اثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتفع سیزکوه

استان چهارمحال و بختیاری

فايز رئيسي 1, اسامه عودي 2 و حجاجرد محمدي 1

چکیده

در اکوسیستم‌های مرتفع، چرای مفرط باعث تغییرات در پویایی کربن یا گیاهی و ماده آلی خاک می‌شود. هدف این پژوهش بررسی کیفیت شیمیایی پویایی سیزکوهی و یا ارتباط آن با پویایی کربن لاشبرگ تحت مدل‌های مختلف چرا و فرق در مراتع سیزکوه می‌باشد. این بررسی در مراتع مشترک سیزکوهی (استان چهارمحال و بختیاری) صورت گرفت. نمونه برداری از گیاهان مرتفع غربی از یک منطقه تحت فرق (Juncus stenophylla) و چگن (Agropyron intermedium) شامل گونه‌پروران (Agropyron intermedium) 15 ساله برداشت و مقدار نیتروژن، فسفر و تانسیم در نمونه‌ها اندازه‌گیری شد. علاوه بر این، سرعت تجزیه لاشبرگ گونه‌ها پس از یک سال خواباندن تحت شرایط طبیعی تعیین گردید. مقدار متوسط نیتروژن در لاشبرگ آگرو‌پایرون، چگن و چو پایدار به ترتیب 7.37/13 و C/N برای گونه‌های (C/N) در 39/6 درصد بود. نتایج آگرو‌پایرون در نسبت 50% کربن در ماده خشک، نسبت کربن به نیتروژن (C/N) آگرو‌پایرون، چگن و چو پایدار به ترتیب 2/37/37/37 و 1/37/1/37 و 1/37/1/37 درصد نیتروژن، نیتروژن به ترتیب حاوی مقدار نیتروژن در لاشبرگ گونه‌ها بین ارتفاع 50% و 13 درصد بود. نتایج شیمیایی و سطح معنی‌داری نشان می‌دهد که اختلاف نسبت C/N بین لاشبرگ گیاهی و کیفیت آن به روی تجزیه پذیری به مراتب ملموس تر از اثر چرا (فرق) است.

واژه‌های کلیدی: چرای، زنده‌مرنگ، تجزیه‌پذیری لاشبرگ، کیفیت لاشبرگ، سیزکوه، چهارمحال و بختیاری

1. به ترتیب استادیار و دانشیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه شهید کروب
2. استادیار مرنگ و آب‌پذیری، دانشکده کشاورزی، دانشگاه شهید کروب
مواد آلی نقش بسیار مهمی بر مقدار و قابلیت جذب عناصر غذایی لازم برای موجودات هرزتر خاک و نباتات دارند. معمولاً برداشت بیشتر گیاهی توسط دام، باعث کاهش ورود بقایای گیاهی به خاک و در نتیجه تولید میزان عناصر غذایی آن می‌شود. کاهش سرعت ورود این مواد به خاک، یکی از نتایج نتایج نشان، فسفر و گیاه‌های در خاک مرحله طیفی به شمار می‌آید. با توجه به تحقیقاتی که انجام شده است (7 и 10)، می‌توان یک محیط‌زیستی که اکوسیستم غذا را تغییراتی سریع و متغیر، اولین اثر مستقبلاً و بارز در حیات جوي و مسئولیت که ممکن است بر خاک داشته باشد، برداشت و خروج بیشتر گیاهی از اکوسیستم و به دنبال آن آثار منفی بر خرید عناصر غذایی و قابلیت جذب آلی آنها را ایجاد می‌کند. محققین از انتقالهای در خرید غذایی خاک ممکن است در دراز مدت منجر به کاهش باروری خاک و در نتیجه تخریب آن شود (8). تاکنون بیش از گذشته حالی از این امر وقتی یکی از اکوسیستم مرحله و سرعت دام غذایی توسط در اکوسیستم مرحله سرعت دام غذایی، اکوسیستم مرحله، مراکز غذایی و افزایش فشارگذاری و تراکم آن می‌کند که پیامد نشان می‌دهد. این به دلیل افزایش سرعت و تغییرات در اکوسیستم، به دنبال آن تعداد و ضرایبی اکوسیستم را تغییر می‌دهد. از طرف دیگر، چرا باید روندهای اکوسیستم مرحله را محاسبه کنیم؟ به گونه‌ای کهمواد آلی نقش بسیار مهمی بر مقدار و قابلیت جذب عناصر غذایی لازم برای موجودات هرزتر خاک و نباتات دارند. معمولاً برداشت بیشتر گیاهی توسط دام، باعث کاهش ورود بقایای گیاهی به خاک و در نتیجه تولید میزان عناصر غذایی آن می‌شود. کاهش سرعت ورود این مواد به خاک، یکی از نتایج نتایج نشان، فسفر و گیاه‌های در خاک مرحله طیفی به شمار می‌آید. با توجه به تحقیقاتی که انجام شده است (7 и 10)، می‌توان یک محیط‌زیستی که اکوسیستم غذا را تغییراتی سریع و متغیر، اولین اثر مستقبلاً و بارز در حیات جوي و مسئولیت که ممکن است بر خاک داشته باشد، برداشت و خروج بیشتر گیاهی از اکوسیستم و به دنبال آن آثار منفی بر خرید عناصر غذایی و قابلیت جذب آلی آنها را ایجاد می‌کند. محققین از انتقالهای در خرید غذایی خاک ممکن است در دراز مدت منجر به کاهش باروری خاک و در نتیجه تخریب آن شود (8). تاکنون بیش از گذشته حالی از این امر وقتی یکی از اکوسیستم مرحله و سرعت دام غذایی توسط در اکوسیستم مرحله سرعت دام غذایی، اکوسیستم مرحله، مراکز غذایی و افزایش فشارگذاری و تراکم آن می‌کند که پیامد نشان می‌دهد. این به دلیل افزایش سرعت و تغییرات در اکوسیستم، به دنبال آن تعداد و ضرایبی اکوسیستم را تغییر می‌دهد. از طرف دیگر، چرا باید روندهای اکوسیستم مرحله را محاسبه کنیم؟ به گونه‌ای که
مطالعاتی انجام نشده است. بنابراین، هدف از این بررسی 1) بررسی کیفیت مواد گیاهی تولید شده و ارتباط آن با سرعت تجزیه پایه‌ای سوئس مرتبط تحت شرایط طبیعی در ارتفاعات زاغرس (در منطقه سیرکو) به کشف از این مراتع از سال 1364 تا 1366 تحت فرآیند دانسته است و 2) ارتباطی بین رویه و دائم بسیار تجزیه پایه‌ای گیاهی می‌باشد.

مواد و روش‌ها

مطالعه مورد بررسی در 4 مرتاد سیرکو در ارتفاعات زاغرس مرکزی از دانشگاه خاصه مالکیون به دست اکتشاف و 4) این همگام با شناسی نیز تا گردیده است. شیب عمومی منطقه مورد مطالعه جنوبی است. ناحیه مورد مطالعه یکی از گیاهان علفی، بوته‌ای، درختچه‌ای و درختی است (1). گیاهان بالغ علفی شامل Agropyron intermedium (Host) P. Beauv. Hordeum bulbosum L., Juncus stenophylla L., Bromus tomentellus Boiss., Bromus tectorum L., Bromus dactyloides Trin., Poa bulbosa L.

است

خاک منطقه از سازند سروک با جنس مارن و آنکه که مربوط به تشکیلات زمین شناسی دوران دوم، به ویژه کرانه، می‌باشد.
جدول 1: بعضی از مشخصات شیمیایی و فیزیکی خاک‌های مرطوب منطقه سبزگرود

<table>
<thead>
<tr>
<th>بهترین خاک (%)</th>
<th>C/N (+)</th>
<th>K (mg kg⁻¹)</th>
<th>P (mg kg⁻¹)</th>
<th>N (%)</th>
<th>C (%)</th>
<th>pH (-)</th>
<th>جرم مخصوص ظاهری (g cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس سیلتی 5</td>
<td>23</td>
<td>35</td>
<td>30</td>
<td>252.3</td>
<td>52.4</td>
<td>7/5</td>
<td>1/11</td>
</tr>
</tbody>
</table>

با آزمون 1 در سطح احتمال 0.05 مورد مقایسه قرار گرفتند. سپس مقایسه بین وزن باقی مانده و ضریب تجزیه بذری نسبت به گونه گیاهی در سطح ناحیه فرق به کمک جدول تجزیه واریانس (آزمون F) و مقایسه میانگین‌ها در سطح 0.05 با آزمون استاندارد- تیون-کزن (Student-Newman-Keuls) به کمک نرم‌افزار آماری سیگما استنت (SigmaStat) انجام شد.

نتایج و بحث

تولید بیوماس

میزان تولید بیوماس، نهایی در منطقه فرق اندازه‌گیری شد و نتایج آن در دول 2 ارائه شده است. به لحاظ برداشت بیش از اندازه، بیوماس و تغذیه آن توسط دام به زمان نمونه برداری (تیر ماه 1379) در ناحیه جرا، اندازه‌گیری تولید بیوماس در این تجربه صورت گرفت. در واقع بیوماس تولید شده در ناحیه جرا بیسیار نازک و غیرقابل اندازه‌گیری بود. همانطوری که نتایج نشان می‌دهد در هر دو ناحیه فرق، مقدار متغیرهای بیوماس توسط هر گیاههای تولید شده است (جدول 2). نکته جالبی که در ناحیه تولید کردهاند، می‌باشد این است که گونه گیاهی به لحاظ تولید لاسترگ به‌طور مکانی از سایر گونه‌های در حال رشد خصوصیات بیولوژیک خاک مانند کریم و نیتروژن خاک و فعالیت میکروباتیک را تحت تأثیر قرار دهند. سایر گونه‌های مرتعی در دبه در جهت بهبود آمیخت قرار می‌گیرند. نتایج پژوهش‌های گذشته نشان می‌دهند که تغییر و تحت تولید عناصر غذایی خاک در بعضی شرایط شدیداً تحت شرایط نوع و مقیاس می‌گیرد.

ان تأثیر نشان می‌دهند که در شرایط فرق، وجود بیوماس

پیش‌تر گزارش شده در (Agropyron intermediate) و (Juncus stenophylla) و (Hordeum bulbosum) اندازه‌گیری سرعت تجزیه لاسترگ به صورت زیر آمده است:

شده (17): ابتدا کلیه نمونه‌ها در شرایط باز آزاد مجدداً خشک شدند. سپس مقدار 100/3 گرم از یک به گونه گیاهی (شامل برگ، ساقه، بذر) در داخل گیاهکدهای توری شکل باید (176±20 cm) و ناحیه 1 بیشتر قرار داده شد. در مجموع 144 کیسه لاسترگ (3 ناحیه × 4 گونه × 4 تکرار × 4 زمان) برای آزمایشی یک ساله آماده گردید. 14 گیاه بگینه گیاه در ناحیه فرق با یک بیوماس درختی و ناحیه چرا در عمق 15 cm در ماه 1379 در نقاط مختلف سه ناحیه دفن (Incubation) پس از 6.5 5 و 12 ماه. 4 کیسه از هر گونه بازیابی و به آزمایشگاه منقل گردید. سپس مواد خاکی به یک گیاه به روش خورش و شدن نشانه نشستن و در دمای 70 0 سرعت تجزیه این سه گونه در هر سه ناحیه با استفاده از معادله زیر محاسبه گردید (24).

\[RM = \frac{M_{f}}{M_{i}} \times 100 \]

در این فرمول RM وزن باقی مانده (M1) و وزن پایایی M1 (در زمان t و وزن اولیه باقی مانده G1 (کرم) است. سپس ضریب تابع تجزیه (k) به صورت زیر محاسبه شد (24):

\[\ln\left(\frac{M_{f}}{M_{i}}\right) = -kt \]

ابنده داده‌های حاصل از تجزیه مشابه لاسترگ به ناحیه فرق
جدول 2 میزان بیوماس تولید شده (g m⁻²) توسط تعدادی از گونه‌های مرتعی در منطقه فرق سیرکوه

<table>
<thead>
<tr>
<th>گونه مرتعی</th>
<th>تعدادی از گونه‌های مرتعی اولیه</th>
<th>تعدادی از گونه‌های مرتعی اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron intermedium</td>
<td>24/19</td>
<td>19/48</td>
</tr>
<tr>
<td>Hordeum bulbosum</td>
<td>22/18</td>
<td>17/88</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>22/18</td>
<td>17/88</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>22/18</td>
<td>17/88</td>
</tr>
<tr>
<td>Juncus stenophylla</td>
<td>22/18</td>
<td>17/88</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>22/18</td>
<td>17/88</td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>22/18</td>
<td>17/88</td>
</tr>
</tbody>
</table>

جدول حاکی از این است که گل‌نظافت نیترولز کل، فسفر و پتاسیم در لاش‌برگ‌های مرتعی مختلف می‌باشند. و بر اساس آزمون 1 نشان داد که اختلاف بین گل‌نظافت نیترولز، فسفر و پتاسیم در لاش‌برگ‌های مرتعی مختلف در هر دو ناحیه فرق داشته باشد که به‌طور معناداری محسوس نیست (p<0.05). بر این اساس، متوسط گل‌نظافت عناصر غذایی در لاش‌برگ‌های مرتعی برای هر دو ناحیه محسوب گردید. مقدار متوسط نیترولز در لاش‌برگ آگروپریون، جنگل و جو پیازدار به ترتیب 3/73، 1/36 و 0/98 درصد بود. بنابراین با در نظر گرفتن 50٪ کربن در ماده خشک، نسبت کربن به نیترولز برای گونه‌های آگروپریون، جنگل و جو پیازدار بیشتر بود (3/73) و 51/26 و 3/73 درصد بود. لاش‌برگ‌های آگروپریون، جنگل و جو پیازدار به ترتیب حاوی 0/37، 0/21 و 0/14 درصد فسفر و 0/13، 0/21 و 0/14 درصد الکل و 0/13 حاوی 0/21 و 0/14 درصد نیترولز و 0/37 حاوی 0/21 و 0/14 درصد پتاسیم بودند.

فاکتورهای مؤثر بر محلول شدن می‌تواند از دست داده شود از دست داده شود.

کیفیت لاش‌برگ

جدول 3 تغذیه شیمیایی مربوط به تعدادی از گونه‌های مرتعی در حال رشد را در ناحیه فرق نشان می‌دهد. نتایج این
جدول ۳ ترکیب نسبی یا ترکیب گونه‌های مختلف گیاهان مرتعی در ناحیه فرق منطقه سیب کوه
(تغییرات میان گونه‌های مختلف گیاهان مرتعی دو روش گونه‌های مرتعی معمولی در یک چهارم ناحیه)

<table>
<thead>
<tr>
<th>فرق بیشتر درختی</th>
<th>فرق بیشتر علفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>K</td>
</tr>
<tr>
<td>C/N</td>
<td>(%)</td>
</tr>
<tr>
<td>C/N</td>
<td>(%)</td>
</tr>
<tr>
<td>(%)</td>
<td>(%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کونه مرتعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron intermedium</td>
</tr>
<tr>
<td>Hordeum bulbosum</td>
</tr>
<tr>
<td>Medicago sativa</td>
</tr>
<tr>
<td>Juncus sterilophyllum</td>
</tr>
<tr>
<td>Poa bulbosa</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
</tr>
<tr>
<td>Bromus tectorum</td>
</tr>
<tr>
<td>اندزگی‌گیری شدند: nd</td>
</tr>
</tbody>
</table>

روند نسبی مشاهده شده در ناحیه داده، با این تفاوت که سرعت تجزیه در لاشه‌کرک آگری‌پارن و جو پی‌پازدار یکسان ولی کندتر از لاشه‌کرک بود.

اختلاف بین سرعت تجزیه لاشه‌کرک به سه گونه پس از ۹ ماه معنی‌دار نبوده ولی از نظر آماری اثر مرتبیت متغیر (ناحیه) بر سرعت تجزیه لاشه‌کرک معنی‌دار بود. لاشه‌کرک هر سه گونه در ناحیه چرا و قرباً با بیشتر ترکیب تنها یک ناحیه معین در ناحیه رنگی و رنگی طبقه‌بندی دارای سرعت تجزیه بود. به هر حال متوسط متغیر بین سه گونه و ناحیه از نظر آماری معنی‌دار بود (٢٠٠٧) (١٧).

در پایان سال، نرم‌بروز و بارفت روش دیگری نیز یا یکدیگر مشابه به پیشین بودند. ارمنی‌های مورد بر اساس تجزیه لاشه‌کرک سه گونه نشان داد اثر متغیر بین سه گونه و ناحیه در سطح ١ در صد معنی‌دار بود (جدول ٣، فصل ١). ارمنی‌های دیگری نیز در ناحیه لاشه‌کرک متغیر مشابه شدند. علاوه بر این، اثر متغیر بین سه گونه و ناحیه نبود.

روند همبستگی مشابهی را با کیفیت نسبی لاشه‌کرک آن نشان
از لاشه‌کرک جو پی‌پازدار است. هر نوع اختلاف در میزان عناصر غذایی در لاشه‌کرک گیاه سرعت تجزیه آن را در مراحل مختلف زیست تجزیه (تخریب پیوسته) تحت تأثیر قرار می‌گیرد (١٧ و ٢٠).

تجزیه پذیری لاشه‌کرک

نتایج آزمایش تجزیه لاشه‌کرک سه گونه مشابه که نسبتاً لاشه‌کرک زایدی را تولید و به سطح خاک اضافه می‌کند در جدول ٤ و شکل ١ ارائه شده است. جراح مفرط اثر می‌دارد بر در صد تجزیه لاشه‌کرک گیاه طرف سه ماه پس از آغاز مرحله تجزیه ناهار، ولی سرعت تجزیه بین سه گونه در هر سه ناحیه معنی‌دار بود و اختلاف به‌طور معنی‌داری (١٠٠٠) (١٢) را نشان داد (شکل ١). نتایج نشان می‌دهد که لاشه‌کرک آگری‌پارن حدود ٣٢ درصد، جو پی‌پازدار ۲٤ درصد و چگین ۲۸ درصد وزن اولیه مورد را طرف سه ماه از دست داده‌اند (جدول ٤).

سرعت تجزیه لاشه‌کرک آگری‌پارن و جو پی‌پازدار به‌طور تجزیه شدند. علاوه بر این، اثر متغیر بین سه گونه و ناحیه نبود.

معنی‌دار بود (٢٠٠٥) (١٧) پس از ۶ ماه، سرعت تجزیه لاشه‌کرک
جدول 2. نتایج جدول تجزیه واریانس و مقایسه منابعی‌های (SEM) در صد وزن بالی مانده لاشه‌گر

<table>
<thead>
<tr>
<th>بند</th>
<th>وزن بالی مانده (کوئن)</th>
<th>ظرفیت</th>
<th>یک (P)</th>
<th>دو (F)</th>
<th>زمان تجزیه</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>ناحیه آگوکاربوون</td>
<td>0/29</td>
<td>1/88</td>
<td>0/002</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/112</td>
<td>1/38</td>
<td>0/002</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/94</td>
<td>3/82</td>
<td>0/003</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/71</td>
<td>1/77</td>
<td>0/78</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/64</td>
<td>4/77</td>
<td>0/88</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/92</td>
<td>3/82</td>
<td>0/003</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/71</td>
<td>1/77</td>
<td>0/78</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/64</td>
<td>4/77</td>
<td>0/88</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
<tr>
<td>ناحیه چو بی‌دادرر</td>
<td>0/92</td>
<td>3/82</td>
<td>0/003</td>
<td>0/007</td>
<td>2/012</td>
<td>0/007</td>
</tr>
</tbody>
</table>

برای هر زمان تجزیه و در هر ستون اعداد دارای حروف مشابه فاقد اختلاف معنی‌دار (در سطح 0/05) می‌باشد.
شکل 1. مقایسه روند تجزیه (٪ وزن باقی مانده) سه گونه درنتی جو پیازدار (A) (آگوپیارون) و (ب) (جگن) (JU) (کار) با پوشش علوفه (C) در منطقه سیزکوه.

A

B

C
جدول ۵: میانگین‌ها (SEM) ضریب تابی تجزیه لاش‌برگ هوش مغزی در یک سال در شرایط طبیعی و ضریب همبستگی پرازش داده‌ها

<table>
<thead>
<tr>
<th>شاخص</th>
<th>ضریب همبستگی (r)</th>
<th>ضریب تابی (f)</th>
<th>ناحیه مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>آکروپارسون</td>
<td>0.136</td>
<td>0.055</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>خون پیازدار</td>
<td>0.124</td>
<td>0.048</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>چکن</td>
<td>0.116</td>
<td>0.042</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>آکروپارسون</td>
<td>0.131</td>
<td>0.052</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>خون پیازدار</td>
<td>0.120</td>
<td>0.045</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>چکن</td>
<td>0.113</td>
<td>0.040</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>آکروپارسون</td>
<td>0.137</td>
<td>0.056</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>خون پیازدار</td>
<td>0.125</td>
<td>0.049</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>چکن</td>
<td>0.118</td>
<td>0.043</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>آکروپارسون</td>
<td>0.140</td>
<td>0.058</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>خون پیازدار</td>
<td>0.128</td>
<td>0.047</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>چکن</td>
<td>0.120</td>
<td>0.045</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>آکروپارسون</td>
<td>0.143</td>
<td>0.059</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>خون پیازدار</td>
<td>0.129</td>
<td>0.048</td>
<td>+0.03 0.14</td>
</tr>
<tr>
<td>چکن</td>
<td>0.121</td>
<td>0.046</td>
<td>+0.03 0.14</td>
</tr>
</tbody>
</table>

نوت: نسبت کربن به نیتروژن با 1/10 گیاهی تولیده شده به خاک می‌شود. در این بررسی، غلظت متوسط نیتروژن در لاش‌برگ آکروپارسون و چکن بیشتر از غلظت نیتروژن در لاش‌برگ خون پیازدار بود. علاوه بر این، بی‌طرف متوسط نسبت کربن به نیتروژن لاش‌برگ آکروپارسون و چکن در حالی که در لاش‌برگ خون پیازدار میانگین نسبت 1/17 بود.

علاوه بر مشابهت در کیفیت تیپی‌بای، لاش‌برگ خونه چکن در طول آزمایش سریع‌تر از کونه آکروپارسون توسط میکروگانیسم‌های خاک تجزیه شد. وی در محیط مشابه شد که سرعت تجزیه لاش‌برگ خون پیازدار کمتر از سرعت تجزیه لاش‌برگ خونه گیاه است. غلظت نیتروژن در لاش‌برگ خونه چکن
خانک، پویایی و کیفیت بازمانده‌گی‌ها را پیچیده‌تر نموده است. به‌طور خلاصه نتایج این بررسی نشان می‌دهد سرعت تجزیه بقایای گیاه اکوپلورون و جکن سریعتر از سرعت تجزیه بقایای چنین جوی پیازدار است. بنابراین، احتمال وجود در تجزیه‌پذیری این سوگون مرتعی ممکن است باعث ایجاد تغییرات در پویایی مواد آلی خاک و عنصر غذایی آن بی ویژه نیترورژن، شود. بنابراین، تحت شرایط یکسان ناپایدار و هم‌چنین شرایط یکسان خاک ممکن است اثر ترکیب و نوع گیاه بر تغییر و تحول کربن و نیترورژن در کامیونت مرتعی سیبرزکو بیشتر از اثر مدیریت‌های مستقل بیشتر می‌باشد.

تراکم اینو و تولید لاکتیک زیاد توسعه گونه‌های کند تجزیه شونده (همانند جو پیازدار) باعث می‌شود که نیترورژن توسعه موجودات دیگر خاک جداب و غیر منحکم شود. در این حالت افزایش گونه‌های که دارای لاکتیک زیاد تجزیه شونده هستند را می‌توان از طریق کشت و یا به‌دست آوردن مرتع نمود. بنابراین بر اساس نتایج این بررسی پیشنهاد می‌گردد در مرتع‌های که جو پیازدارگونه مرتعی غالب است از گونه‌های که از لحاظ عنصر غذایی غنی تر هستند و کیفیت لاش‌برگ آنها بالاست (برای مثال بونجه، جکن و غیره) برای افزایش پویایی کربن خاک استفاده شود. لحاظ اینکه نباید این نوع کشت در مدیریت مرتع مناسب به‌ویژه شاخص‌های کیفیت خاک از جمله میزان و سرعت تجزیه مواد آلی، بومی‌سازی میکروبی، قابلیت معدنی شدن نیترورژن خاک و گردش سریع سابر عنصر غذایی در دراز مدت می‌شود.

سپاسگزار

بدر و سهیل از معاونت پژوهشی دانشگاه شهرکرد که اعتبار مالی از آن برای انجام این بررسی را فراهم نمودند تشکر و قدردانی می‌شود. همچنین از همکاران آقای مهندس قاضی و آقای شریف پور که در کل کار مراحل طرح، نمونه‌برداری و انجام آزمایش‌ها مساعدت نمودند می‌پسندند. سپاسگزاری می‌شود.

منابع مورد استفاده

1. اسدی، ا. ۱۳۸۹. بررسی اکولوژیکی جوامع گیاهی مخلوط سبز کوه جنگل و چهارمحل بنا توجه به خاک و واحدهای زنو مفلوژیکی. پایان نامه کارشناسی ارشد مرتعداری، دانشگاه کشاورزی، دانشگاه تربیت مدرس.
2. اسدکنی، ح. ۱۳۸۰. تأثیر مدیریت دام در کنترل فرسایش در مرتع بیلاری استان اصفهان. چکیده مقاله اولین همایش ملی تحقیقات مدیریت دام و مرتع، مرداد ۱۳۸۰ سمنان. صفحه ۴۷.
3. مقدم، م. ۱۳۷۹. مرتع و مرتعداری، انتشارات دانشگاه تهران.