اثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتعی سیزکوه

استان چهارمحال و بختیاری

فايز رئیسی، اسماعیل اسدی و چهانگرد محمدی

چکیده
در اکوسیستم‌های مرتعی، چرای مفرط باعث تغییراتی در پویایی کربن یافته‌گیاهی و ماده آلی خاک می‌شود. هدف این پژوهش بررسی کیفیت شیمیایی پیچای سه گونه غالب مرتعی و ارتباط آن با پویایی کربن لاشبرگ تحت مدیریت‌های مختلف چرا و فرق در مراتع سیزکوه می‌باشد. این بررسی در مراتع شش منطقه سیزکوه (استان چهارمحال و بختیاری) صورت گرفت. نمونه برداشت از گیاهان مرتعی غالب شامل اگروپریون (Agropyron intermedium) و چمن (Hordeum bulbosum) می‌باشد. اگروپریون، جنگ و چمن پیازدار بودند. نتایج نشان می‌دهد که این گونه‌ها به این صورت تغییر یافته‌گیاهی پس از یک سال خواباندن تحت شرایط طبیعی می‌توانند گردد. مقدار متوسط پیازدار در لاشبرگ آگروپریون، چمن و چمن پیازدار به ترتیب 73/27 و C/N برای گونه‌های آگروپریون، چمن و چمن پیازدار به ترتیب 1/37 و 1/36 درصد داشتند. نتایج نشان می‌دهد که این گونه‌ها به این صورت تغییر یافته‌گیاهی پس از یک سال خواباندن تحت شرایط طبیعی می‌توانند گردد. مقدار متوسط پیازدار در لاشبرگ آگروپریون، چمن و چمن پیازدار به ترتیب 73/27 و C/N برای گونه‌های آگروپریون، چمن و چمن پیازدار به ترتیب 1/37 و 1/36 درصد داشتند. نتایج نشان می‌دهد که این گونه‌ها به این صورت تغییر یافته‌گیاهی پس از یک سال خواباندن تحت شرایط طبیعی می‌توانند گردد. مقدار متوسط پیازدار در لاشبرگ آگروپریون، چمن و چمن پیازدار به ترتیب 73/27 و C/N برای گونه‌های آگروپریون، چمن و چمن پیازدار به ترتیب 1/37 و 1/36 درصد داشتند. نتایج نشان می‌دهد که این گونه‌ها به این صورت تغییر یافته‌گیاهی پس از یک سال خواباندن تحت شرایط طبیعی می‌توانند گردد. مقدار متوسط پیازدار در لاشبرگ آگروپریون، چمن و چمن پیازدار به ترتیب 73/27 و C/N برای گونه‌های آگروپریون، چمن و چمن پیازدار به ترتیب 1/37 و 1/36 درصد داشتند. نتایج نشان می‌دهد که این گونه‌ها به این صورت تغییر یافته‌گیاهی پس از یک سال خواباندن تحت شرایط طبیعی می‌توانند گردد. مقدار متوسط پیازدار در لاشبرگ آگروپریون، چمن و چمن پیازدار به ترتیب 73/27 و C/N برای گونه‌های آگروپریون، چمن و چمن پیازدار به ترتیب 1/37 و 1/36 درصد داشتند. نتایج نشان می‌دهد که این گونه‌ها به این صورت تغییر یافته‌گیاهی پس از یک سال خواباندن تحت شرایط طبیعی می‌توانند گردد. مقدار متوسط پیازدار در لاشبرگ آگروپریون، چمن و چمن پیازدار به ترتیب 73/27 و C/N برای گونه‌های آگروپریون، چمن و چمن پیازدار به ترتیب 1/37 و 1/36 درصد داشتند. نتایج نشان می‌دهد که این گونه‌ها به این صورت تغییر یافته‌گیاهی پس از یک سال خواباندن تحت شرایت

واژه‌های کلیدی: نوده زندگی، تجربه زندگی، لاشبرگ، چمن، چمن پیازدار، آگروپریون

1. به ترتیب استادیار و دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران
2. استادیار مرتعی و آبخیرداری، دانشکده کشاورزی، دانشگاه شهید چمران
مقدمه

مراتع یکی از منابع مهم تولید علوفه به شمار می‌رود (3). عدم تعادل بین ظرفیت مصرف و تعداد دام از یک طرف و در چراز مفرط و پیوسته از طرف دیگر موجب ایجاد تغییرات زیادی در پوشش گیاهی و خصوصیات گوناگون خاک در مهارستان اکوسیستم می‌شود (1). یکی از مکانیسم‌های اثر چراز بر تولید مصرف، ایجاد تغییرات ملزلوس در بعضی خصوصیات خاک می‌باشد. بر اساس نتایج تحقیقات انجام شده در اکوسیستم‌های مختلف مرتع، اولین اثر مستقیم و بارز جرایب بر روی و مصرف کم ممکن است بر خاک داشته‌باشد. برداشت و خروج پوشش گیاهی از اکوسیستم و به دنبال آن آثار منفی بر چراز عناصر غذایی و قابلیت بذل آنها می‌باشد (4, 9 و 19). ایجاد هرگونه اختلال در چراز عناصر غذایی ممکن است در دراز مدت منجر به کاهش داده‌گری خاک و در نتیجه تخریب آن شود (8). تاثیب برسی‌های گذشته حاکی از این است که چراز مفرط و مستمر در پی آن برداشت کامل پوشش گیاهی توسط خاک می‌باشد (2)، (7) و (10). یکی از روش‌های احتمالاً کاربردی و عناصر غذایی ذههبی‌شده در خاک، به استحکام سطحی آن است که پس از سال‌های مدتی، با پایداری خاک و به دنبال آن تعادل و پایداری اکوسیستم را تغییر می‌دهد. از طرف دیگر چراز بی‌رویه، حاصل تخریب خاک مربوط به محدودیت می‌باشد. زیرا در این نوع خاک‌ها مصرف کودهای شیمیایی برای تأمین عناصر غذایی لازم برای رشد و توسعه گیاهان کمبود آنها ممکن نمی‌باشد و عملکرد عناصر غذایی به خاک بی‌سیار اندازه است (5). علاوه بر این، اثر مستقیم چراز بر طرح مختلف شامل خروج و توزیع عناصر غذایی، تولید فضولات زیادی، پاک‌کردن و تراکم خاک به هم خورداری لایه سطحی خاک) خصوصیات شیمیایی، فیزیولوژی و بیولوژیک خاک را شدتایاً تحت تأثیر قرار می‌دهد (6، 7، 10، 12، 17، 18 و 19).
مطالعاتی انجام‌نشده است. بنابراین، هدف از این بررسی ۱) بررسی کیفیت مواد گیاهی تولید شده و ارتباط آن با سرعت تجزیه بقاپایی سرون مرتبط تحت شرایط طبیعی در اتفاقات زاگرس (در منطقه سیرکو) که بخشی از این مناطق از سال ۱۳۷۴ تا کنون تحت فرق دانسته است و ۱) ارتباط نظری بی‌رویه و دانست بر سرعت تجزیه بقاپایی گیاهی می‌باشد.

مواد و روش‌ها

منطقه مورد بررسی در یکی از مناطق سیرکو در اتفاقات زاگرس مرکزی در استان چهارمحال و بختیاری قرار دارد. این منطقه در مرکز استان و در فصله ۱۲۰ کیلومتری جنوب شرقی شهرکرد (مرکز استان) واقع شده است. منطقه کوهستانی و ارتفاع متوسط ۳۰۰۰ متر بالاتر از سطح دریا و میانگین باران‌گذاری ۸۵ ساله ۷۵۰ میلی‌متر در سال است. متوسط درجه حرارت سالانه ۷ درجه سانتی‌گراد است که جهادک مطلق آن در نور ماه و حداکثر مطلق درجه حرارت در دی ماه گزارش شده است (۱). از نظر کویری، منطقه در بخش ۱۲ بزرگ قرار دارد و یکدیگر و صخره‌ها فراوان باعث ایجاد سیل‌ساخته بهبودی بیشتری. شیب‌هایی نسبتاً تند و گران‌داره است. شیب عمومی منطقه مورد مطالعه‌ی جویی است. ناحیه‌ی مورد مطالعه پویش‌های گیاهان اطراف بی‌رویه و دانسته (۱) گیاهان غالب

علی‌محمد: Agropyron intermedium (Host) P. Beauv., Hordeum bulbosum L., Juncus scirpoides L., Bromus tomentellus Boiss., Bromus tectorum L., Bromus dantoniae Trin., Poa bulbosa L.,

و گونه‌های دانسته شال: Acer Persicum A. Pojark, Fraxinus rotundifolia Mill, Crataegus azarolus L., Juniperus polycarpos C.Koch

و گونه‌های درختچه‌ای: Daphne mucronata Royle., Astragalus adscendens Boiss & Havsskn., Amygdalus orientalis DUH.

است. 

خاک منطقه از سازند سرین به جنس مارن و آهن که مریوط به تشکیل‌های زمین شناسی دوران دوم، به وزه کرمان، می‌باشد

83
جدول 1: نتایج بررسی تأثیر ۲ فیزیکی خاک‌های مرتفع اقلیمی سیزگو در جنگل پیشانی دار (Agropyron intermediate) و جنگل برای (Juncus stenophylla) و جنگلی (Hordeum bulbosum) از اندامگذاری سرعت تجزیه لاش‌گیر به صورت زیر آماده شد (۱۷):

<table>
<thead>
<tr>
<th>جرم مخصوص ظاهری (g cm$^{-2}$)</th>
<th>pH (-)</th>
<th>C (%)</th>
<th>N (%)</th>
<th>P (mg kg$^{-1}$)</th>
<th>K (mg kg$^{-1}$)</th>
<th>C/N (–)</th>
<th>رس سیلت شن</th>
<th>بافت خاک (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۵</td>
<td>۵/۰</td>
<td>۲/۰</td>
<td>۱۵/۵</td>
<td>۸/۲</td>
<td>۱/۷</td>
<td>۲۳</td>
<td>۳/۵</td>
<td>۲۲</td>
</tr>
</tbody>
</table>

با آزمون ۱ در طول ایجاد متوسط آمارهه قرار گرفت. سپس مقایسه بین وژن باقی مانده و ضریب تجزیه پذیری پی‌نامه سه گونه گیاهی در ناحیه طوفان به کمک جدول نزدیک و مقایسه‌های موجود (Azam ۲۰۰۵) در سطح ۰.۰۵ با آزمون استون و تکه‌های آزمون (Student-Newman-Keuls) به کمک ترم افزار آماری سیگما است (SigmaStat) انجام شد.

نتایج و بحث

توجه کنید که پای‌بوماس، نمو در منطقه فرق اندازه‌گیری شده و تناوی آن در جدول ۲ را همکاری است. به راه اندازی برداشت بیش از آن‌ها بوماس به ویژه آن توسیع دام در زمان نمونه‌برداری (تیر ماه ۱۳۷۹) در ناحیه جرا اندام‌گیری تولید بوماس در این ناحیه صورت نگرفت. در واقع بوماس تولید شده در ناحیه چرا بی‌سایر ناحیه و نگاه هلی‌گیاهی نیست. همانطوره که ستایش نشان می‌دهد در هر دو ناحیه، فرق مادافا بلندی بوماس توسعه هرگیاه در کمیته تولید شده است (جدول ۲). اگر نیاز به یک تغییر در بوماس را در ناحیه فرق تولید کرده اند، بنیاد این آزمونی که دستور (Remainder mass) توزیع گردیده براساس وزن باقی مانده سرعت تجزیه این سه گونه در هر سه ناحیه با استفاده از معادله زیر محاسبه گردید (۲۴):

$$\text{RM} = \frac{M_i}{M_t} \times 100$$

در این فرمول $M_i$ وزن باقی مانده در صد وزن اولیه $M_t$ و $k$ ضریب تابع تجزیه (کروم) است. سپس ضریب تابع تجزیه به صورت زیر محاسبه شد (۲۴):

$$\ln \left( \frac{M_i}{M_t} \right) = -kt$$

ابندا داده‌های حاصل از تجزیه شیمیایی لاش‌گیر در ناحیه طوفان
جدول ۲: میزان بیوماس تولید شده (g m⁻²) توسط تعدادی از گونه‌های مرتعی در منطقه فرق سیرزکوه

<table>
<thead>
<tr>
<th>گونه مرتعی</th>
<th>فرق با پوشش</th>
<th>فرق با پوشش</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>درختی</td>
<td>علیفی</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Agropyron intermediate</td>
<td>۲۲/۱۹</td>
<td>۱۹/۲۸</td>
</tr>
<tr>
<td>Hordeum bulbosum</td>
<td>۲۲/۱۸</td>
<td>۱۷/۸۸</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>۲۲/۳۳</td>
<td>۲۳/۳۳</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>۳/۵۵</td>
<td>۶/۸۵</td>
</tr>
<tr>
<td>Juncus stenophylla</td>
<td>۰/۲۰</td>
<td>۲/۴۲</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>۰/۲۳</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>۰/۲۳</td>
<td>۰/۲۳</td>
</tr>
</tbody>
</table>

جدول حاکی از این است که غلظت نیتروزون کل، فسفر و پتاسیم در لاسیرگ‌های مرتعی مواردی متفاوت می‌باشد. ولی آزمون ۱ نشان داد که اختلاف بین غلظت نیتروزون، فسفر و پتاسیم در لاسیرگ‌های مرتعی متفاوت در هر دو ناحیه فرق به‌طور معناداری محورس (t-value > 0.05). بر این اساس، متوسط غلظت عناصر غذایی در لاسیرگ هرکنش برای هر دو ناحیه محاسبه گردید. مقدار متوسط نیتروزون در لاسیرگ آگروپرون، جگن و جو پیازدار به ترتیب ۱۳۷/۲۳ درصد بود. بنابراین با نظری ۵۰/۵۰٪ کربن در ماده حیشک، نسبت کربن به نیتروزون برای گونه‌های آگروپرون، جگن و جو پیازدار به ترتیب ۱/۲۷/۲/۷۳ درصد بود. لاسیرگ‌های آگروپرون، جگن و جو پیازدار به ترتیب ۲۴/۷۲ درصد فسفر و ۱/۸۴ درصد به ترتیب ۱/۷۲ همچنین این گیاه دارای پایین‌ترین نسبت کربن به نیتروزون می‌باشد. علاوه بر این، لاسیرگ‌های بیشتر که در این فسفر و پتاسیم بیشتر هستند حاوی نیتروزون کمتر می‌باشند.

(جدول ۳)

بکیت لاسیرگ

جدول ۳ نتایج تجربه بیوماس در اکوسیستم مرتعی سیرزکوه

در مجموع کیفیت شیمیایی لاسیرگ پوآ نسبتاً بالا و لاسیرگ آگروپرون و جگن دارای کیفیت نسبتاً مشابه و بهتر می‌باشد. در حال حاضر رشد را در ناحیه فرق نشان می‌دهد. نتایج این
جدول 3 ترکیب شیمیایی لاشارگ‌گونه‌های مختلف گیاهان مرتعی در ناحیه فرق منطقه سبز کوه

<table>
<thead>
<tr>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>F</th>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>23/0</td>
<td>0.01</td>
<td>0.55</td>
<td>0.13</td>
<td>23/3</td>
<td>0.55</td>
<td>0.127</td>
<td>0.127</td>
</tr>
<tr>
<td>24/1</td>
<td>0.01</td>
<td>0.487</td>
<td>0.127</td>
<td>24/6</td>
<td>0.01</td>
<td>0.427</td>
<td>0.127</td>
</tr>
<tr>
<td>25/6</td>
<td>0.01</td>
<td>0.397</td>
<td>0.127</td>
<td>25/1</td>
<td>0.01</td>
<td>0.247</td>
<td>0.127</td>
</tr>
<tr>
<td>26/1</td>
<td>0.01</td>
<td>0.297</td>
<td>0.127</td>
<td>26/7</td>
<td>0.01</td>
<td>0.197</td>
<td>0.127</td>
</tr>
<tr>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

پایه‌نظامی لاشارگ

نتایج آزمایش تجزیه لاشارگ به غربalse گونه بالا مرتعی که نسبتاً لاشارگ زایده را نشان داد و به حداکثر اختلاف می‌کند در جدول 4.4 و شکل 1 ارائه شده است. چرا مقررت اثر معنی‌داری بر در سطح تجزیه لاشارگ گیاه طرف سه ماه پس از آغاز مرحله تجزیه نداشت و سرعت تجزیه بین سه گونه علاوه بر سه ناحیه متفاوت بود و اختلاف بالای معنی‌داری (p<0.001) را نشان داد (شکل 1). نتایج نشان می‌دهد که لاشارگ آگروپراپون و جوی پیاپارداز حداکثر 22 درصد، جو پیاپارداز 24 درصد و جنگن 38 درصد وزن اولیه خود را طرف سه ماه از دست داده‌اند (جدول 4). سرعت تجزیه لاشارگ آگروپراپون و جنگن پیکار، در حالی که در مقایسه با جو پیاپارداز لاشارگ گیاه سریع تر تجزیه شدند. علاوه بر این، اثر مقایسه بین نوع گونه و ناحیه نیز معنی‌دار بود (p<0.05).
جدول ۷. نتایج جدول تجزیه واریانس و مقایسه میانگین های (SEM) در صد وزن بانی مانده لاش‌برگ

<table>
<thead>
<tr>
<th>وزن بانی مانده</th>
<th>کهنه</th>
<th>P</th>
<th>F</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>نامه</td>
<td>1/29</td>
<td>1/88</td>
<td>7/88</td>
<td></td>
</tr>
<tr>
<td>۳ ماه</td>
<td>10/02</td>
<td>1/00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کهنه</td>
<td>9/01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲ ماه</td>
<td>10/02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کهنه</td>
<td>9/01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱ ماه</td>
<td>10/02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کهنه</td>
<td>9/01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برای هر زمان تجزیه و در هر ستون اعداد دارای خروج مشاهده قادح اختلاف معنی‌دار (در سطح ۷/۵%‌ی) بیانند.
شکل 1. مقایسه روند تجزیه (% وزن باقیمانده) سه گونه مرتعی (جو پاپادار HB، آگروپاپرون AI و جگن JU) در دو مدت کناره: (A) پوشش خاکی، (B) پرکناره و (C) در منطقه سیواس.
<table>
<thead>
<tr>
<th>ضریب تابع تجزیه لاشیرگ سه گونه مرتبط در یک سال در شرایط طبیعی و ضریب همبستگی برازش داده‌ها</th>
<th>ناحیه مرتع</th>
<th>گونه</th>
<th>تجربیات (ماده)</th>
<th>ضریب همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>آکروپایرون</td>
<td>0/82</td>
<td>0/90</td>
<td>0/005</td>
<td></td>
</tr>
<tr>
<td>0/88</td>
<td>0/21</td>
<td>0/95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/98</td>
<td>0/11</td>
<td>0/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>0/46</td>
<td>0/22</td>
<td>0/005</td>
<td></td>
</tr>
<tr>
<td>0/55</td>
<td>0/24</td>
<td>0/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/82</td>
<td>0/07</td>
<td>0/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>0/91</td>
<td>0/32</td>
<td>0/005</td>
<td></td>
</tr>
<tr>
<td>0/93</td>
<td>0/08</td>
<td>0/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/68</td>
<td>0/87</td>
<td>0/20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

لاین‌رگ چکن ظرف یک سال تجزیه می‌شود (جدول ۵). نسبت کردن به نیتروژن بالاترین، مثبت اثری دارد. روند تجزیه به یافته‌گی‌هایی در مراحل اولیه با در مراحل دوم و سوم، نسبت C/N به میزان گیاهی موجب می‌شود که سرعت تجزیه نیز متوقف باشد. احتمالاً سایر خصوصیات کیفی لاشیرگ و شرایط محیطی مشابه مؤثر هستند.

نتیجه گیری

اگرچه قر از ۱۵ ساله مراتب سیرکوز منجر به بازکردن مواد گیاهی تولیده شده به همکسوسود ولی قر در مرحله دوم معمولاً بر سرعت تجزیه گیاهی ناوبری. لذا مویان تجزیه گرفته که این مدت برای ترمیم و بهبود شرایط خاک از جرای قابلیت نیئی‌بنا. همچنین، برای ایجاد شرایط مساعدتی و بهبود خصوصیات مختلف خاک که به نوعی سرعت تجزیه گیاهی و بهبودی آماده خاک را تسری‌یابی می‌دهد، زمان طولانی‌تری لازم است با این حال، شرایط خاک و وضعیت توزیع‌گرایی منطقه و نیز تغییرات زمین و مکانی ویژگی‌های می‌باشد.

۳۷ در حالی که در لاشیرگ جو پایدار همین نسبت ۱/۵ بود.

علاوه بر مزایای کیفی، لاشیرگ گونه چکن در طول آزمایش سریعی‌تر از گونه آکروپایرون توسعه می‌گیرد و همچنین، با دیده بود که سرعت تجزیه لاشیرگ جو پایدار کندتر از سرعت تجزیه لاشیرگ جو در هر حال مشاهده شد که سرعت تجزیه لاشیرگ جو پایدار کندتر از سرعت تجزیه لاشیرگ جو
خان، پویایی و کیفیت بازمقدم گیاهی را پیچیده نموده است.

به طور خلاصه نتایج این بررسی نشان می‌دهد سرعت تجزیه
بقایای گیاه اکسیداسیون و چگونه سرعت از سرعت تجزیه بقا
جو پاپزادر است. بنابراین، اختلاف موجود در تجزیه پدیده
این سرعت متقابل ممکن است باعث ایجاد تغییرات در پویایی
مواد آلی خاک و عناصر غذایی آن به ویژه نیتروژن، شود.

بنابراین، تحت شرایط یکسان اقلیمی و هم‌طور شرایط یکسان
خاک ممکن است اثر تکریک و تونو گیاهی بر تغییر و تحول
کربن و نیتروژن در اکوسیستم متنوع سبزکوه بیشتر از
مدیریت وسعت متفاوت باشد.

تارکم اینو و تولید لاپازیر زیاد توسط گونه‌های کند تجزیه
شوده (همانند جو پاپزادر) باعث مشکوک کنندگی کننده توان توسط
موجودات دیگر خاکه که در غیر متحرک شود. در این
حالات افزایش گونه‌های که در اکوسیستم زرد تجزیه شونده
به‌طور می‌توان طبق کشت و یا به‌طور واحد رانده.

تموز نیتروژن بر اساس نتایج این بررسی بیشتر می‌گردد
در مصرف این جو پاپزادر است گونه‌های متنوع غلاف است، از گونه‌های که
از لحاظ عناصر غذایی حس نمی‌کنند و کیفیت ارزش‌گذار آنها
بالاست (برای مثال برنج، جنگل و غیره). برای افزایش پویایی
کربن خاک استفاهه شود. لحاظ نمودن این نوع کشت در
مدیریت مراتع سبب بهبود شاخص‌های کیفیت خاک از جمله
میزان و سرعت تجزیه مواد آلی، بوم‌بندی و اقتصادی ممکن
در دراز مدت می‌شود.

متای مورد استفاده

1. اسدی، ا. 1369. بررسی کیفیت و فعالیت‌های گیاهی مشترک محیط و یکی‌سان با توجه به خاک و واحد‌های زنده

2. مقدم، م. ر. 1371. تاثیر میزان دام و مزرعه 2.2 میزان 1380 مزرعه. صفحه 78.

3. خورشید، د. 1379. تاثیر میزان دام و مزرعه 2.2 میزان 1380 مزرعه. ج الف. 78.