چکیده
در یک پژوهش مزروعه دوساله با استفاده از طرح کرت‌های خردشده، در قالب یک سایه‌گاه کامل تصادفی با چهار تکرار، در استادی تحقیقاتی دانشگاه کشاورزی دانشگاه شیراز واقع در باند، ویژگی‌های رشد و عملکرد گندم زمستانه در ازایش به سه تاریخ کشت و چهار تراکم بوته و بیشتر قرار گرفت. تاریخ‌های کاشت (15، 15 آذر، 15 دی) را کرت‌های اصلی و چهار تراکم (۱۵۰، ۴۵۰، ۲۵۰، ۱۰۰ بوته در متر مربع) را کرت‌های فرعی تعریف کردند. نتایج نشان داد که کشت‌های نهایی با کاهش عملکرد دانه همانند بود. به نوبه‌یکه کفاشی کشت دانه در تاریخ کاشت ۱۵ دی به طور معنی‌داری کمتر از تاریخ‌های کاشت ۱۵ آبان و ۱۵ آذر بوته. به علاوه، با تأخیر در کشت مراحل نمو بوته‌ها با سرعت بیشتری درشت و بوته‌ها دوره رشد خود را سریع‌تر به پایان رسانده. روندهای تغییرات شاخص سطح برگ و وزن خشک بوته‌ها نیز تحت تأثیر تیرامیسپرسی قرار گرفت. به طوری که در تاریخ کاشت زودتر و تراکم کاشت زیادتر، شاخص سطح برگ بیشتر در هر نمونه بوداری به دست آمد. با تأخیر در کشت تعداد ساقه‌های پروری در واحدهای سطح مزرعه کاهش یافت. گرچه در تراکم‌های زیادتر تعداد ساقه بیشتری در واحدهای سطح تولید شد، ولی در مرحله مکر و سرپنجه کاهش شدیدتری در تعداد ساقه در متر مربع در این تراکم‌ها مشاهده گردید. برحسب نتایج تغییرات وزن خشک شاخص در طول فصل نشان داد که در تراکم‌های زیادتر و تاریخ کاشت زودتر وزن خشک بیشتری نزول داشت. این موضوع در اکثریت زمین‌های پروری و دربافت بیشتر تابش خوری بوته بود. در مجموع، بر اساس نتایج پژوهش حاضر برای مناطق آب و هوایی مشابه با محل اجرای این پژوهش، گندم زمستانه را می‌توان برای گذر در مطلوب مراحل رشد و نمو خود و تولید عملکرد قابل قبول، تا نیمه آذرماه و با تراکم ۲۵۰ بوته در متر مربع کشت کرد.

واژه‌های کلیدی: تاریخ کاشت، تراکم بوته، شاخص سطح برگ، وزن خشک، گندم زمستانه

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد زراعت، دانشگاه کشاورزی، دانشگاه شیراز
2. استاد خاک شناسی، دانشگاه کشاورزی، دانشگاه شیراز

143
مقدمه

با استفاده از نهاده ها مانند کودهای شیمیایی، کودهای آلی و مدیریت مطیع زراعی شامل تهیه به موقع و مناسب زمین، به کاشت به موقع تراکم عاملکرد کننده وجود دارد (31). در هر منطقه باید دستبافی به عملکرد بهینه یک زمین کاشت متفاوت به وجود آید که شامل شرایط آب و هوا، فاکتور سایر بستر کاشت، رطوبت، بذر، رقم مورد نظر و زمان محتمل برای شروع آن و بیماری ها، تعیین می شود (3). هدف از تعیین تاریخ کاشت بهینه تعبیر دوره زمانی است که مجموعه عاملکرد حاکم در آن دوره بیشتر نزدیک به زمان است. انتخاب زمان است به یک یا یکی از شرایط مطلوب قرار گیرد و از برخورداری هر یک از مراحل نمایی با شرایط نامساعدی احتمال به داشته باشد (22، 23 و 31).

کاشت زود هنگام در مناطقی که با محدودیت رطوبت خاک مواج به سبب باعث می شود سبب رطوبت خاک شود و ممکن است رشد بهره ورگیا با کمبود رطوبت جابه جایی (24). هنگام کاشت زود هنگام باعث می شود که تیز سرمایی گیاه زودتر رفع شده و گیاهی در اوارش زمانی به سالاز رود که به نوبه خود احتمال بهبود در رضایت گیاه زیاد می کند (24 و 34). به علایم، کاشت زود هنگام، با افزایش تعداد پنجه در هر بوته هوا بهتر است که این پنجه با یک یا چند رقابت کرده و باعث تکلیف آب و انعکاس غلیظ خاک شود و ممکن است گیاه زراعی در مراحل بعدی شکل گیری عاملکرد دانه با کمبود خاصیت می خواهد (Resources) مانند.

منابع

از سوی دیگر، تأخیر در کاشت که بنا به عوامل چون تأخیر در برداشت محصول قبلاً بر روی می گذارد که شامل آب و هوا بر روی زمان مناسب کاشت رخ می دهد. نیز سبب بروز عوارضی می گردد که موجب کاهش عاملکرد می شود (1). بقای گندزمانه به عوامل مانند سازگاری به سرمای، شدت سرمایا و دمای پایین بین پایه تا برز و میزان نابش في در خلال رشد و نحوه پنجه یستگی در (29، 30) این عوامل را می توان نا حاصل دهد.
طول جغرافیایی ۵۲ درجه و ۴۶ دقیقه شرقی و عرض جغرافیایی ۲۹ درجه و ۵۰ دقیقه شمال ایران ۱۸۱ متر از سطح دریا از جمله گردید. برخی اطلاعات هواشناسی منطقه آزمایشی از جمله باد و بارش، در طول مدت دو هفته، بارش، بارش، بارش...

فشار گازهای فیزیولوژیک و عملکرد دانه گندم زمستانی در پاییز به تراکم است،...
جدول 1. برخی اطلاعات هواشناسی منطقه آزمایش‌های سال‌های 1382 تا 1385

<table>
<thead>
<tr>
<th>سال</th>
<th>دمای دما (C)</th>
<th>نسبی رطوبت (L)</th>
<th>تراکم دریافتی (L)</th>
<th>وزن (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1385</td>
<td>11/20</td>
<td>47/20</td>
<td>45/10</td>
<td>20/10</td>
</tr>
<tr>
<td>1384</td>
<td>11/24</td>
<td>51/24</td>
<td>45/10</td>
<td>20/10</td>
</tr>
<tr>
<td>1383</td>
<td>11/22</td>
<td>55/22</td>
<td>45/10</td>
<td>20/10</td>
</tr>
<tr>
<td>1382</td>
<td>11/24</td>
<td>58/24</td>
<td>45/10</td>
<td>20/10</td>
</tr>
</tbody>
</table>

شده در نمودار، میانگین تعداد نهایی در هر تیغه نتیجه‌گیری شد.

Zadoks decimal code (20) تعیین می‌گردد. مرحله رسیدن در تیغه یک هم‌مان انجام می‌شود.

نحوه در تیغه که ترکیب رسیدگی بین هفته دوم تا هفته سوم تیره می‌باشد (جدول 2) و لیک برداشت نهایی تیغه‌ها در هفته سوم نمایش داده می‌گردد که ترکیب از وسط هر تیغه با کم در تیغه بوده است. برداشت نهایی تیغه‌ها در هفته سوم نمایش داده می‌گردد که ترکیب از وسط تیغه نیز می‌باشد و اجزای آن اندازه‌گیری شد.

MSTAT-C تجزیه واریانس داده‌ها با استفاده از نرم‌افزار C انجام شد. در تجزیه و تحلیل نتایج در مواردی که داده‌های دارای 41 سال با همان شاخص داشتند، میانگین گیری انجام شد و در غیر این صورت (مانند بررسی روند تغییرات شاخص سطح برق) نتایج داده‌های آزمایشی به صورت جداگانه بررسی گردید.

عمارتکه دانه پس از انجام آزمون پس نوایی واریانس‌ها (آزمون باتلر) تجزیه واریانس‌ها با استفاده از آزمون در نتایج انجام شد و برای رسیدن نمودارهای نرم‌افزار Excel استفاده گردید.

نتایج و بحث

روندهای تغییرات شاخص سطح برق (R1)

نحوه تغییرات شاخص سطح برق تحت تأثیر تراکم بونه در دو سال آزمایش در شکل‌های 1 و 2 ارائه داده شده است. در هر دو سال از ابتدا فصل رشد تراکم‌های کم برداشت یک میزان دارای برق کمتر چهارم تراکم‌های 1 و 2 (350 و 450 بونه در مترمربع) بوده. همچنین در تراکم‌های زیادتر بونه، روند کاهش شاخص سطح برق در انتهای فصل رشد
جدول ۲: زمان رسیدن به مرحله سبله دهی، گل دهی و رسیدن فیزیولوژیک بر حسب تاریخ (اعداد اصلی) و روز پس از کاشت (اعداد داخل پرانتز) در تاریخ‌های مختلف کاشت

<table>
<thead>
<tr>
<th>روز پس از کاشت</th>
<th>تاریخ کاشت</th>
<th>رسیدن فیزیولوژیک</th>
<th>رسیدن گل دهی</th>
<th>رسیدن سبله دهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ دی</td>
<td>۱۳ اردیبهشت(۱۸۷)</td>
<td>۱۵ آبان</td>
<td>۱۳ اردیبهشت(۱۸۷)</td>
<td>۱۷ آذر</td>
</tr>
<tr>
<td>۱۴ دی</td>
<td>۱۳ اردیبهشت(۱۸۷)</td>
<td>۱۴ آبان</td>
<td>۱۲ اردیبهشت(۱۷۸)</td>
<td>۱۶ آذر</td>
</tr>
<tr>
<td>۱۳ دی</td>
<td>۱۲ اردیبهشت(۱۷۸)</td>
<td>۱۳ آبان</td>
<td>۱۱ اردیبهشت(۱۷۸)</td>
<td>۱۵ آذر</td>
</tr>
</tbody>
</table>

شکل ۱: روند تغییرات شاخص سطح برگ در تراکم‌های مختلف کاشت گندم رقم شیراز سال ۸۸-۱۳۸۰

سریع تر بود (۳۰) که این امر را با الهام رقابت و کاهش دریافت نابودی و در نتیجه افزایش سرعت مسند شدن و در ابتدا رفتن برگ تا نسبت داده‌اند. در پژوهش حاضر نیز افت سریع‌تر شاخص سطح برگ در تراکم ۸۵ بوته در متر مربع در هر دو سال آزمایش مشهور بود (شکل‌های ۱و۲).

اثر تاریخ کاشت بر روی تغییرات شاخص سطح برگ در شکل‌های ۳و۴ نشان داده شده است. اگرچه در ابتدا فصل رشد، تیمار تاریخ کاشت اول (۱۵ آبان) دارای شاخص سطح برگ بیشتر و تیمار تاریخ کاشت سوم (۱۲ دی) دارای شاخص
نمودار 2: روند تغییرات شاخص سطح برگ در تراکم‌های مختلف کاشت گندم رقم شیراز سال‌های 1380-81.

نمودار 3: روند تغییرات شاخص سطح برگ در تاریخ‌های مختلف کاشت گندم رقم شیراز سال‌های 1380-81.

تغییرات وزن خشک
اثر تراکم بوت‌های نباتی نسبت به روند تغییرات وزن خشک در واحد سطح در سال آرمایش در شکل‌های 5 و 6 نشان داده شده است. با افزایش تراکم بوت‌های گندم وزن خشک بوت‌های گندم به متر مربع تقیبی نماینده گردید.

تعداد مراحل رشد بی‌شهر بود و این اختلاف برای تراکم‌های 150 و 250 بوت در متر مربع کاملاً باز بود. در کلیه مراحل. از افزایش وزن خشک در ابتدای فصل رشد کند بود اما از اردیبهشت، افزایش وزن خشک ادامه پیدا کرد و در نهایت به مقدار متوسطی به می‌رسد.
شکل 4. روند تغییرات شاخه سطح برگ در تاریخ‌های مختلف کاشت گندم رقم شیراز سال‌های 1381-88

شکل 5. روند تغییرات وزن خشک در تراکم‌های مختلف کاشت گندم رقم شیراز سال‌های 1381-88

سریع‌تر در وزن خشک در هر دور شاخه‌ای درست شده‌شده‌اند در اوایل فصل رشد (بعد از گل بزد) نیز در کلیه تیمارها وزن خشک بیشتری به حداکثر مقدار خود رسیده و تغییر چندانی در روند وزن خشک مشاهده نگردیده (شکل‌های ۵ و ۶). گرچه با افزایش تراکم بونه، وزن خشک تک بونه کاهش
تأخیر در کاشت، عملکرد بیولوژیک گندم کاهش یافته است. کاهش عملکرد بیولوژیک با تأخیر در کاشت در دوره اول به دلیل کاهش طول دوره رشد و کاهش طول دوره حداکثری (Ground cover) که در نتیجه کاهش دریافت نشان داده شده است. تأثیر تاخیر کاشت بر روند تغییرات وزن خشک شاخص‌های در واحدهای 8 و 7 نشان داده شده است. تأثیر کاشت 15 آبان از ایندیتی قابل داده شده وزن خشک بیشتری نسبت به تاخیر کاشت 15 آذر و 15 دی بود و در دو این موضوع به ویژه در سال دوم آزمایش بیشتر مشهد بود (شکل 8). به نظر می‌رسد این امر به دلیل کاهش رشد و بارش در بر اثر مسایل مهیل اولیه برای رشد بوده که این تاخیر کاشت بوده که منجر به افزایش اثرات خشکی گیاهی گردیده است. احتمالاً بین وزن خشک بوده داشت در تاخیر کاشت دوم سوم به‌عنوان کپ (شکل 6 و 7) و رشد سریع بوده و تداوم آن این تفاوت یا زیادتر شد. تأثیر کاشت رشد گیاهان با گشت سریع رگ بوده و در نتیجه دریافت میزان بیشتری از تاخیر بیولوژیکی هم‌زمان است (2) و این امر موجب افزایش تولید ماده خشک گیاهی می‌شود. مکانوند و گاردنر (28) هم مشاهده کرده که با تأخیر در کاشت عملکرد بیولوژیک بستگی به پژوهش کانتری می‌پایه در پژوهش کانتری و همکاران (13) نب‌با
کاشت، تفاوت زمان رسیدن به مراحل مهم نموی در تیمارهای مختلف بسیار کمتر از یک ماه بود. به عنوان مثال، در تاریخ کاشت ۱۵ آبان ماه، بوته‌ها در دوم اردیبهشت وارد مرحله سنبله‌دهی شدند، در حالی که در تیمار تاریخ کاشتن بعدی (۱۵ آذرماه) بوته‌ها با اختلاف ۱۱ روز در تاریخ ۱۳ اردیبهشت ماه وارد مرحله سنبله‌دهی شدند و در تیمار تاریخ کاشتن سوم (۱۵ دی) با این که بوته‌ها در ماه دی‌برتر کشت شده بودند، فقط بوده‌اند (۲۸). چون با تأخیر در کاشت تعداد پنجه‌های تولید شده در پاییز کاهش می‌یابد، این موضوع منجر به کاهش عملکرد بیولوژیک می‌شود (۸).

تعداد روز تا رسیدن به مراحل فنولوژیک
تعداد روز برای رسیدن به مراحل مختلف در جدول ۲ نشان داده شده است. با وجود اختلاف پیک ماهه بین تاریخ‌های

شکل ۷ روند تغییرات وزن خشک در تاریخ‌های مختلف کاشت گندم رقم شیراز سال ۱۳۸۰–۸۱

شکل ۸ روند تغییرات وزن خشک در تاریخ‌های مختلف کاشت گندم رقم شیراز سال ۱۳۸۱–۸۲
روز دیترر (در تاریخ ۲۳ اردیبهشت ماه)، به مرحله سلبه‌دهی رسیدند. برای تعداد روز نا مراحل گل دهی و رسیدن فیوزولونیژ روند مشاهده ماه ماههاش شد و با پیشرفت مراحل تومی اختلاف زمانی رسیدن به مرحله مشخص در تاریخ‌های مختلف کاشت، کاشته‌ها را به طوری که در مرحله گل دهی اختلاف زمانی بین تاریخ کاشت اول و دوم مثبت روز بود (در مقایسه با ۱۱ روز برای مرحله سبزه‌دهی). این نتایج حاکی از آن است که یا تأخیر در کاشت سرعت نمو گیاهان افزایش می‌یابد و در راستای تأیید نتایج گزارش شده توسط پژوهشگران مانند کریپی و فریس (۲۶) (۲۱) و استم و کریپی (۲۴) می‌باشد.

بر اثر کوتاه نور مرحله نمروی، گیاهان کاشت شده در طول یک دوره طولانی طی چند روز با چند هفته به بلندی نرسیدن (۳۷) (۲۱) اثر تاریخ‌های مختلف کاشت بر مراحل نمروی کندم را مورد بررسی قرار داد و مشاهده کرد که تأخیر در کاشت بسب کوتاه شدن طول مرحله نمروی (افرازی سرعت نمروی) می‌شود. در پژوهش‌هایی که در تاریخ‌های ۹ سپتامبر، ۲۱ اول به ترتیب کاشت شده بودند به ترتیب در تاریخ‌های ۲۹، ۲۷ و ۲۵ روز به مرحله گل دهی رسیدند که طول دوره کاشت تا گل دهی در این سه تیمار به ترتیب ۲۳۲، ۲۶۷ و ۲۵۷ روز بوده است. همین طور که در کاشت گونه‌های از سیستمی به ۹ مارس (۶ هفته تا تأخیر در کاشت) پذیرفته با اختلاف بین از زمان کاشت ناگهانی ۲۴۲ه تا ۱۸۸ روز کاشت یافت.

به عقیده استمیت و همکاران (۳۳) در غیاب نیاز به بهارش، اثر تأخیر کاشت بر فیوزولونیژ کشت غلظت بخار، کوتاه شدن طول مرحله نمروی انتهای و نتیجه آن رسیدن هم‌مانی به پون‌ها می‌باشد. در کشت گونه‌های بخار به تاریخ‌های مختلف کاشت بین اول مارس و ۷ اوریل، تاریخ‌های رسیدن به مرحله نمروی متوالی به چندیک توجه شد. به نحوی که در همه حال پیدا شده سنبله در یک دوره ۲۰ روزه اتفاق و انتقال تاریخ‌های برداشت
جدول 3. اثر تراکم بوته و تاریخ کاشت بر وزن خشک بوته های گذم در زمان گل‌دهی

<table>
<thead>
<tr>
<th>تراکم بوته در مترمربع</th>
<th>تاریخ کاشت</th>
<th>وزن خشک بوته های گذم در زمان گل‌دهی (گرم در مترمربع)</th>
<th>میانگین در سال</th>
<th>سال 1382</th>
<th>سال 1381</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراکم 150 بوته در مترمربع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>685</td>
<td>513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>678</td>
<td>492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>668</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم 250 بوته در مترمربع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476</td>
<td>525</td>
<td>911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>566</td>
<td>1165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>565</td>
<td>1137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>462</td>
<td>586</td>
<td>1177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم 350 بوته در مترمربع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>544</td>
<td>1165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>519</td>
<td>1137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>566</td>
<td>1092</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم 450 بوته در مترمربع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>544</td>
<td>1165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>519</td>
<td>1137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>566</td>
<td>1092</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر سطح میانگین‌های دارای حروف مشابه (در هر تیمار) فاقد اختلاف معنی‌دار (دانکن 0/05) می‌باشند.

تعداد پنجه در هر بوته 45 درصد کاهش یافت. در آزمایش حاضر مشاهده شد که با افزایش تراکم از 250 بوته در مترمربع تعداد پنجه در هر بوته 24/4 کاهش می‌یابد. جوزف و همکاران (22) نیز گزارش کردند که با افزایش تراکم بوته، تعداد پنجه‌های بارور در هر بوته، کاهش یافت و در بیشترین تراکم (450 بوته در مترمربع) هر بوته به طور متوسط دارای یک پنجه بود. در حالی که در تراکم 186 بوته در مترمربع در هر بوته 4 پنجه بارور وجود داشت. در پژوهش پاکریج و دونالد (20) نیز مشاهده شد که با افزایش تراکم از 1/2 به 1/3 بوته در مترمربع تعداد پنجه در هر بوته از 29/4 به 68/4 کاهش یافت. به علاوه، بیژیری از پژوهشگران (9 و 22) نیز نشان دادند که ساقه اصلی در غلت، در مقایسه با پنجه‌های بارور، تعداد بیشتری داشته و در نتیجه تولید می‌کند. دونالد (16) معتقد بود برای کاشش و تعداد پنجه در هر بوته به طور متوسط دارای یک پنجه بود. در حالی که در تراکم 186 بوته در مترمربع در هر بوته 4 پنجه بارور وجود داشت. در پژوهش پاکریج و دونالد (20) نیز مشاهده شد که با افزایش تراکم از 1/2 به 1/3 بوته در مترمربع تعداد پنجه در هر بوته از 29/4 به 68/4 کاهش یافت. به علاوه، بیژیری از پژوهشگران (9 و 22) نیز نشان دادند که ساقه اصلی در غلت، در مقایسه با پنجه‌های بارور، تعداد

153
شکل ۹. روند تغییرات نسبت زنی گندم در سه تاریخ کاشت ۱۵ آبان (الف)، ۱۵ آذر (ب) و (ج) (اعداد میانگین دو سال ازماشی می‌باشند).
گردید که بوته‌ها به دوره طولانی‌تری به پنجه زنی ادامه می‌دهند. هرچند پیشرفت این پنجه‌ها فرصت کافی برای نمود اورز و در نتیجه از پنجه‌ها (شکل 9) به طوری که در نهایت تعداد کل پنجه‌های کامپری نسبت به تاریخ کاشت‌های اول و دوم تولید کردند.

در تاریخ‌های کاشت زرد هنگام گندم در پاییز، بوته‌ها قبل از ورود به مرحله رشد کند زمستان، فرصت و شرایط مناسبی برای پنجه‌زنی دارند و بخشی از پنجه‌های خود را در این مرحله به انجام می‌رسانند، ولی در تاریخ‌های کاشت دیترتر فرصت کمتری برای تولید پنجه در پاییز دارند (37). کاهش‌های و همکاران (14) هم نشان داده‌اند که تعداد پنجه در هر بوته در تاریخ کاشت زرد هنگام گندم پیشرفت بوده و با تأخیر در کاشت، هر بوته پنجه کمتری تولید می‌کند. پنجه زنی در غلات اورز و یک صفت زنبیکی است (19). ولی تا حد زیادی تحت تأثیر مدیریت‌های زراعی به ویژه تاریخ کاشت و تراکم بوته قرار می‌گیرد (2). این عوامل ضمناً استف پنجه زنی را محدود نموده یا آن را تحریک کنند. ظرفیت پنجه‌زدنی بسته به پتانسیل زنبیکی افرونی و همکاران (1) مشاهده کردن که بین تاریخ کاشت
ساختار این تیپجه چندند دور از اندازه نمی‌باشد. پاکریک و
دوالیا (33) هم نشان داده‌که در دامنه وسیعی از تراکم‌های
کندم (از 0.278 یکه در دمای 300 مترینی) عامل‌درک‌ده که بی‌مقدار
انگست تحت تأثیر قرار گرفته است. به طوری که در تراکم 7 یکه
در متر مربع تقریباً عامل‌درک‌ده معادل تراکم 106 یکه در
متر مربع به دست آمده است. در واقع کندم و سایر غلای
دانه‌ی با قابلیت پنجه‌زنی، از راه تنظیم نتیجه‌گیری نشان می‌دهد. به نحوی
که عامل‌درک‌ده این آنها چندان تحت تأثیر تراکم یکه در
گرد (1) به عنوان یکی از پژوهشگران (12، 18 و 20) نشان داده شده است.
برخی از تراکم کاشت و تراکم بونه عامل‌درک‌ده در
جدول 4 نشان داده شده است. در یکی از کشاوی (15 آبان)
با افزایش تراکم بونه عامل‌درک‌ده روند کاهشی داشت ولی این
رونده در تاریخ کاشت سوم (13 آبان) کم شد و به مقدار
جدول 4. در این تاریخ کاشت، بیشترین عامل‌درک‌ده از
تراکم 106 یکه در متر مربع به دست آمده است. در حالت که در
تاریخ کاشت دوم با افزایش تراکم بونه عامل‌درک‌ده روند
افزایش داشت، به طوری که تراکم 106 یکه در متر مربع دارای
بیشتری عامل‌درک‌ده (0.58 گرم در متر مربع) بود (جدول 4).
این موضوع ممکن است دلیلی بر این ممکن باد که افزایش
تراکم بونه تأثیری در شرایط مساعد رشد، همگانیت تاریخ کاشت
دوم و پزوهش حاضر، می‌تواند با افزایش عامل‌درک‌ده هرگز به
(8 و 12). الی به کورنی و هگاری (13) گروه کرده‌اند که
در پژوهش آن افزایش تراکم بونه در تاریخ کاشت بیشتر با
افزایش عامل‌درک‌ده هرگز به دست آمده است. به طوری که می‌توان
از این ویژگی برای جبران کاهش عامل‌درک‌ده در کشت‌های
تأثیری استفاده کرد. ولی به نظر می‌رسد تاریخ کاشت آن
قد کم با تأثیر افتاده شرایط برای جبران رشد به تأثیر
افشنا. چندان محدود نبود، افزایش تراکم بونه با
افزایش عامل‌درک‌ده مانند آنچه که در تاریخ کاشت سوم در این
اول آبان و 25 آبان اختلاف معنی‌داری مشاهده نشده، ولی در
تاریخ کاشت 20 آذر عامل‌درک‌ده در تمام آزمایش‌های
همکاران (7) در آزمایش در شرایط آب و هوای پایدار نشان
dادند که تاریخ کاشت زد (15 متر مربع) منجر به عامل‌درک‌ده
بیشتر نسبت به تاریخ‌های کاشت‌دهتر (30 متر مربع و 15 آبان)
شد. کلی (44) در آزمایش اواخر کاشتگاه امریکا نشان داد
که از بین سه تاریخ کاشت گندم، تاریخ کاشت سوم و سوم
(اوسته و اواخر کاشت‌دهتر) منجر به بیشترین عامل‌درک‌ده از شد و با
تأثیر در کاشت عامل‌درک‌ده دانه کاهش یافت. شارما و همکاران
(51) در آزمایش کردن که کوچکتر از تاریخ کاشت گندم نشان داد
که عامل‌درک‌ده دانه کاشت زد. لون و همکاران (77) هم مشاهده کردند
که تأثیر کاشت دانه کاشت در تاریخ کاشت (15 و 20) آبزد مشاهده
بود و با تأثیر بحث از تاریخ کاشت به ماه توانایی عامل‌درک‌ده دانه
کاهش چشمگیری یافت.

وضعیت عامل‌درک‌ده دانه گیاه مو، بر اساس زیادی از نتایج
خورشیده، پاییزی و سیاه‌سپیدان گیاهی در فاصله نیم‌ده.
شده (41). با این حال، کاشت بهتر از زمان برای گیاهان پاییزه
توثیق نمی‌شود. همچنین که در این آزمایش نیاز مشاهده گردید.
که تأثیر کاشت اول حاوی عامل‌درک‌ده کمی نسبت به تاریخ
کاشت دانه کاشت، هر چند این اختلاف معنی‌دار نبود. در همین
راستا کلی (22) و کامپیل و همکاران (42) نیز در پژوهش‌های
خود مشاهده کردند که در کاشت زد عامل‌درک‌ده (اولین تاریخ
کاشت) عامل‌درک‌ده کمی نسبت به تاریخ‌های کاشت‌دهتر به
دست می‌آید. یکی از دلایل ایجاد چنین وضعیتی آن است که
در کاشت زد هنگام که در پاییز به دلیل وجود دما مساعد
پنجه‌های زبان‌داری به هر موکس ایجاد می‌شود که در محیط
بدیه یا کمپکتی بر سر آب، عناصر غذایی و نور را برای کرد و
موجب افزایش اندازه شده (ه) در نهایت عامل‌درک‌ده دانه کمی
به دست می‌آید. اثر تراکم‌های مختلف بر عامل‌درک‌ده دانه کاشت از لحاظ آماری
معنی‌دار نگردید. با توجه به ویژگی‌های پنج‌نیزه در گندم‌های جنوب
جدول 2. برهمشکت تاریخ کاشت و تراکم برون بر عملکرد دانه گندم رقم شیراز

<table>
<thead>
<tr>
<th>تراکم (بوت در متریم)</th>
<th>عملکرد دانه (گرم در متریم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 انال</td>
<td>15 آذر</td>
</tr>
<tr>
<td>525 آ</td>
<td>520 آ</td>
</tr>
<tr>
<td>535 آ</td>
<td>525 آ</td>
</tr>
<tr>
<td>527 آ</td>
<td>524 آ</td>
</tr>
<tr>
<td>529 آ</td>
<td>524 آ</td>
</tr>
<tr>
<td>530 آ</td>
<td>545 آ</td>
</tr>
</tbody>
</table>

میانگینهای دادهای حروف مشترک فاقد اختلاف معنی می‌باشد (رک ۰/۰۵). حروف بزرگ برای مقایسه سنتی (تراکم) و حروف کوچک برای مقایسه رشته (تاریخ کاشت) است.

پژوهش دیده شد، همراه نخواهند بود (جدول ۲). از سوی دیگر، تاریخ کاشت زود هنگام بیش به بیان تأخیر افتادن شروع آغاز شلیک‌کننده و تشکیل تعادل بیشتری برج روی سیف اصلی و پنجه‌ها شده که این وضعیت برای رشد روند و پنجه‌زنی مساعدتر است و در نتیجه، در تراکم‌های کمتر بونه، کشت زودتر قالب‌گیری جبران کننده بیشتری از لحاظ عملکرد دانه و افزایش دانه است (۲۵).

در مجموع، نتایج پژوهش حاضر نشان داد که برای انطباق بهتر مراحل رشته و نگهداری مصرفی و دستگیری به بیشترین عملکرد دانه در گندم زمستانه رقم شیراز، کاشت گندم می‌تواند مورد استفاده باشد.

1. افینی، د.د. اقامتی و د.د. صادقی. ۱۳۸۰. بررسی تاریخ کاشت و میزان بذر بر عملکرد دانه و خصوصیات زراعی ارگان جدید گندم. گزارش طرح تحقیقاتی شماره ۴۷-۳۹۰/۱۲-۳۰، ایستگاه تحقیقات کشاورزی کیروآباد اصفهان. ۹ صفحه.
2. امامی، د.د. ۱۳۸۲. تفاوت غلات. انتشارات مرکز نشر دانشگاه شیراز.
3. خواجه پور، م. ر. ۱۳۸۰. اصول و مبانی زراعته. انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان.
4. رادمهر، م. غ. لطعی فیضی و ع. کییفی. ۱۳۷۳. بررسی میزان رشد گندم فلات در جنوب خوزستان. گزارش پژوهشی مرکز تحقیقات کشاورزی خوزستان. شماره ۱۵. ۵ صفحه.
5. راهنمای، ا. هاشمی ذوفیلو و ع. برخشنده. ۱۳۷۷. بررسی تغییرات در میزان نرخ در عملکرد دانه ارکاس گندم در تراکم‌های خورشیدی. نهال و بذر ۱۴: ۸-۱۹.
6. شریفی‌زاده، م. ف. سلیمی و غ. رادمهر. ۱۳۸۰. بررسی اثر تاریخ کاشت بر عملکرد دانه و انتقال مجدد مواد ذخیره‌ای جو دانش کشاورزی ۱۱: ۱۲-۲۱.