اثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتعی سیزکوه

استان چهارمحال و بختیاری

فايز رئيسي، اسماعيل اسدی و قهانگر محمودی

چکیده

در اکوسیستمهای مرتعی، چرای مفرط باعث تغییرات در پویایی کربن پویایی گیاهی و ماده آلی خاک می‌شود. هدف این پژوهش بررسی کیفیت شیمیایی پویایی سه گونه غلبه مرتعی و ارتباط آن با پویایی کربن لاشبرگ تحت مدیریت‌های متفاوت چرا و فرق در موانع سیزکوه می‌باشد. این بررسی در در منطقه سیزکوه (استان چهارمحال و بختیاری) صورت گرفت. نمونه‌برداری از گیاهان مرتعی غالب از یک منطقه تحت فرق (Juncus stenophylla) شامل اگروپاپرون (Agropyron intermedium) چگو پاژدار (Hordeum bulbosum) و چگن (C/N) در 15 ساله پرداخت و مقدار نیتروژن، فسفر و پتاسیم در نمونه‌ها اندازه‌گیری شد. علاوه بر این، سرعت تجزیه لاشبرگ گونه‌ها بر این سطح خواباندن تحت شرایط طبیعی تعیین گردید. مقدار متوسط نیتروژن در لاشبرگ آگرو پاپون، چگن و چگو پاژدار به ترتیب ۱/۵۲ و ۱/۳۴ و درصد بود. نتایج‌برداری از در نظر گرفته ۵۰% کربن در ماده خشک، نسبت کربن به نیتروژن (C/N) آگروپاپرون، چگن و چگو پاژدار به ترتیب ۲/۲۷، ۲/۷۴ و ۳/۷۵/۳/۷ درصد نیتروژن و ۱/۲/۷/۲ درصد پتاسیم بودند. نتایج پویایی کربن نشان می‌دهد که اختلاف بین سرعت تجزیه لاشبرگ در منطقه چرا و فرق میان داربست (p<0.05) و در اختلاف گونه‌های مختلف مطابق دارد که نشان می‌دهد که تغییرات نحوه و کیفیت چگو پاژدار و شرایط محیطی خاک تأثیر گذار خواهند بود. نتایج می‌توان چنین تبیه‌گری کرد که اثر نوع لاشبرگ گیاهی و کیفیت آن به روش تجزیه پذیری به مراتب ملهم‌تر از اثر چرا (فرق) است.

واژه‌های کلیدی: توده زنده مرتع، تجزیه پذیری لاشبرگ، کیفیت لاشبرگ، قرق مرتع، چرای مفرط، سیزکوه، چهارمحال و بختیاری

1. به ترتیب استادان و دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه شهرکرد
2. استادیار مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه شهرکرد

81
مراتع بیکا از منابع مهم تولید علوفه به شمار می‌رود (3). عدم تعادل بین ظرفیت مصرف و تعداد از یک طرف و چرای مفرط و پیوسته از طرف دیگر موجب ایجاد تغییرات زیادی در پوشش گیاهی و خصوصیات گوناگون خاک در مقصود اکوسیستم می‌شود (1). یکی از ماکیاس‌های اثر چرای بیکا تولید مصرف، ایجاد تغییرات ملموس در بعضی خصوصیات خاک می‌باشد. بر اساس escap نتایج تحقیقات انجام شده در اکوسیستم‌های مختلف مرتعی، اولین اثر مستقیم و پاز جبرای ی روبه و مسترک ممکن است بر خاک داشته باشد. برداشت و خروج پوشش گیاهی از اکوسیستم و به دنبال آن آثار منفی بر چرخه عناصر غذایی و قالیبندی جذب آنها می‌باشد (6، 9 و 19). ایجاد هرگونه اختلال در چرخه عناصر غذایی خاک ممکن است در دراز مدت مشتری کافی آشامی باوری خاک و در نتیجه تخربند در شوند (8). نتایج بررسی‌های گذشته حاکی از این است که چرای مفرط و مسترک و به وسیله ارزش کامل پوشش گیاهی توسط گیاهان دست کسانی تحت‌الحمایه اکوسیستم سرعت ورسایش شه夺得 (runoff)، کاهش کربن و عناصر غذایی خاک و افزایش فشارگذاری تراکم آن می‌شود که پیامدهای تحت‌الحمایه اکوسیستم سرعت ورسایش خاک است (2، 6، 9 و 10). یکی از روش‌های ایجاد انرژی و در اکوسیستم‌های مختلف مرتعی استفاده از ناحیه تحت‌الحمایه می‌باشد. تقریباً تمام سلولات از لحاظ فیزیکی و شیمیایی تغییراتی را نیز در خاک به وجود می‌آورد.

برای وارد شدن سلول گیاهی در هر قسم از اکوسیستم، نیاز دارند که بخشی از ماده غذایی را به شکل بیشتر برداشتند و در هر قسم از اکوسیستم خاص خود را با سلول‌ها به دست آورند.

ولی سرعت تجزیه ماده غذایی از افزایش می‌دهد (4، 5، 6، 7 و 10). افزایش تجزیه سلول‌ها در یک اکوسیستم ممکن است اثر قابل توجهی به سرعت تجزیه مواد، چرخه عناصر غذایی و سرعت مشتاق فنون پاراواری کاکار در اکوسیستم‌های مختلف ممکن است به‌عنوان یک سرعت ورسایشی دیده شود که بخش چرا به عنوان یک فاز اکوسیستمی در خاک شده و با سلول گیاهی در هر قسم اکوسیستم ممکن است باعث افزایش تجزیه مواد غذایی در اکوسیستم‌های مختلف ممکن است باعث اختلال اکوسیستم‌های مختلف ممکن است باعث خشک شدن سلول‌ها در دمای محتوای متغیر شده است. از جهت دیگر به طور کامل مشاهده نمی‌شود که هنوز از چرای و پرداختی مواد آلی خاک به طور کامل مشاهده شده است (4، 5، 6، 7 و 11 و 18) و یکیی که در اکوسیستم‌های مرنگی در داخل خاک و نیمه خشک، به ویژه در شرایط ایرانی. چنین
اهراً، دراز مدت بر پویایی کردن لاش‌برگ در اکوسیستم مرجع سیگوک... مطالعاتی انجام نشده است. بنابراین، هدف از این بررسی (1) بررسی کیفیت مواد غذایی تولید شده و ارتباط آن با سرعت تجزیه باقیابی سیگوک مرتعی تحت شرایط طبیعی در اتراف‌های زاگرس (در منطقه سیگوک) که به خصوص از این مرتعات از سال 1346 تا کنون تحت تقریب دانه بوده است و (2) ارتباط برندگی بی‌رویه و دانه بر سرعت تجزیه باقیابی غذایی می‌باشد.

مواد و روش‌ها

منطقه مورد بررسی به خصوصی از مرتعات سیگوک در اتراف‌های زاگرس مرکزی در استان چهارمحال و بختیاری قرار دارد. این منطقه در شرقی استان و در فصله 120 کیلومتری جنوب شرقی شهرکرد (مرکز استان) واقع شده است. منطقه کوهستانی و ارتفاع متوسط ۳۰۰۰ متر بالاتر از سطح دریا و مناطق باران‌گذاری ۸۵ میلی‌متر در سال است. متوسط درجه حرارت سالانه ۲۷ درجه سانتی‌گراد است که حداکثر مطلق آن در تیره ماه و حداقل مطلق درجه حرارت در دی ماه گزارش شده است. (1) در این منطقه غذای اندام‌بر ندارند و از غذای ناشی از سیگوک مرتعی استفاده می‌کنند. غذای این نژاد از گیاهان تهیه می‌شود و نسبتاً غلیظ و حاوی میکرو‌نواحی است. با توجه به اینکه حدود ۴۰۰ هکتار از این مرتعات در قابل طرح حفاظت و احیای مرتعات به مدت ۱۵ سال (از سال ۱۳۸۴) به وسیله سیم تعادل محصور و تحت قابل بوده است. بر اساس نوع، تراکم و تیکت پوستش گیاهی، منطقه قرار به دو ناحیه کوک‌کن تسمیه گردید. ناحیه اول با پوشش غلات و ناحیه دوم با پوشش درختی تخیلی، که مناسب در ناحیه ترکیبی حدود ۱۰ هکتار می‌باشد. ناحیه چهار نیز با مساحت حدود ۲ هکتار که در فصله ۳ کیلومتری ناحیه قرار قرار دارد با شرایط نسبتاً یکسان آب و هوا، هیدروژنولوژی، توبورگرافی، زمین شناسی انتخاب شد. بخش از ۹۰ درصد پوشش گیاهی به ویژه گیاهان غلاتی در هر چهار تخب‌خیز و با تیکت زیاد دام تعیین می‌شود و نهایا گیاهان درختی و بوته‌ای خششه‌سنگ خوشک (Daphne mucronata Royle) (دیوانه) منطقه و غلیظ (آکرا گرفتن با تعداد ناشناخته و متغیر) دانه‌ای در عرض چهار در حال نرمال و با یاد می‌باشد. عاملی کشائی در منطقه مورد مطالعه به بزرگ تر صورت می‌پیماید.

در اواخر سال ۱۳۷۹، میزان پویایی تولید شده در هر دو ناحیه قرار با استفاده از کودو، آهی ۱ متری‌مربع به صورت تقسیم‌بندی کرده شد. در هر ناحیه کلیه گیاهان غلاتی موجود در ۱۵ کودو، کف و در کودو، این نمونه‌های نویزی به آزمایشگاه منتقل گردید. سپس ضمن فکسمک کودو، مرتعی و خشک اکام محاسبه شد. پس از بررسی کودو، گیاه‌های غلیظ برای انتخاب هنری به روندی ترک پیمایی در حاصل به منظور مطالعه در شرایط غلیظ نمونه‌هایی از سه گیاه مرتعی غلیظ (که باریکی زیاد، شیب بالا، به شکل هواىی) شامل اکورپاییون شده است.
جدول ۱ بعضی از مشخصات شیمیایی و فیزیکی خاک‌های مرمت منطقه سبزگور

<table>
<thead>
<tr>
<th>واقع‌جایی (٪)</th>
<th>C/N (٪)</th>
<th>K (mg kg⁻¹)</th>
<th>P (mg kg⁻¹)</th>
<th>N (٪)</th>
<th>C (٪)</th>
<th>pH (-)</th>
<th>جرم مخصوص ظاهری (g cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس سیلت شن</td>
<td>23</td>
<td>35</td>
<td>30</td>
<td>21</td>
<td>52</td>
<td>7/5</td>
<td>0/55</td>
</tr>
</tbody>
</table>

با آزمون ۱ در سطح احتمال ۰/۰۵ مورد مقایسه قرار گرفتند. سپس مقایسه بین وزن باقی مانده و ضریب تجربه بدیری (Juncus stenophylla) و (Hordeum bulbosum) انداده‌گیری سرعت تجزیه یا اتصال به صورت زیر آماده شد (شکل ۱۷): ابتدا کلیه نمونه‌ها در شرایط هوا آزاد مجدداً خشک شدند. سپس مقدار ۲۵/۰۰۳ گرم از این دو گیاه به یک سیب زمینی هر دام در زمان نمونه برداری (ثب‌ماد) (۱۳۷۹) از ناحیه چرا، اندازه‌گیری تولید بیوماس در این ناحیه صورت پذیرفت. در واقع بیوماس تولید شده در ناحیه چرا بسیار نازجی و غیرقابل اندازه‌گیری بود. همانطوره که تماشای شناسی نشان داده در هر دام ناحیه مجموع مقدارهای بیوماس توسط هر کیلوگرم تولید شده است (جدول2). آگروپرای این بیوماس برای میزان‌‌های زیادی بود و بیش از حد افزایش بیوماس را در ناحیه چرا تولید کرده است. منابع داده‌ها بیوماس را در ناحیه چرا است که در هر دام ناحیه به صورت زیر نمونه‌برداری شدند. می‌باشد. منابع بیوماس، شرایط خشک و غریزه در شبه‌دشت شنیده و در دمای ۰/۰ در شرایط تجربه این سه گونه به صورت زیر ناحیه از معادله از می‌باشد (۱۴۲).

\[
RM = \frac{M_0}{M_1 \times 100}
\]

در این فرمول، \(M_0\), وزن باقی مانده (در کیلوگرم) و \(M_1\) وزن اولیه قبایل به گیاه (گرم) در زمان \(t\) و \(k\) است. سپس ضریب تابع تجزیه به شکل زیر محاسبه شد (۱۴۳):

\[
Ln \left(\frac{M_1}{M_0} \right) = -kt
\]
جدول ۲: میزان بیوماس تولید شده (g m⁻³) توسط تعدادی از گونه‌های مرتعی در منطقه فرق سیزکوه

<table>
<thead>
<tr>
<th>گونه مرتعی</th>
<th>فرق با پوشش</th>
<th>فرق با پوشش</th>
<th>دخترین</th>
<th>علیق</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron intermediate</td>
<td>۱۹/۹۸</td>
<td>۲/۲۴</td>
<td>۲/۳۲</td>
<td>۳/۷۵</td>
</tr>
<tr>
<td>Hordeum bulbosum</td>
<td>۱۲/۸</td>
<td>۳/۵</td>
<td>۲/۱</td>
<td>۳/۵</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>۷/۸</td>
<td>۶/۸</td>
<td>۴/۲</td>
<td>۷/۱</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>۲/۴</td>
<td>۱/۸</td>
<td>۰/۳</td>
<td>۰/۲</td>
</tr>
<tr>
<td>Juncus stenophylla</td>
<td>۰/۳</td>
<td>۰/۲</td>
<td>۰/۱</td>
<td>۰/۳</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>۳/۸</td>
<td>۳/۸</td>
<td>۳/۸</td>
<td>۳/۸</td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>۳/۸</td>
<td>۳/۸</td>
<td>۳/۸</td>
<td>۳/۸</td>
</tr>
</tbody>
</table>

جدول حاکی از این است که غلظت نیتروژن کل، فسفر و یون آنزیم در لاشبرگ‌های مرتعی متفاوت می‌باشد. ولی آزمون ۴ نشان داد که اختلاف بین غلظت نیتروژن، فسفر و یون آنزیم در لاشبرگ‌های مرتعی مختلف در هر دو ناحیه فرق به‌طور معنی‌داری محورسی (p<۰/۰۵) بر آین اساس، میزان غلظت عناصر غذایی در لاشبرگ‌های مرتعی برابر هر دو ناحیه محسوب می‌گردد. مقادیر متوسط نیتروژن در لاشبرگ آگروپیرون، جگن و یون پیازدار به ترتیب ۱/۳۶/۸، ۰/۹۸ درصد بود. بنابراین با در نظر گرفتن ۵۰٪ کربن در ماده خشک، نسبت کربن به نیتروژن در لاشبرگ‌های آگروپیرون، جگن و یون پیازدار به ترتیب ۲۷/۳، ۲۷/۳ و ۵۱/۰ خواهد بود.

در صورتی که نسبت نیتروژن به یون آنزیم در لاشبرگ‌های مرتعی برابر باشد، این منجر به این است که جگن و یون پیازدار در ناحیه سیزکوه باید به‌طور کلی نیتروژن، فسفر و یون آنزیم از لاشبرگ‌های شیمیایی پیش‌بینی از سایر لاشبرگ‌های مرتعی و لاشبرگ‌های مرتعی در منطقه مصوب (Feedback) شود.

در نتیجه در جود این ترتیب نکته ای برای خروج بیوماس از اکوسیستم‌های مرتعی و در نتیجه که مواد آلی خاک مشاهده شده بود که نمی‌تواند به‌طور مستقیم از خاک توسط دام باعث کاهش تدریجی درکیفیت علوفه (۵) و در نتیجه آن کاهش تولیدات دامی خواهد شد.

کیفیت لاشبرگ

جدول ۳ نتایج تجربه شیمیایی مربوط به تعدادی از گونه‌های مرتعی در حالت نشان می‌دهد. نتایج این در مجموع کیفیت شیمیایی لاشبرگ پوآ نسبتاً بالا و لاشبرگ آگروپیرون و جگن دارای کیفیت نسبتاً مشابه و پهتر

۸۵
جدول ۳: ترکیب شیمیایی لاش‌برگ‌های مختلف گیاهان مربوط در ناحیه فرق منطقه سیب‌کوه

<table>
<thead>
<tr>
<th>کونه مربوط</th>
<th>فرق با پوشش علفی</th>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>P</th>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron intermedium</td>
<td>(-)</td>
<td>1/19</td>
<td>1/55</td>
<td>0/032</td>
<td>1/132</td>
<td>0/55</td>
<td>1/55</td>
<td>0/032</td>
<td>1/132</td>
</tr>
<tr>
<td>Hordeum bulbosum</td>
<td>(+)</td>
<td>1/24</td>
<td>1/87</td>
<td>0/51</td>
<td>1/187</td>
<td>0/49</td>
<td>1/187</td>
<td>0/51</td>
<td>1/187</td>
</tr>
<tr>
<td>Juncus stenophylla</td>
<td>(+)</td>
<td>1/12</td>
<td>1/24</td>
<td>0/51</td>
<td>1/187</td>
<td>0/49</td>
<td>1/187</td>
<td>0/51</td>
<td>1/187</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>(-)</td>
<td>1/49</td>
<td>0/89</td>
<td>0/105</td>
<td>1/221</td>
<td>0/113</td>
<td>1/221</td>
<td>0/113</td>
<td></td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>(+)</td>
<td>1/20</td>
<td>0/98</td>
<td>1/105</td>
<td>1/19</td>
<td>1/105</td>
<td>1/19</td>
<td>1/105</td>
<td></td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>(-)</td>
<td>2/47</td>
<td>0/020</td>
<td>0/217</td>
<td>1/182</td>
<td>0/16</td>
<td>1/182</td>
<td>0/16</td>
<td>1/182</td>
</tr>
</tbody>
</table>

نمونه‌هایی مشابه را نشان داد، با این تفاوت که سرعت تجزیه در لاش‌برگ آگریپاپرون و گیاه پیازدار یکسان ولی کندتر از لاش‌برگ چرب بود.

بایان می‌دارند که از نظر آماری اثر مقدار می‌تواند در تیمارهای چرا و فرقو پوشش درختی را بر سرعت تجزیه باعث کنند ولی مقایسه با تیمار فرقو پوشش علفی کندتر بود. به‌حال خطر متغیر بین سطح گونه و ناحیه از نظر آماری معنی‌دار نبود (p<0.05).

نتایج آزمایش تجزیه لاش‌برگ سه گونه غالب مربوطی که نسبتاً لاش‌برگ زایده را تولید و به سطح عشایر اضافه می‌کنند در گیره ۴ و شکل اول اثر شد. در فاصله مدت معمولی داری بر صد تجزیه لاش‌برگ گیاه طرف سه ماه پس از آغاز مرحله تجزیه نداشت و سرعت تجزیه بین سه گونه در سه ماه ناحیه متفاوت بود و اختلاف بین میان‌داری معنی‌داری (p<0.05).

تراکم پوشش گیاهی با کیفیت بیشتر و ظرفیت کننده‌ی بیشتری است. سرعت تجزیه لاش‌برگ آگریپاپرون و گیاه پیازدار گونه که این منابع نسبتاً مشابه یا با کیفیت نسبی‌ای لاش‌برگ آن نشان روده‌های مربوطی نسبت به سرعت تجزیه لاش‌برگ‌ها.
جدول ۲ تایوز جدول تجزیه واریانس و مقایسه مینگین‌های (SEM) در صد وزن بانوی مانده‌ای از شرایط طبیعی

<table>
<thead>
<tr>
<th>سه گونه محروم در طول یک سال آزمایش در شرایط طبیعی</th>
<th>منبع</th>
<th>زمان تجزیه</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن بانوی مانده‌ای</td>
<td>کوئین</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>(ن)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>۸/۹ (۰/۹۵)</td>
<td>۰/۲۹</td>
<td>۱/۲۹</td>
</tr>
<tr>
<td>جو پیازدار</td>
<td>۴/۵ (۰/۹۵)</td>
<td>۰/۰۲</td>
<td>۷/۸</td>
</tr>
<tr>
<td>جنگ</td>
<td>۶/۲ (۰/۹۵)</td>
<td>۰/۰۲</td>
<td>۲/۹</td>
</tr>
<tr>
<td>(ن)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>۱/۴۳ (۰/۹۵)</td>
<td>۰/۱۳</td>
<td>۱/۴۳</td>
</tr>
<tr>
<td>جو پیازدار</td>
<td>۱/۵۸ (۰/۹۵)</td>
<td>۰/۰۲</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>جنگ</td>
<td>۱/۴۳ (۰/۹۵)</td>
<td>۰/۰۲</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>(ن)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>۰/۲۲ (۰/۹۱)</td>
<td>۰/۱۷</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>جو پیازدار</td>
<td>۰/۱۹ (۰/۹۱)</td>
<td>۰/۱۷</td>
<td>۰/۱۹</td>
</tr>
<tr>
<td>جنگ</td>
<td>۰/۲۲ (۰/۹۱)</td>
<td>۰/۱۷</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>(ن)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>۰/۸۴ (۰/۹۱)</td>
<td>۰/۱۷</td>
<td>۰/۸۴</td>
</tr>
<tr>
<td>جو پیازدار</td>
<td>۱/۹۸ (۰/۹۱)</td>
<td>۰/۱۷</td>
<td>۱/۹۸</td>
</tr>
<tr>
<td>جنگ</td>
<td>۰/۲۲ (۰/۹۱)</td>
<td>۰/۱۷</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>(ن)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>۰/۹۶ (۰/۹۱)</td>
<td>۰/۱۷</td>
<td>۰/۹۶</td>
</tr>
</tbody>
</table>

برای هر زمان تجزیه و در هر ستون اعداد دارای خروج مشابه فاقد اختلاف معنی‌دار (در سطح ۰/۰۵) می‌باشند.

می‌دهد (جدول ۳). به طور کلی، این نتایج نشان می‌دهد که اثر مدرنیت مرنع تبادل در اکسید کردن در مراتع تحت چر در مقایسه با مراکع تحت فرق بیشتر بل. ولی به نظر مرسد که در مراکع سبک‌ره فرق مرنع اثر مشبک بر چرخش کردن و طباع قابلیت تجذب نیتروز و گیاهی ندارد و این که ۱۵ سال فرق برای بهبود شرایط و کیفیت خاک (مانند افزایش فعالیت موجودات خاکی) از چرای قیلی کافی نیست.

می‌دهد (جدول ۴). همچنین نتایج این مطالعه نشان می‌دهد که گیاه‌ها و همچنین توتون و نوع گونه بر تجزیه لاشیرگ گیاه یکسان نیست و تابع عوامل مختلف شامل شرایط محیطی و بویه تغییرات فصلی مانند و رطوبت و همچنین کیفیت لاشیرگ است. هم‌اکنون لاشیرگ جنگ در هر سه ناحیه سرعت تر از لاشیرگ آکروپایرون و جو پیازدار و تجزیه شد با گونه‌ای که حسید ۸۳ درصد

۷۸
شکل ۱. مقایسه روند تجزیه (٪ وزن باقی مانده) سه گونه مربوطی (جو پیازدار HB، آگریپاپرون AI و جگن JU) در ناحیه فوق با پوشش علفی (A)، فوق با پوشش درختی (B) و چراش سنگین (C) در منطقه سیزکوه.

88
جدول ۵. میانگین‌ها (SEM) ضریب تابی تجزیه لاشیرگ مдол بر یک سال در شرایط طبیعی و ضریب همبستگی برپاشندگی داده‌ها

ناحیه مرتع	ضریب همبستگی	ضریب تابی تجزیه (ماده)	کونه گوارشی	آکروپایرون	جو پیازدار	چجک	قرف با پوشش علفی	قرف با پوشش دخته	جو پیازدار	
آستینی	0.89	0.005	125	0.89	0.08	0.98	0.02	0.02	0.86	0.06
ظاهری	0.88	0.06	0.95	0.88	0.09	0.98	0.03	0.03	0.86	0.06
پهلوی	0.98	0.08	0.116	0.98	0.09	0.98	0.04	0.04	0.86	0.06
آستینی	0.92	0.03	0.91	0.92	0.08	0.98	0.02	0.02	0.86	0.06
ظاهری	0.91	0.07	0.91	0.91	0.08	0.98	0.03	0.03	0.86	0.06
پهلوی	0.86	0.08	0.86	0.86	0.08	0.98	0.04	0.04	0.86	0.06

برای هر ناحیه و در ستون اعضاًی که دارای حروف مشابه هستند، اختلاف معنی‌دار (در سطح 0.05) می‌باشد.

لاشارگ چگن ظرف یک سال تجزیه می‌شود (جدول ۵).

در نتیجه گیری اگر جبه قرف ۱۵ ساله مردان سیزکو منجر به بازگشت ماده گیاهی تولیده شده به خاک می‌شود و یک سال مرتع در سیزکو منجر به بازگشت ماده گیاهی و کاهش در شاخص بهای چگن می‌شود، این می‌تواند نشانگر کاهش در حالت چگن بوده و کاهش در شاخص بهای چگن باشد.

این نتایج نشان می‌دهد که شرایط محیطی یکسپرس، اختلاف در ترکیب کیفیت مواد گیاهی موجب می‌شود که سرعت تجزیه نیز متفاوت باشد. (۱۵، ۲۴ و ۳۳) افزایش مقدار نیتروژن در لاشیرگ و کاهش نسبت چگن به نیتروژن (C/N) موجب افزایش سرعت تجزیه آن می‌شود (۱۵، ۲۴ و ۳۳). در این بررسی، غلظت متوسط نتیجه آن در لاشیرگ آکروپایرون و چگنان بیشتری از غلظت نتیجه آن در لاشیرگ جو پیازدار بود. علاوه بر این، به طور متوسط نسبت چگن به نیتروژن لاشیرگ آکروپایرون و چگن در حالی که در لاشیرگ جو پیازدار همواره نسبت یک بود.

علاوه بر نشان‌دهنده در کیفیت شیمیایی، لاشیرگ گونه چگن در طول آزمایش تغییر تر از گونه آکروپایرون توسط میکروب‌ها که به خاک می‌شود، باعث رشد و سرعت تجزیه گیاهی و کاهش آن خاک را افزایش می‌دهند. میکروگرافی منطقه و نبرد تغییرات زمانی و مکانی و یوزی‌های

89
سپاسگزاری

خدای عزیز نمودن سپاس از دلیل مناسب بهره‌مندی و مشارکت من در مطالعه‌های مختلف برخی از علمیان موضوع را قابل توجهی است.

در این مقاله، به‌منظور کلیه نویسندگان، محققین، دانشجویان و دیگر افرادی که در این مطالعه مشارکت کرده‌اند، تشکر و سپاس خواهیم داشت.

۱. اسدی، آ. (۱۳۸۹). بررسی آزمایشی جوانان گیاهی که در حوزه محیط زیست و بهبود محیط زیست انجام شده بودند.
۲. مهردوستی، ن. (۱۳۸۷). تأثیر مصرف دم و مصرف دم بر روی اثرات سایر عناصر غذایی.
۳. مرقدم، م. (۱۳۷۸). تأثیر مصرف دم بر روی اثرات سایر عناصر غذایی.