تأثیر کود گاوتی بر برخی خصوصیات فیزیکی و ضرایب هیدرولیکی و انتقال برماید در یک خاک لوم شنی در کرمان

هرمزد نقوی، محمد علی حاج عباسی و مجید افیونی

چکیده

هدف از این پژوهش بررسی اثر ماده آلی (کود گاوتی) بر برخی از ویژگی‌های فیزیکی، خصوصیات و ضرایب هیدرولیکی و انتقال رذاب در خاک بوده است. برای این منظور خاک سطحی (300-400 سانتی‌متری) از یک مزرعه لوم شنی انتخاب و سطح کود دامی (صفر) 30 و 60 در هکتار به آن اضافه و در تمام پلات ها ذرت کاشته شد. این آزمایش در قالب بلوک‌های کامل تصادفی 3 تکرار به صورت یکنواخت روی سطح کردن پاشیده شد. اجرا گردید. سپس مابعد از اضافه کردن ماده آلی به سطح محلول KBr ایجاد گردید. سپس محلول کود آلفای ذرت حذف و محلول JBr ایجاد گردید. این محلول را به 18 مقدار تناسلی مانند در آزمایشگاه اندوز گردید. پس از اضافه کردن رذاب، سه مرنگه آبیاری به مقدار 100، 200 و 400 میلی‌متر انجام گردید. بعد از هر مرنگه آبیاری نمونه‌های خاک از هفت عمق، با نمونه‌برداری مرکز جرم توزیع غلظت رسوبات در اعماق ذکر شده در تمام تیمارها نیز محاسبه شد. تابع نشان داد که افزودن کود دامی باعث کاهش جرم مخصوص ظاهری افزایش تخلخل، مقدار ماده آلی و رذاب خاک در پیش‌تانسلی مانند تا مانند شده است. همچنین افزودن کود دامی باعث تغییر ضرایب هیدرولیکی خاک گردید. مقدار Br در نیبرخ پلات‌هایی که کود دامی درونت کرده بودند، کمتر انتقال پیدا کرد. مشاهده شده تا تاثیی از بررسی مرکز جرم رذاب در زمان های تنمنی در نیبرخ با دست امتداد انجام می‌گردد.

واژه‌های کلیدی: ویژگی‌های فیزیکی خاک، کود گاوتی، شستشوی برماید، ضرایب هیدرولیکی، منحنی خصوصیات رذابی

مقدمه

توثیف منحنی خصوصیت رذابی یکی از اصولی‌ترین مباحث هیدرولیک خاک می‌باشد. یکی از راه‌های دسترسی به منحنی خصوصیت رذابی استفاده از معادلات رگرسیونی چنین تخمین

1. به ترتیب دانشجوی دکتری و دانشیاران خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

93
راه دیگر برای توصیف منحنی خاصیت رطوبت خاک ارائه یک معادله پیوسته بین مقادیر رطوبت و پتانسیل متریک خاک (h) می‌باشد (7) و (2). معادله 1 معرفی به رابطه

\[\text{تنگستین} (200) \text{ از این نوع معادلات است:} \]

\[S_e = \left(\frac{1}{v} + (\alpha h)^n \right) \]

در رابطه \((1)\) با پارامترهای نامعلوم \(m \) و \(\alpha \) است. مقدار آب قابل استفاده به کار می‌رود (8 و 24). زیرین‌های 4 و 8 به ترتیب معرف رطوبت باتیمانده و رطوبت اشباع خاک می‌باشند، به شکل متغیر \(h_s \) و \(h_r \) اگر این شاخص‌ها مورد استفاده قرار گیرد کند. مقدار آب مصرفی از میان در سطوح اشباع و غیر اشباع در بسیاری از مطالعات چگونگی انتقال اصلاح و عوامل مهم اثر کاربرد این بسیاری را در خاک‌های خشک منطقه کرمان و در مزرعه مورد مطالعه می‌باشند.

مواد و روش‌ها

این مطالعه در مزرعه مؤسسه تخیلی بپسته کشور در استان کرمان انجام شد. خاک این ایستگاه در فصل تجاری Coarse loamy mixed, Typic Torrifuvents طبیعی بافت لاین است (تا 30 سانتیمتری، 36 درصد 6 و 18 درصد سبز). میزان طبیعی از خاک نمونه برداری و برخی خصوصیات فیزیکی و شیمیایی در نمونه‌گیری از آن‌ها تهیه گردید. این

کشیده میکروپت موجب تغییر در خاصیت رطوبت و

هیدرولوژیک خاک شده و در توجه به حرکت اصلاح نیاز اثر می‌گذارد (1 و 9). یکی از راه‌های توصیف انتقال اصلاح پس از ترسیم منحنی توزیع غلظت ماده در خاک، مطالعه مرکز جرم غلظت ماده مورد نظر در طول نیم‌هفته خاک می‌باشد (11). گران و همکاران (11) حرکت آنتیزین را تا عنایت آبیاری با آب مرجع و با پاس مطالعه کردند. نتایج آن مطالعه داد مرکز جرم آنتیزین همانچنین آبیاری با پاس نا عضو بیشتر حرکت کرد است. عده‌ای از تحقیقات گزارش کرده‌اند افزودن ماده آلی به خاک قابلیت هیدرولوژیک آن را بالا می‌برد (1 و 13) و تحقیقات از مطالعاتی که کاملاً تحقیقات هیدرولوژیک و تغییر‌پذیری خاک ناشی از قانون آلی را گزارش کرده‌اند. به ترتیب می‌رسد تأثیر ماده آلی بر خاصیت‌های هیدرولوژیک خاک، تابع نوع خاک و خصوصیات فیزیکی آن باشد (4 و 6). از نتایج که ماده آلی بر هیدرولوژیک میزان تأثیر اعمالی حيث اشباع و غیر اشباع موضوع بسیاری از تحقیقات بوده است. بسیاری از فعالیت‌های کشاورزی منطقه افرات خود، سوموم و حتی آبیاری (به لحیه و آب‌الاقلیم) باعث اضافه شدن موادی به خاک و انتقال این مواد به طرف آب‌های زیرزمینی می‌شود (4 و 12). در بسیاری از مطالعات چگونگی انتقال اصلاح و عوامل مهم اثر گزارد یک حرکت بسیاری به شدت است. ونگ‌ها و ونگ‌ها (19) اظهار دادند حرکت اصلاح و آب در خاک تحت مکانیزم‌های فیزیکی و شیمیایی تعاملی و غیر تعادلی قرار دارد. برای این منظور رطوبت خاک را به دو بخش متحرک و غیر متحرک تقسیم نموده و جریان سریع تر آب و اصلاح را توصیف و رطوبت متحرک و منگکار انتقال اصلاح غیرفعال را برای مدت طولانی تری در خاک ناشی از انتشار آن‌ها از درون رطوبت متحرک به دو بخش رطوبت غیر متحرک می‌دانند. جوری و همکاران (12) خاک را به عنوان یک سیستم پیچیده معیاری می‌کنند که بسیاری انتقال اصلاح در آن ده میل تغییرات مکانیکی زیاد داشته و استفاده از احتمالات را در این امر ارائه می‌کنند. افرات خاک ماده آلی موجب تغییر در خاصیت رطوبت و
تاثیر کود گاری بر برخی خصوصیات فیزیکی و ضرایب هیدرولیکی و انتقال ...
جدول 1. برخی از خصوصیات فیزیکی و شیمیایی نیبرخ خاک مزروعه مورد مطالعه قبل از انجام آزمایش

<table>
<thead>
<tr>
<th>عمیق (cm)</th>
<th>شن</th>
<th>سیلت</th>
<th>رس</th>
<th>سدیم</th>
<th>هیدات</th>
<th>آهک</th>
<th>کربن آلی</th>
<th>HCO3 (meq/l)</th>
<th>CT (meq/l)</th>
<th>Cu2+ + Mg2+ (meq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>6</td>
<td>12</td>
<td>20</td>
<td>18</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>15-30</td>
<td>20</td>
<td>18</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>30-45</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>45-60</td>
<td>5</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>60-75</td>
<td>2</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>75-90</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>90-105</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

به علت اندازه‌گیری نکردن کلیه آبیون‌ها و کاتیون‌ها در هر نمونه، خاک حاصل جمع آبیون‌ها و کاتیون‌های هر نمونه خاک در جدول فوق برای نمایش.

جدول 2. برخی از خصوصیات فیزیکی و شیمیایی عصاره اشباع کود گاری مورد استفاده در تحقیق

<table>
<thead>
<tr>
<th>pH</th>
<th>EC (dS/m)</th>
<th>Na+ (meq/l)</th>
<th>Ca2+ (meq/l)</th>
<th>Mg2+ (meq/l)</th>
<th>HCO3 (meq/l)</th>
<th>CI (meq/l)</th>
<th>K (ppm)</th>
<th>P (ppm)</th>
<th>OC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.97</td>
<td>242.67</td>
<td>2</td>
<td>155</td>
<td>4</td>
<td>62</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>EC (dS/m)</th>
<th>Na+ (meq/l)</th>
<th>Ca2+ (meq/l)</th>
<th>Mg2+ (meq/l)</th>
<th>HCO3 (meq/l)</th>
<th>CI (meq/l)</th>
<th>K (ppm)</th>
<th>P (ppm)</th>
<th>OC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.97</td>
<td>242.67</td>
<td>2</td>
<td>155</td>
<td>4</td>
<td>62</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

کربن آلی: OC
جدول 3. تأثیر افزایش کود گاکی بر جری مخصوص ظاهری. تخلخل. مقدار کربن آلی رطوبت باقی مانده و اشباع و دو ضریب از معادله وانگخن (20) در خاک مورد مطالعه

<table>
<thead>
<tr>
<th>جرم مخصوص ظاهری (gr/cm³)</th>
<th>تخلخل (%)</th>
<th>کربن آلی (%)</th>
<th>θr (cm³/cm⁴)</th>
<th>θs (cm³/cm⁴)</th>
<th>α</th>
<th>n</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>1/58</td>
<td>42/038</td>
<td>0/08</td>
<td>0.39</td>
<td>0/05</td>
<td>87/84</td>
<td>6/7</td>
</tr>
<tr>
<td>30</td>
<td>0/24</td>
<td>42/089</td>
<td>0/05</td>
<td>0.39</td>
<td>0/07</td>
<td>3/72</td>
<td>6/7</td>
</tr>
<tr>
<td>60</td>
<td>0/18</td>
<td>42/154</td>
<td>0/05</td>
<td>0/28</td>
<td>0/15</td>
<td>2/67</td>
<td>6/7</td>
</tr>
</tbody>
</table>

* اعداد دارای حروف مناسب در یک ستون دارای تفاوت معنی‌دار نمی‌باشند سطح 9/05 آزمون چند دامنه‌ای (دانکن).

مقدار نه از طریق حل معکوس (42) به دست آمده که از آن به مقدار تخلخل برابر نمی‌باشد. مقدار تخلخل در آزمایشگاه تعیین شد.

به سمت پتانسیل‌های بیشتر و یا از سمت رطوبت‌های کمتر به سمت رطوبت‌های بیشتر در اثر اعمال تیمارهای کود گاکی شده است. این افزایش رطوبت در دامنه پتانسیل‌های 40–400 کیلوپاسکال تأثیر معناداری دارد و دلیل آن افزایش تخلخل مناطق با پتانسیل‌های مذکور است (جدول 3). به نظر می‌رسد سهم تخلخل مناطق با پتانسیل‌های 30–40 کیلوپاسکال در افزایش 30 و 60 افزایش کود کمی تماشای شده است. این نتیجه نسبت به تیمار شاهد پیدا شده است و موجب نگیرش شکل و شیب منحنی خصوصیات رطوبتی خاک شده است.

هرچند انتقال منحنی خصوصیات رطوبتی خاک در دامنه ذکر شده تأثیر بر مقدار آب استفاده که نخواهد داشت (به دلیل این که آب قابل استفاده مقدار آب است که بین پتانسیل‌های 1500 کیلو پاسکال تا 150 کیلو پاسکال می‌باشد). ولی بر مبنای آب سهول الوصول تأثیر می‌گذارد. به این ترتیب که در مکان‌های نزدیک به 100 کیلوپاسکال مقدار آب خاک افزایش ییدا کره است و آن توجه به تغییرات کمتر رطوبت در پتانسیل‌های مناطق با نقاط مرطوب‌تر به یک هشدار خاک آب سهول الوصول خاک می‌شود. البته آب سهول الوصول نسبت به 0/30 عنصر می‌تواند میزان کربن آلی رطوبتی خاک تناسب با هر محدوده تفاوت این اثر به دلیل با تاثیر بودن منحنی‌های مربوط به تیمارهای که کود آلی دریافت کرده‌اند همواره آب

دلیل دوم آن ناچیز از تأثیرات غیر مستقیم ماده آلی است. به این ترتیب که ماده آلی موجب ساختمان و دانه‌بندی خاک می‌شود و از این طریق جرم مخصوص ظاهری خاک را کاهش می‌دهد. مورجان و همکاران (15) افتادار دانه و اصلی کاهش جرم مخصوص ظاهری خاک بر اثر افزایش ماده آلی تأثیر ان بر بهبود ساختمان و افزایش تخلخل خاک است. به نظر می‌رسد در این جا تأثیرات دو عامل مهم کاهش جرم مخصوص ظاهری خاک شده است. آن به نتایج تحقیق نشان داد که تخلخل خاک نیز تحت تأثیر کود آلی افزایش معنادار پیدا کرده است (جدول 3).

افزودن کود گاکی موجب افزایش معنادار ماده آلی خاک شده است (جدول 3). درصد مدیان آلی خاک به ترتیب 3/75 و 0/55 کربن در تیمارهای 30 و 60 کربن در هکتار کود آلی نسبت به شاهد افزایش یافت. نتایج مشابهی توسط بهره‌مند و همکاران گزارش شده است (1).

تأثیر کود دامی بر منحنی مشخصه رطوبتی و ضریب آن

منحنی خصوصیات رطوبتی خاک باید هر 3 تیمار شاهد، 30 و 60 عنصر افزایش کود گاکی در هکتار در 4 امتیاد است. نتایج حاکی از انتقال منحنی مذکور از سمت پتانسیل‌های کمتر

97
تاثیر کود دامی بر انتقال برومید در نیمرب خاک نتایج بررسی حركت Br در نیمرب خاک در کرت‌های آزمایش Br قبل از آزمایش در طول نیمرب خاک در حد قابل اندازه‌گیری مشاهده نشد، بنابراین فرض می‌شود که تمامی برومید مشاهده شده در تاریک‌های خاک از نیمرب خاک باشد.

پس از اولین آبیاری مقداری از دیدار به ترتیب 9 و 10 میکرولتر برمی‌تر مربوط به تیمارهای شاهد و 30 و 60 تیم کود را 5 تا 10 درصد مقدار مشاهده می‌شود. این موضوع احتمالاً در نتیجه حركت ترجیحی می‌باشد. بنابراین جدول 4 نشان می‌دهد، نتایج گیرش این است که افزایش کود دامی در سطح ۵۰ تن در هر کیلوگرم کود آلی در هر دو میزان موجب \(\alpha \) کاهش معنی‌دار n گردیده است. فاکتور و علی (۹) نیز تغییر ضرایب معادله دیده منحنی خاصیت رطوبتش را ناشی از افزایش ماده آلی به خاک غارش کردن. افزایش ماده آلی مانند کودهای حیوانی موجب تغییر برخی از خواص فیزیکی شده است،طقس نتایج این مدل به نظر می‌رسد نتایج افزایش ۱۰۰۰ ماده آلی بر منحنی خاصیت رطوبتی خاک ناشی از طبیعت گذشته‌ای از طبیعت جاذبهٔ برمی‌تر خاک از چند مکرو‌استراکچره‌ها (Macrostructures) و میکرو‌استراکچره‌ها (Microstructures) پایه‌ای.
نگرش کود گازی بر برخی خصوصیات فیزیکی و ضراپ میکروژنیکی و انتقال رفتار

شکل 3: تأثیر کود دامی بر مقادیر غلظت باقیمانده برماید در سه زمان تعمیربرداری

حرف اول مشابه نشان دهنده وجود اختلاف معنی‌دار آماری توسط آزمون چند دامنه می‌باشد.
اختصاصی رطوبتی) بر حکمت آب در خاک تأثیر می‌گذارد.
تایب نشان داد تیمارها کود دامی موجب بیشتر شدن سهم خلع و فروب ریزتر در خاک شده است، بنابراین طبق اصول هیدرولیک خاک باید قابلیت همکاری هیدرولیکی کافی و در
نتیجه انتقال روابط و آب در خاک کند جریان صورت گیرد. مشاهده
این نتایج را نشان دهنده تأثیر گذاری تیمارهای فراوان افزایش مواد آلی در
خاک و به یافتن متقابل (افا متغییر) تاثیر مشاهده نمی‌شود
باشد. برای مثال گزارش و همکاران (10) افزودن مواد آلی مویج
افزایش سرعت آب و املاح را در یک خاک سنتنی گزارش نمی‌کرده.

تأثیر کود دامی بر میکان هندسی معکوس جرم غلظت باقی مانده
براید در تبریخ خاک
نتیجه مطالعه مرکز جرم غلظت باقی مانده روابط و آب در خاک می‌دهد
که حکمت روابط و آب در خاک مورد مطالعه تحت تأثیر افزایش کود
دامی قرار گرفته است. به طوری که مرکز جرم غلظت باقی مانده
روابط همراه است تیمارهایی که کود حیوانی دریافت کرده
براین در عمق باعث افزایش شده است (جدول 4). این
تایب همچنین نشان می‌دهد که با افزایش آب‌یاری مرکز
جرم مقدار نسبت به سمت مقداری کمتر X و مقداری بیشتر Y انتقال می‌پذیرد
است. بررسی آماری تأثیر کاربرد کود آب بر میزان انتقال روابط
در خاک انجام شده و نشان دهنده تأثیر ۱۰ (工夫) بر کود دامی شده
و در عمق فاکتور تیمارهای (工夫) بر مرکز جرم معکوس باقی
مانده و در اطمینان صورت گرفت. نتایج نشان داد در اولین
زمان نمونه‌برداری مؤلفه عمودی مرکز جرم (工夫) در
تیمار ۲۰ و ۶۰ تن افزایش کود دامی، کاهش معنی داری
نسبت به تیمارهای آتشش دیده است. در زمان دوم نمونه‌برداری
نتایج مشابه زمان اول حاصل گردید. نتایج مربوط به
زمان سوم نمونه‌برداری نشان می‌دهد اختلال معنی داری بین
مؤلفه عمودی (工夫 دامی) مرکز جرم تیمارهای مشاهده
نمی‌شود.

آن مؤثر است بخاطر مهار (5) وجود جریان تجهیزی را
از دلائل عدم موفقیت مدل‌ها در برآور یک‌پیش‌بینی‌های آنها
می‌دانند.

انتقال بیشتر در زمان دوم و سوم نمونه‌برداری به سمت
عمق خاک نسبت به زمان اول (بعد از آب‌یاری دوم و سوم) نشان دهنده تأثیر اعمال گریزان هوایی بر انتقال براید باشد.
در واقع زمانی که کود دامی آب‌یاری می‌شود مقداری از آب
آب‌یاری از درون مجاری درشت‌تر با سرعت بیشتری به سمت
عمق حکمت می‌پردازد و در این انتقال مقداری از املاح خاک
زیر جای جا می‌شوند. مداخله غلظت قابل ملاحظه‌ای از
روابط در اولین عمق مورد مطالعه پس از ۴۰۰ میلی‌متر آب‌یاری
دیل به مفاوت بخشی از روابط نسبت به سنتنی توسط آب آب‌یاری
است.

و از کننده و وینگا (19) برای این منظور رطوبت خاک را
به دو بخش تقسیم کرده. بخش اول رطوبت متحرک که شامل
روطوبت است که در فضاهای بین خاک‌هایی جای گرفته است.
و بخش دوم رطوبت است که درون فضاهای درون خاک‌های
واقع است. حکمت آب و به نفع آن املاح در بخش متحرک
سريع و انتقال املاح از و با به بخش غیر متحرک بسیار کند
است و دیلی آن را نقش مهم پیش‌بین انتشار در این انتقال معرفی
می‌کند (19).
جدول 4: جدول مختصات مركز جرم غلافت بالغ مانده، ردیاب و بررسی آماری تأکید نماینده سطوح کود
در زمانهای اوال، دور و سرم بر مولفه‌ها ی آن

<table>
<thead>
<tr>
<th>زمان</th>
<th>تیمار (میکرو گرم بر سانتی متر مکعب خاک)</th>
<th>(سانتی متر) Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>اوال</td>
<td>شاهد</td>
<td>3/8/27</td>
</tr>
<tr>
<td>3 تی در هکتار</td>
<td></td>
<td>2/8/15</td>
</tr>
<tr>
<td>6 تی در هکتار</td>
<td></td>
<td>3/8/15</td>
</tr>
<tr>
<td>دوم</td>
<td>شاهد</td>
<td>2/5/90</td>
</tr>
<tr>
<td>3 تی در هکتار</td>
<td></td>
<td>2/7/12</td>
</tr>
<tr>
<td>6 تی در هکتار</td>
<td></td>
<td>3/0/14</td>
</tr>
<tr>
<td>سوم</td>
<td>شاهد</td>
<td>1/8/70</td>
</tr>
<tr>
<td>3 تی در هکتار</td>
<td></td>
<td>1/7/61</td>
</tr>
<tr>
<td>6 تی در هکتار</td>
<td></td>
<td>2/6/16</td>
</tr>
</tbody>
</table>

**مطلب غلافت بالغ مانده ردیاب در نیمه خاک

نتیجه‌گیری

افراش کود دامی به خاک، موجب تغییر فیزیکی از خصوصیات مقداری که در این مطالعه ثبت شد. افزایش هیدرولیکی زیادی در مانده (مانند خاک مورد مطالعه) افزایش کود حیوانی موجب کاهش حمایت آب و به پیروی از آن املاح خاک بیشتر عمل می‌نماید. این نتایج ثابت می‌نماید مقدار مطالعه نشان داد پس از 400 میکرو گرم گل‌فکت بالغ مانده
ردیاب در نیمه خاک سرم تیمارها نمایت معنی‌داری به جز
در آخرين عمل مشاهده نشد.

منابع مورد استفاده

1. بهرماند، م.‌ر.، افستون، م.‌ع.، حلخیاسی و.‌ی.، رساله نوی. 1381، اثر لجن فاضل‌بند بر برخی خواص فیزیکی خاک. علم و
فناک، کشاورزی و منابع طبیعی، 6 (4): 1 - 8.