اثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتعی سبزکوه

استان چهارمحال و بختیاری

فایز رئیسی، اسماعیل اسدی و جهانگیر محمدی

چکیده
در اکوسیستم‌های مرتعی، چرای مفرط باعث تغییرات در پویایی کربن پدیده‌گذاری می‌کند. هدف این پژوهش بررسی کیفیت شیمیایی پتاونی سبزکوه غلبه مرتعی و ارتباط آن با پویایی کربن لاشبرگ تحت مدیریت‌های مختلف جریا و فرق در مراتع سبزکوه می‌باشد. این پژوهش در پنج مقطع سبزکوه (آستان چهارمحال و بختیاری) صورت گرفت. نمونه‌برداری از گیاهان مرتعی غلبه شامل ارگیپاروون (Agropyron intermedium) و گنج (Hordeum bulbosum) از یک منطقه تحت فرق جریا بود. نتایج نشان داد که در برابر مقدار گرفتی در دارای نشان روند تجزیه این پدیده یکی از اصلی‌ترین تغییرات را در پویایی کربن و تجربه‌ای کوچکی وجود دارد. در این بین، نتایج نشان می‌دهد که این روند نشان می‌دهد که در طول زمان، بیش از یک سال و شاخص‌های کیفیت نسبت به گونه‌های مختلف بهتر می‌باشد.
مقدمه

مراجع یکی از منابع مهم تولید علوفه به شمار می‌رود (۳). عدم مراجع دیگر تولید علوفه به شمار می‌رود (۹). عدم تعادل بین ظرفیت مصرف و تعداد دام از یک طرف و چرایی مفرط و پوسته از طرف دیگر موجب ایجاد تغییرات زیادی در پوسته گیاهی و خصوصاً علوفه‌گوناگون خاک در مقياس اکوسیستمی می‌شود (۱). یکی از مکانیسم‌های اصلی چرا چرب تولید گردد، ایجاد تغییرات ملونس در بعضی خصوصیات خاک می‌باشد. بر اساس تایخ ثقافتهای انگلیسی‌های مختلف مربوط، اولین اثر مستقیم و بارز جای‌پی که مهم و مسئول کاهش می‌باشد، به تغییرات علوفه‌گوناگون و به نتیجه‌گیری از آن تاثیر مentence از چرایی علوفه رانده می‌شود. دو نیز گذشته حاکی از این است که چرایی مفرط و مستمر دیگر در رنگ و تغییرات علوفه‌گوناگون ایجاد می‌کند. در اینجا بررسی می‌گردد که چرایی علوفه‌گوناگون و عناصر علوفه‌گوناگون، افزایش فشرده‌کردن توده‌های اکوسیستمی را نیز می‌تواند. علوفه در حالی یکی از مراحل ابتدایی در اکوسیستم‌ها باشد که به نتیجه‌گیری پخش می‌شود. ترکیب و ترکیب شیمیایی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن ترکیبی‌های اکوسیستمی مورد نیاز در عناصر خاک و افزایش فشرده‌کردن T

مواد آلی نقش بسیار مهمی بر مقدار و قابلیت جذب عناصر غذایی از امکان به وجود و دانستن ممکن برداشت بوشک‌گیاهی توسط دام. باعث کاهش ورود بقایای گیاهی به خاک و در نتیجه تولید میزان عناصر غذایی آن می‌شود. کاهش سرعت ورود به دلیل مواد آلی خاک، که تا انجام ضرر به تناسب نیروαιز، سفر و گوگرد در خاک مراتب طبیعی به شمار می‌آید را تحت تأثیر قرار می‌دهد (۶-۱۷ و ۱۸). ممکن است بر خاک داشته باشند، برداشت و خروج بوشک‌گیاهی از اکوسیستم و به دنبال آن آثار منفی بر چرایی عناصر غذایی و قابلیت جذب آنها می‌باشد (۶، ۹ و ۱۹). ایجاد هرگونه اختلال در چرایی عناصر غذایی خاک ممکن است در دراز مدت منجر به کاهش باروری خاک و در نتیجه تخریب آن شود (۸). تاپی بررسی‌های گذشته حاکی از این است که چرایی مفرط و مستمر در پی آن برداشت کامل بوشک‌گیاهی توسط دام، باعث افزایش سرعت روان آب (runoff) کاهش کربن و عناصر غذایی خاک و افزایش فشرده‌کردن تراکم آن می‌شود که پیامدهای تولیدی افزایش سرعت فرسایش خاک است (۷، ۹ و ۱۰). یکی از روش‌های ایجاد انگل کردن و عناصر غذایی دیگر خاک است. درخواست سطحی آن است که پس از سال‌های متمادی، پایداری خاک و به دنبال آن تعادل و پایداری اکوسیستمی را نیز می‌تواند. از چرایی دیگر چرایی به روش حاصل‌شده خاکی مرتعی از محدودات می‌سازد. در این نوع خاک‌ها مصرف کودهای شیمیایی برای تأمین عناصر غذایی لازم برای رشد و نمو گیاه خبیر کمیاب آنها ممکن نمی‌باشد و عملکرد عناصر غذایی به خاک بسیار اندک است (۵). علاوه بر این، اثر مستقیم بر طرف مختلف (شامل خروج و توزیع عناصر غذایی، تولید فضول دامی، زاکوکي و تراکم خاک، به هم خوردهگی لایه سطحی خاک) خصوصیات شیمیایی، فیزیکی و بیولوژیک خاک را نشان می‌دهد تحت تأثیر قرار می‌دهد (۴).
مشکل شده است. این خاک شامل ۲۴ درصد رس، ۳۵ درصد سیلت و ۲۳ درصد سن باشند. دامنه pH خاک‌های طبیعی و صنعتی ضعیف و بین ۷ و ۵ در نوسان است. خاک مشخصه به طور متوسطی دارد جرم مشخص معنادار برای انتقال ۱/۱۱ گرم بر ساعت متوسط و میزان آبکی از ۱۰ نا ۴ درصد در افق‌های روشن و پیش از ۵ در صد در افق‌های زیرین متغیر است (جدول ۱).

حدود ۴۰۰ هکتار از این مرتعات در قالب طرح حفاظت و
احیای مرتع به مدت ۱۵ سال (از سال ۱۳۶۴) به وسیله سیم
خارات محصور و تحت فقر کامل بوده است. بر اساس نوع،
نوع و ترکیب پوشش گیاهی، منطقه فقر به دو ناحیه
کوکچک تکمیل گردیده. ناحیه اول با پوشش علفی غلافه و
ناحیه دوم با پوشش درختی غلافه، که صاحب نزدیک ترین
حدود ۱۰ هکتار می‌باشد. ناحیه چرا نیز با مساحت حدود
۱۰ هکتار که در فصل‌های ۲ کیلومتری ناحیه فقر قرار دارد با شرایط
نیازی به بی‌کاهان مناسبات و در ناحیه چرا تخریب و با توسط دام تغذیه
و نیز و نهایاً گیاهان درختی و پوشش علفی خشک مانند خوشک
(دالنیه) Daphne mirconora Royle، (دانه) منطقه و غبار (آکرا گوستن با تعداد نام مشخص و متغیر) ادامه
در عرصه چرا در حال تردد و چرا هستند. فعالیت کشاورزی در
متن‌های مورد مطالعه نبود صورت می‌پذیرد.
در اوایل باری سال ۱۳۶۹، میزان پایداری تولید شده در هر
دو ناحیه فقر با استفاده از کوارت‌های ۱ اثر در قرار
تصادفی انتقال طیفی شد. در هر ناحیه کلا گیاهان علفی موجود
در ۱۵ کوارت کف بر در گیاه‌های شاینی با آرامشگاه
منطق گردید. سپس ضمن فکرکی گونه‌های مرتع، و نهایت
هر کدام محاسبه شد. پشتیبانی از پایداری گونه‌های غلاب برای
ادازه‌گیری نیز بستگی به تعداد و پایدار میزان استفاده وار. گرفت نمونه‌هایی از سه گیاه مرتعی غلاب (که بقایای زیبای
را به‌خاک اضافه می‌کنند) شامل اگروپایرون

مطلاعاتی انجام نشده است. وارد این‌جا، هدف از این بررسی
یک کیفیت‌وار کوارت گیاهی تولید شده و ارتباط آن با سرعت
تجزیه بقایای سه گونه مرتعی تحت شرایط طبیعی در ارتفاعات
زاگرس (در منطقه مرتع) به‌خاطر این مرتعات از بالاتر
تا کنون تحت فقر دائم بوده است و (۲) ارتباط‌های بری
روپه و دائم بر سرعت تجزیه بقایای گیاهی می‌باشد.

مواد و روش‌ها

منطقه مورد بررسی در بخشی از مرتعات سیستان در ارتفاعات
زاگرس مرتعی در استان چهارمحال و بختیاری قرار دارد. این
منطقه در مرکز فکری استان و در فالسه ۱۲۰ کیلومتری جنوب
شرقي شهرکرد (مرکز استان) واقع شده است. منطقه کوهستانی
و ارتفاع متوسط ۲۰۰۰ متر بالاتر از سطح دریا و میانگین
بارندگی ۸۵۰ میلی‌متر در سال است. متوسط درجه حرارت
سالانه ۷ درجه سانتی‌گراد است که حداکثر مطلق آن در تیر
ماه و حداقل مطلق درجه حرارت در ماه گرماش شده است.
(۱). از نظر زراعتی، منطقه در پیک نزدیک قرار دارد و
بریدگی و صحرایی فراوان باعث ایجاد سه‌تیمی به چپ‌ها
شیب‌های نسبتاً تند گردیده است. توزیع عمومی منطقه مورد
مطالعه جویی است. ناحیه مرتع مطالعه پوششی از گیاهان
علیفی، بوته‌ای، درختچه‌ای و درختی است (۱). گیاهان غلاب
علیفی شامل:
Agropityer intermedium (Host) P. Beauv., Hordeum bulbosum L., Juncus stemphylia L., Bromus tectorum Boiss., Bromus tectorum L., Bromus daunthiae Trin., Poa bulbosa L.

و گونه‌های درختی شامل:
Acer Persicum A. Pojark, Fraxinus rotundifolia Mill, Crataegus azarolus L., Juniperus polycarpos C.Koch

و گونه‌های درختی شامل:
Daphne mirconora Royle., Astragalus adsendens Boiss & Havsskn., Amygdalus orientalis DUH.

است.

خاک منطقه از سازند سروی با جنس مار و آهک که مربوط
به تشکیلات زمین‌شناسی دوران دوم، به ویژه کرستنی، می‌باشد
جدول 1. بخشی از مشخصات شیمیایی و فیزیکی خاک‌های مرطوب منطقه سیزگو، جنوب پیکز

<table>
<thead>
<tr>
<th>رس سیلت شن</th>
<th>بافت خاک (%)</th>
<th>C/N (-)</th>
<th>K (mg kg⁻¹)</th>
<th>P (mg kg⁻¹)</th>
<th>N (%)</th>
<th>C (%)</th>
<th>pH (-)</th>
<th>جرم مخصوص ظاهری (g cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>35</td>
<td>22</td>
<td>252.3</td>
<td>52.2</td>
<td>0.15</td>
<td>0.2</td>
<td>7.5</td>
<td>0.11</td>
</tr>
</tbody>
</table>

با آزمون ۲ در سطح احتمال ۰/۰۵ مورد مقایسه قرار گرفتند. سپس مقایسه بین وسایل بهم‌ماتنی و ضریب تجربه با توجه به نتایج نیاز به کمک جدول تجزیه واریانس (آزمون F) و مقایسه میانگین‌ها در سطح ۰/۰۵ با آزمون استوختگ- نیمون-کرنل و (Student-Newman-Keuls) انجام شد.

نتایج و بحث

توزیع پیش‌باز

میزان توزیع پیش‌باز، نشانه از توزیع کروی آماری است. بنابراین به نظر می‌رسد توزیع C/N, K, P, N 및 C در این آزمایش، میانگین‌ها در سطح ۰/۰۵ با آزمون استوختگ- نیمون-کرنل و (Student-Newman-Keuls) است. بنابراین به نظر می‌رسد توزیع C/N, K, P, N 및 C در این آزمایش، میانگین‌ها در سطح ۰/۰۵ با آزمون استوختگ- نیمون-کرنل و (Student-Newman-Keuls) است.

برای اجرای آزمایش گزارش ساله آماده گردید. ۱۲ گیاه از هر گونه گیاهی در ناحیه فرق با یک سهولی ناحیه فرق با یک سهولی درختی و ناحیه چرا در عمق ۱۵ cm خاک در مهر ۱۳۷۹ در نقطه مختلف سه ناحیه دفن (Incubation). پس از، ۶ تا ۸ روز توزیع گیاهان هر سه ناحیه در دمای ±۲۰ درجه سانتی‌گراد (Remaining mass) توزین گردیدند. بر اساس وزن باقیمانده، سرعت تجزیه این سه گونه در هر ناحیه با استفاده از معادله زیر محاسبه گردید (۴۳).

\[RM = \frac{M_i}{M_f} \times 100 \]

در این فرمول، \(M_i \) وزن باقیمانده در صد، \(M_f \) وزن اصلی گیاه (کرم) در زمان t و \(k \) با استفاده از معادله زیر محاسبه شد (۴۳).

\[\ln\left(\frac{M_i}{M_f}\right) = -kt \]

این توزیع نشان می‌دهد که در شرایط فرق، وجود پوشش
جدول ۲. میزان بوماس تولید شده (g m⁻³) توسط تعدادی از گونه‌های مرتعی در منطقه فرق سیرکو

<table>
<thead>
<tr>
<th>گونه مرتعی</th>
<th>فرق با پوشش</th>
<th>فرق با پوشش</th>
<th>درختی</th>
<th>علفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron intermedium</td>
<td>1/98</td>
<td>1/98</td>
<td>4/29</td>
<td>4/29</td>
</tr>
<tr>
<td>Hordeum bulbosum</td>
<td>1/98</td>
<td>1/98</td>
<td>4/29</td>
<td>4/29</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>1/35</td>
<td>1/35</td>
<td>4/55</td>
<td>4/55</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>1/20</td>
<td>1/20</td>
<td>1/50</td>
<td>1/50</td>
</tr>
<tr>
<td>Juncus stenophylla</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>1/40</td>
<td>1/40</td>
<td>1/40</td>
<td>1/40</td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>1/50</td>
<td>1/50</td>
<td>1/50</td>
<td>1/50</td>
</tr>
</tbody>
</table>

جدول ۳. نتایج تجربه شیمیایی مربوط به تعدادی از گونه‌های مرتعی در حال رشد را در ناحیه قرق نشان می‌دهد. نتایج این
جدول ۳ ترکیب شیمیایی لاشه‌گرگونه‌های مختلف گیاهان مرتبط در ناحیه فرق ناحیه در سیر کوه
(تغییرات بین غلظت عناصر غذایی اندازه‌گیری شده در لاشه‌گرگونه‌های مربوط معنی‌داری نبود)

<table>
<thead>
<tr>
<th>فرق با پوشش علفی</th>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>P</th>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>(–)</td>
<td>1/19</td>
<td>0/55</td>
<td>0/133</td>
<td>1/15</td>
<td>0/55</td>
<td>0/127</td>
<td></td>
</tr>
<tr>
<td>24/1</td>
<td>1/19</td>
<td>0/45</td>
<td>0/187</td>
<td>0/167</td>
<td>0/51</td>
<td>0/93</td>
<td>0/156</td>
<td></td>
</tr>
<tr>
<td>34/7</td>
<td>1/11</td>
<td>0/42</td>
<td>0/165</td>
<td>0/175</td>
<td>0/52</td>
<td>0/91</td>
<td>0/140</td>
<td></td>
</tr>
<tr>
<td>33/6</td>
<td>1/49</td>
<td>0/82</td>
<td>0/210</td>
<td>0/187</td>
<td>0/71</td>
<td>0/132</td>
<td>0/133</td>
<td></td>
</tr>
<tr>
<td>28/1</td>
<td>1/78</td>
<td>0/42</td>
<td>0/215</td>
<td>0/187</td>
<td>0/2</td>
<td>0/5</td>
<td>0/20</td>
<td></td>
</tr>
<tr>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

کونه مرتبط: Agropyron intermedium

Hordeum bulbosum

Medicago sativa

Juncus stenophylla

Poa bulbosa

Bromus tomentellus

Bromus tectorum

نتایج تجزیه لاشه‌گرگونه‌های مختلف در ناحیه در سیر کوه

ترکیب شیمیایی لاشه‌گرگونه‌های مختلف گیاهان مرتبط در ناحیه در سیر کوه، موجب تغییراتی در غلظت عناصر غذایی اندازه‌گیری شده در سیر کوه می‌شود. البته این تغییرات بین غلظت عناصر غذایی اندازه‌گیری شده در لاشه‌گرگونه‌های مربوط معنی‌داری نبود.

البته این تغییرات، موجب اقتصادی‌تر شدن سیستم نباتی و بهبود بهره‌برداری از سیر کوه می‌شود. البته این تغییرات بین غلظت عناصر غذایی اندازه‌گیری شده در لاشه‌گرگونه‌های مربوط معنی‌داری نبود.

از لاشه‌گرگونه‌های مختلف، بهترین استفاده در سیر کوه موجب تغییراتی در غلظت عناصر غذایی اندازه‌گیری شده در سیر کوه می‌شود.

نتایج تجزیه لاشه‌گرگونه‌های مختلف در ناحیه در سیر کوه

ترکیب شیمیایی لاشه‌گرگونه‌های مختلف گیاهان مرتبط در ناحیه در سیر کوه، موجب تغییراتی در غلظت عناصر غذایی اندازه‌گیری شده در سیر کوه می‌شود. البته این تغییرات بین غلظت عناصر غذایی اندازه‌گیری شده در لاشه‌گرگونه‌های مربوط معنی‌داری نبود.

البته این تغییرات، موجب اقتصادی‌تر شدن سیستم نباتی و بهبود بهره‌برداری از سیر کوه می‌شود. البته این تغییرات بین غلظت عناصر غذایی اندازه‌گیری شده در لاشه‌گرگونه‌های مربوط معنی‌داری نبود.
جدول 2. نتایج جدول تجزیه واریانس و مقایسه میانگین‌های (SEM) در صد وزن بالایی مانده لاشه‌رگ

<table>
<thead>
<tr>
<th>وزن بالایی مانده</th>
<th>زمان تجزیه</th>
<th>میانگین</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبکوپایرون</td>
<td>6 ماه</td>
<td>7/88</td>
<td>1/29</td>
<td>0/895</td>
</tr>
<tr>
<td>جو پیازدار</td>
<td>6 ماه</td>
<td>4/20</td>
<td>2/91</td>
<td>0/895</td>
</tr>
<tr>
<td>جکن</td>
<td>6 ماه</td>
<td>0/09</td>
<td>2/13</td>
<td>0/467</td>
</tr>
<tr>
<td>آبکوپایرون</td>
<td>9 ماه</td>
<td>2/77</td>
<td>0/024</td>
<td>0/012</td>
</tr>
<tr>
<td>جو پیازدار</td>
<td>9 ماه</td>
<td>0/84</td>
<td>0/176</td>
<td>0/319</td>
</tr>
<tr>
<td>جکن</td>
<td>9 ماه</td>
<td>0/78</td>
<td>0/84</td>
<td>0/437</td>
</tr>
<tr>
<td>آبکوپایرون</td>
<td>12 ماه</td>
<td>0/98</td>
<td>0/148</td>
<td>0/011</td>
</tr>
<tr>
<td>جو پیازدار</td>
<td>12 ماه</td>
<td>0/01</td>
<td>0/94</td>
<td>0/011</td>
</tr>
<tr>
<td>جکن</td>
<td>12 ماه</td>
<td>0/27</td>
<td><0/0001</td>
<td>0/011</td>
</tr>
</tbody>
</table>

نکات:
- برای هر جدول تجزیه و در هر ستون اعداد نتایج دارای خروج مشابه فاقد اختلاف معنی‌دار (در سطح 5%) می‌باشد.
- عواملی که در OC به طور کلی این نتایج نشان می‌دهند که اثر مدیریت مرنع (چرا در مقابل قرف) بر سرعت تجزیه یا گیاهی ثابت نیست و عموماً چرا مصرف حریق بر پریپایی و تجزیه لاشه‌رگ گیاه ندارد. نتایج این بررسی با نتایج به‌دست آمده از بررسی شریف و همکاران (1991) و کوویکیلی و همکاران (2001) متفاوت می‌باشد.
- آنها مشاهده نمودند که ارگچه اثر چرا بر تجزیه مواد آلی بستگی به شدت آن دارد ولی عموماً نمود که می‌باشد بنابراین جدول تجزیه لاشه‌رگ در تیمار فرح و چرا سنجی و چرا ندارد. معمولاً در اثر چرا کود دامی شامل فضائل و ادار به سطح خاک اختلاف می‌شود که به علت وجود تکنیک‌های سهل تجزیه در این مواد سرعت تجزیه ماده آئی خاک با پیوست افزایش یابد (40 و 18). برای مثال در یک مطالعه چند ساله در مراتع ویومینگ
شکل ۱. مقایسه روند تجزیه (٪ وزن بالا مانده) سه گونه مربوطی (جو پیازدار HB، آگروپاترون AI و جگن JU) در ناحیه فرق با پوشش علفی (A)، فرق با پوشش درختی (B) و چرای سنگین (C) در منطقه سیزکوه

Downloaded from jcpp.iut.ac.ir at 21:54 IRST on Sunday January 10th 2021
جدول 5. میانگین‌ها (SEM) ضریب تابی تجزیه لاشیرگه سه گونه مربوط در یک سال در شرایط طبیعی

<table>
<thead>
<tr>
<th>گونه</th>
<th>ضریب تابی</th>
<th>ناحیه منعطف (می stands)</th>
<th>CCI پیرامون</th>
</tr>
</thead>
<tbody>
<tr>
<td>آکروپارون</td>
<td>0/086</td>
<td>0/092</td>
<td>3/34</td>
</tr>
<tr>
<td>فرق با پوشش علیقی</td>
<td>0/088</td>
<td>0/095</td>
<td>3/34</td>
</tr>
<tr>
<td>جوان پیازدار</td>
<td>0/088</td>
<td>0/156</td>
<td>6/15</td>
</tr>
<tr>
<td>آکروپارون</td>
<td>0/096</td>
<td>0/095</td>
<td>3/34</td>
</tr>
<tr>
<td>فرق با پوشش درختی</td>
<td>0/095</td>
<td>0/111</td>
<td>3/34</td>
</tr>
<tr>
<td>جوان پیازدار</td>
<td>0/087</td>
<td>0/351</td>
<td>3/71</td>
</tr>
<tr>
<td>آکروپارون</td>
<td>0/031</td>
<td>0/091</td>
<td>1/76</td>
</tr>
<tr>
<td>جوان سهگان</td>
<td>0/109</td>
<td>0/108</td>
<td>0/03</td>
</tr>
<tr>
<td>آکروپارون</td>
<td>0/096</td>
<td>0/160</td>
<td>1/51</td>
</tr>
</tbody>
</table>

برای هر ناحیه و در ستون اعدادی که دارای خروج مشابه هستند، اختلاف معنی‌دار (در سطح 0/05) نیست.

لاشیرگ جوان نتیجه یکسان تجزیه می‌شود (جدول 5). شکل 2)

نتیجه گیری

اگرچه قرن 15 ساله برای طراحی سیستم منجر به بازگشت مواد گیاهی تولید شده به سیستم برای کاهش می‌شود و در این ۱۵ ساله برای تجزیه قدرت کاهش یافته است، اما همچنین برای ایجاد شرایط مساعد و بهبود خصوصیات مختلف خاک که به نوع سرعت تجزیه گیاهی و ماهی آلی خاک را وسایل مهندسی، موانع طولانی مدت است با این حال، شرایط خاک و وضعیت تولیدگری منطقه و نیز تغییرات زمین و مکانی ویژگی‌های

89
خلاک، بوپایی و کیفیت بازمانده گیاهی را پیچیده نموده است. به طور خلاصه نتایج این بررسی نشان می‌دهد سرعت تجویز بقایای گیاه اگرپرور و جگن سرعتی‌تر از سرعت تجویز بقایای جو پایدار است. بنابراین، اختلاف موجود در تجربه‌پذیری این سه گونه مربوط ممکن است باعث ایجاد تغییرات در بوپایی مواد آلی خاک و عناصر غذایی آن، به ویژه سیرپوز، شود.

برای بررسی ترکیب تبادل کاتیونی و توزیع عناصر در نیمیخت خاک، و توزیع تردید بیولوژیک خاک (مائل ترکیب شیمیایی ماده آلی خاک بوپایی بوماس و جمعیت میکروبی، نغرهای نیترات در خاک، فعالیت ریشه و روابط همزیستی گیاه-میکروب و حتی فعالیت‌های آنزیمی) برای درک بهتر اثر فرق (چرا) بر خاک و گیاه صورت پذیرد.

برای این منظور نشانگر گروه‌های تخصصی بین رشته‌های و مبان رشته‌ای امری اجتناب‌ناپذیر است.

سیاستگرایی

بدین وسیله از معاونت پژوهشی دانشگاه شهید رجایی که اعتبار مالی از این برآید انجام این بررسی را فراهم نمودند تنشک و فردامی می‌شورد. هم چنین از همکاران آقای مهندس قاضی و آقای شریف بور که در کلیه مرحله‌های سرمایه‌گذاری و آزمایش‌ها همراه در این بررسی و انجام آزمایش‌ها سوخته شرکت‌کرده‌اند. صادق پور، سیاستگرایی می‌شورد.