</td>
</tr>
<tr>
<td>5زهکشی</td>
<td>158 (4/6)</td>
<td>158 (4/6)</td>
</tr>
<tr>
<td>6زهکشی</td>
<td>558 (4/6)</td>
<td>558 (4/6)</td>
</tr>
</tbody>
</table>
جدول 8 مقایسه ضایع حساسیت گندم زمستانه به‌دست آمده در مراحل مختلف رشد با تایپ سایر مطالعات انجام شده

<table>
<thead>
<tr>
<th>مرحله</th>
<th>ضایع حساسیت</th>
<th>گیاهان زنی</th>
<th>پنجه زنی</th>
<th>ساقه دهی</th>
<th>کل دهی</th>
<th>دانه بندی</th>
<th>رسیدن دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>رابطه ۲ (تیریزی و ریزفزکی)</td>
<td>آب‌خراب و قهرمان (۲) حاضر</td>
<td>۰/۱۳۷</td>
<td>۰/۱۶۴</td>
<td>۰/۱۹۱</td>
<td>۰/۲۶۷</td>
<td>۰/۲۵۴</td>
<td>۰/۱۸۷</td>
</tr>
<tr>
<td>رابطه ۱ (جنین)</td>
<td>آب‌خراب و قهرمان (۲) حاضر</td>
<td>۰/۱۵۸</td>
<td>۰/۲۰۳</td>
<td>۰/۲۴۱</td>
<td>۰/۳۳۱</td>
<td>۰/۲۹۴</td>
<td></td>
</tr>
</tbody>
</table>
مقایسه توانایی تولید گندم زمستانی از آب در منطقه مشهد

تقویت زیادی دیده می‌شود.
برای تعیین ضریب حساسیت محصول (Kp) از رابطه 4 (راو و همکاران 17) استفاده شد. در این جا نیز با توجه به بیشتر بودن تعداد عوامل نسبت به تعداد محجوبات، برای تعیین ضرایب LINGO از نرم‌افزار Kp به دست‌آمده از طریق رابطه 4 در جدول 9 ارائه شدند. آب‌هایی (1) نیز ضرایب Kp را برای رقم مورد استفاده در این پژوهش تعیین کرد است. ضرایب Kp به دست‌آمده توسط نیویز که همان که به دست‌آمده از طریق رابطه 4 (1) و ضرایب Kp در پژوهش حاضر به این ترتیب می‌رسیم که بین مقادیر ضرایب Kp به دست‌آمده و هم کلیه گشته شد. شاید ناشی از تفاوت شرایط اقلیمی و اخلاق میزان آبی در پژوهش حاضر نسبت به مطالعه انجام شده توسط آب‌هایی (1) باشد. با مقایسه ضرایب Kp به دست‌آمده در پژوهش حاضر با مقادیر پیش‌نهادی دوربین می‌توانیم است. یک انتخاب صاحبیت واریزه مورد استفاده

متای مورد استفاده

1. آب‌هایی، ح. و. 1381. تعیین ضرایب حساسیت گیاه گندم زمستانی به ترس سطحی، پایان نامه کارشناسی ارشد آب‌هایی، دانشگاه کرمان.

2. کشاورزی، دانشگاه فردوسی مشهد.

3. آب‌هایی، ح. و. 1384. تغییر ضرایب حساسیت گیاه گندم زمستانی به ترس سطحی، پژوهش‌های زراعت ایران (11): 123-123.

4. آب‌هایی، ح. و. 1371. بررسی برد کامپیوتری مدیریت و برنامه‌برداری برای ابزار. پایان نامه کارشناسی ارشد.

5. دانشگاه کشاورزی، دانشگاه مشهد.

