پاسخ جویه خروجی‌های مادر گوششی به جیوهای حاوی سطوح مختلف انرژی، پروتئین و اسیدهای آمینه گورگدادار

عباسعلی قیصری؛ امید سرایانی؛ و مجید طبیانی

چکیده

der این پژوهش از 360 قطعه جویه خروجی مادر گوششی آرین به صورت یک آزمایش فاکتوریال 2*4 دو سطح انرژی قابل سوخت و ساز (300 و 350 کیلوکالری در کیلوگرم) و سطح پروتئین و اسیدهای آمینه گورگدادار (10 درصد بیشتری، برابر و 10 درصد کمتر از مقادیر پیشنهادی جدول‌های غذایی طور) (1994) در قالب یک طرح کاملاً تصادفی با شکننده و چهار تکرار استفاده شد. نتایج به دست آمده از کل دوره آزمایش (صفر تا 95 روزگی) نشان داد که سطوح مختلف انرژی جیوه، تأثیر معنی‌داری بر وزن بدن و افزایش وزن روزانه داشت. (5/1) به طوری که با افزایش میزان انرژی از 300 کیلوکالری در کیلوگرم در روز، وزن بدن و افزایش وزن روزانه (56 در مقایسه با 522 گرم) و افزایش وزن روزانه (52 در مقایسه با 472 گرم در روز) افزایش پایست. میزان انرژی جیوه، تأثیر معنی‌داری بر خوراک مصرفی، ضریب تبدیل غذا و اجزای لازمه نداشت. با افزایش سطح پروتئین جیوه، وزن بدن و افزایش وزن روزانه افزایش وی ضریب تبدیل غذایی و همچنین درصد جیوه حفره بطنی نسبت به وزن زندگی کاهش یافت (56). نتایج این پژوهش نشان داد که با تغییر جویه خروجی‌های مادر گوششی آرین با جیوهای حاوی 320 کیلوکالری در کیلوگرم انرژی قابل سوخت و ساز و میزان پروتئین و اسیدهای آمینه گورگدادار مطابق توصیه NRC (1994) و یا 10 درصد بالاتر از آن در دوره‌های صفر تا 24 تا 39 روزگی می‌توان به سرعت رشد و وزن پایان مناسبی دست‌یافته.

و ازدهای کلیدی: جویه خروجی مادر گوششی انرژی، پروتئین و اسیدهای آمینه گورگدادار مقدمه

مرز مصرف خوراک جویه‌های گوششی به انرژی جیره و انرژی مورد نیاز آنها بستگی دارد به طوری که استفاده از

1. استادیارات علمی دامی، مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان
2. مریمان علوم دامی، دانشگاه کشاورزی، دانشگاه آزاد اسلامی واحد خردادسنج

185
متعبر بوده و تحت شرایط مختلف مانند، جنس، زیستی، درجه حرارت محیط، میزان رشد و همچنین میزان انرژی جیوه متغیر می‌شود. (11) کیلولوئید مراکز کردن که افزایش درصد اسیدهای آمینه، سبب افزایش اضافه وزرودن در جوجه‌های نر و ماده شد. در این رابطه جکسون و همکاران در جوجه‌های نر و ماده شد. در این رابطه جکسون و همکاران (10) یافته‌اند که افزایش درصد پروتئین خام آنها بالا بود همگام با افزایش انرژی جیوه میزان رشد جوجه‌ها نیز افزایش یافته. همچنین بازنمایی (5) با استفاده از جیوه‌های کم انرژی، کاهش راندمان غذایی را به موارد افزایش پروتئین جوجه‌های نر و ماده اثر وارد کرده و در این رابطه با افزایش پروتئین جوجه‌ها تا حدی میشود و نیز تور آسان‌رسیده و تجویز و در خروج پروتئین از بدن لازم است. (3) راندمان تولیدی طیور عمداً به وسیله نسبت انرژی به پروتئین جیره از طریق تغییر در مصرفخوراک، جذب مواد غذایی کلیدی و سوخت و ساز اسیدهای آمینه مورد نیاز برای ذخیره پروتئین، تنظیم می‌شود. (6) این رابطه گرفته و همکاران (9) گزارش کرده که استفاده از جیوه‌های با نسبت مختلف کالری به پروتئین، در سه تا هفته رشد را تحت تأثیر قرار داد و نشان داد که جوجه‌ها گوشته به اندازه‌ای غذا مصرف می‌کنند که انرژی مورد نیاز خود را کسب کنند. انتشار و همکاران (1) نیز پیشنهاد کردند که استفاده از جیوه‌های عمدتاً از نظر پروتئین، ویتامین و املاح معدنی با انرژی کم و زیاد، (یا به سه خفگی جیوه‌های با وزن مساوی تولید می‌کند. سامز و همکاران (15) با استفاده از جیوه‌های جیوه‌های که با جیره‌های با پروتئین پیکان و حاصل مقدار کافی اسیدهای آمینه ضروری تعیین شده مشاهده کردند با کاهش سطح انرژی قابل سوخت و ماز جیره از 2020 به 2050 و 2350 کیلوگرمی در کیلوگرم میزان رشد، مصرف غذا، پروتئین و مرئی لاسه به طور معنی‌داری کاهش و ضریب تبدیلی غذایی افزایش یافته. عملکرد بی‌ارتباط کیسته و نتیجه بی‌ارتباط (7) گزارش کردند که با کاهش نسبت انرژی به پروتئین جیره از طریق افزایش سطح پروتئین پیکان
جدول 1. نمایش تیمارها و سطوح مختلف انرژی و پروتئن مورد استفاده برای تنظیم جیره‌های آزمایشی در طی دوره‌های آغازین، پایان و پایان

<table>
<thead>
<tr>
<th>کد تیمار</th>
<th>سطح پروتئن (کیلوگرم)</th>
<th>انرژی قابل سوخت و ساز (نرخ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19.8</td>
<td>22</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>16.2</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>19.8</td>
<td>22</td>
</tr>
<tr>
<td>E</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

افزایش وزن بالاتری در مقایسه با جوجه‌های تغذیه شده با جیره‌های حاوی 30 کیلوگرم انرژی قابل متابولیسم داشتند. لطفاً میزان انرژی ارائه‌ی شرایط تأثیر معنی‌داری بر وزن بدن و افزایش وزن جوجه‌ها در سه سن 21 و 27 روزگری تناظرت (P < 0.05) و باعث تغییر افزایش انرژی قابل سوخت و ساز، وزن بدن و افزایش وزن جوجه‌ها افزایش یافت. این نتایج با نتایج گزارشات و همکاران (10) مربوط به افزایش وزن بدن و اضافه وزن روزانه همگام با افزایش انرژی جیره، مطابقت دارد. افزایش سطح پروتئن جیره، وزن بدن در سن 29 روزگری افزایش وزن جوجه‌ها در طی دوره‌های صفر تا 11 و صفر تا 49 روزگری را به طور معنی‌داری افزایش داد (P < 0.05). البته در سایر سنین اگرچه پروتئین تأثیر معنی‌داری بر وزن بدن و افزایش وزن روزانه نداشت، ولی با افزایش سطح پروتئن، وزن بدن و افزایش وزن جوجه‌ها به طور قابل ملاحظه‌ای افزایش یافت. برخی از محققین این تأثیر را به دلیل افزایش درصد پروتئن و تا حدودی آب ذخیره شده در لاشه به موارد افزایش سطح پروتئن جیره ذکر کرده‌اند (20 و 17). در این رابطه بالدو و جنگلکان (17) و جکسون و همکاران (10) نیز افزایش اضافه وزن روزانه جوجه‌ها را به

نتایج و بحث

انرژی جیره تأثیر معنی‌داری بر وزن بدن جوجه‌ها در سن 49 روزگری و همچنین میزان انرژی جیره وزن بدن در کل دوره آزمایش (صفر تا 49 روزگری) را تأثیر داشت (P < 0.05) (جدول 5).

به طوری که جوجه‌های تغذیه شده با جیره‌های حاوی 3200 کیلوگرم در کیلوگرم افزایش قابل سوخت و ساز وزن بدن و
جدول 2. ترکیب و اجزای تشکیل دهنده جیره‌های آزمایشی در دوره آغازین (درصد)

<table>
<thead>
<tr>
<th>اجزای جیره</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ذرت</td>
<td>47.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>کنجلاج سویا</td>
<td>71.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>پودر نان</td>
<td>75.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>روشگی گیاهی</td>
<td>78.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>پودر صدف</td>
<td>79.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>دی کلسیم سفت</td>
<td>80.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>مکمل</td>
<td>81.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>تمک</td>
<td>82.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>کلسیم (درصد)</td>
<td>83.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>فسفر فرآم (درصد)</td>
<td>84.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>میتیونین + بیسفین (درصد)</td>
<td>85.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>لیزین (درصد)</td>
<td>86.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>ارزی پروتئین</td>
<td>87.7</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ترکیبات محاسبه شده

انرژی قابل سوخت و ساز (کیلوکالری در کیلوگرم) پروتئین خام (درصد) کلسیم (درصد) فسفر فرآم (درصد) میتیونین + بیسفین (درصد) لیزین (درصد) ارزی پروتئین

1.4 کیلوگرم مکمل ویتامین‌های 20000 واحد بین المللی ویتامین A، 12000 واحد بین المللی ویتامین D، 9000 واحد بین المللی ویتامین E، 2000 واحد بین المللی ویتامین K و 1200 میلی گرم نیاسین، 120 میلی گرم پتانتوئین، 20 میلی گرم بیسافین، 40 میلی گرم پیریدوکسین، 20 میلی گرم پتانتوئین، 20 میلی گرم پتانتوئین، 20 میلی گرم پتانتوئین، 20 میلی گرم پتانتوئین.

مواد افزایش پروتئین و با درصد اسیدهای آمینه موجود در جیره مصری آنها گزارش کرده. اثر متقابل انرژی قابل سوخت و ساز دار نورون‌های در طی دوره‌های مختلف و گل دوره بروش بودن. علاوه بر این در جوجه‌های نوزاد غذا شده با جیره‌های قابل سوخت و ساز و سطح پروتئین گیریمی وزن بدن و جوجه‌های قابل سوخت و ساز و سطح پروتئین گیریمی وزن بدن و...
پاسخ جوهر خورشید ماده گوشته به جیره‌های حاوی سطوح مختلف...

جدول ۳: ترکیب و اجزای تشکیل دهنده جیره‌های آزمایشی در دوره رشد (درصد)

<table>
<thead>
<tr>
<th>اجزای جیره</th>
<th>گروه‌های آزمایشی</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶۸/۲</td>
<td>۵۸/۵</td>
<td>۶۲/۵</td>
<td>۵۷/۴</td>
<td>۶۰/۴</td>
<td>۶۴/۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۶/۷</td>
<td>۳۱/۴</td>
<td>۳۸/۲</td>
<td>۳۷/۳</td>
<td>۴۴/۰</td>
<td>۴۰/۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td>۵</td>
<td>۴</td>
<td>۵</td>
<td>۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰/۸</td>
<td>۹۸/۷</td>
<td>۹۹/۸</td>
<td>۹۹/۶</td>
<td>۹۹/۵</td>
<td>۹۹/۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۲/۴</td>
<td>۱/۲</td>
<td>۱/۴</td>
<td>۱/۴</td>
<td>۱/۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ترکیبات محاسبه شده

انزیم قابل سوخت و ساز (کیلگرام در کیلوگرم)
پروتئین خام (درصد)
کلسم (درصد)
فسفات راهم (درصد)
متیونین، سیستین (درصد)
لیزرین (درصد)
انزیم پروتئین

۱۵۰۰ میلی گرم، ۱۴۰۰ میلی گرم، ۱۳۰۰ میلی گرم، ۱۲۰۰ میلی گرم، ۱۱۰۰ میلی گرم، ۱۰۰۰ میلی گرم، ۹۰۰ میلی گرم، ۸۰۰ میلی گرم، ۷۰۰ میلی گرم، ۶۰۰ میلی گرم، ۵۰۰ میلی گرم، ۴۰۰ میلی گرم، ۳۰۰ میلی گرم، ۲۰۰ میلی گرم، ۱۰۰ میلی گرم

افزایش وزن مشاهده شد.

در مورد میانگین مصرف خوراک، جیره‌های مورد آزمایش همانگونه که در جدول ۵ مشاهده می‌شود تغییرات انرژی در حیوانات تأثیر قابل ملاحظه‌ای در آن نشان نمی‌دهد که بسیاری از محققین مسئله کاهش مصرف غذای به موازات افزایش انرژی جیره را گزارش کرده‌اند (۱ و ۱۲)، به نظر می‌رسد که

عدم کاهش مصرف غذای یا حتی افزایش جزئی مصرف غذای جیره‌های غذایی، معنی‌داری با کم‌انرژی به میزان وزن و افزایش وزن بالاتر از استاندارد بوده باشد. به طوری که این مسئله باعث بروز ضریب رشد بالای کلیه کم‌انرژی گردد در کل دوره آزمایش شده است. از طرف دیگر در حالی که افزایش میزان پروتئین جیره تأثیری بر میانگین

۱۸۹
جدول ۲. ترکیب و اجزای تشکیل دهنده جیره‌های آزمایشی در دوره پایانی (درصد)

<table>
<thead>
<tr>
<th>آزمایش</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>جیره ۱</td>
<td>۶۶/۵</td>
<td>۲۵/۱۳</td>
<td>۲</td>
<td>۳</td>
<td>۱/۵</td>
<td>۳/۴</td>
</tr>
<tr>
<td>جیره ۲</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۱</td>
<td>۱/۴</td>
<td>۱/۲</td>
</tr>
<tr>
<td>جیره ۳</td>
<td>۴/۶۵</td>
<td>۱</td>
<td>۲</td>
<td>۲/۱۵</td>
<td>۲/۷</td>
<td>۲/۸</td>
</tr>
<tr>
<td>جیره ۴</td>
<td>۱/۷</td>
<td>۱/۵</td>
<td>۲/۵</td>
<td>۱/۸</td>
<td>۲/۸</td>
<td></td>
</tr>
<tr>
<td>جیره ۵</td>
<td>۱/۵</td>
<td>۱/۵</td>
<td>۱/۵</td>
<td>۱/۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۶</td>
<td>۱/۲</td>
<td>۱/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۷</td>
<td>۲/۲</td>
<td>۲/۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۸</td>
<td>۲/۰۲</td>
<td>۲/۰۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۹</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۰</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۱</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۲</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۳</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۴</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۵</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۶</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جیره ۱۷</td>
<td>۱/۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ترکیبات محاسبه شده

انرژی قابل سوخت و ساز (کیلوکالری در کیلوگرم)

پروتئین خام (درصد)

کلسیم (درصد)

فسفور فراهم (درصد)

متیوین و سیسیتین (درصد)

لیزین (درصد)

انرژی پروتئین

۱۴۰۰۰۰ میلی گرم و پتامین E. ۲۰۰۰ میلی گرم و پتامین A. ۲۷۰۰۰۰ میلی گرم و پتامین D. ۱۴۰۰۰۰ میلی گرم و پتامین B. ۲۰۰۰ میلی گرم و پتامین K. ۱۲۰۰ میلی گرم نیاسین. ۲۰۰ میلی گرم بیوتین. ۴۶۸ میلی گرم اسید پاتانول. ۱۱۲ میلی گرم پیریدوکسین. ۴۰ میلی گرم کبالت. ۲۰۰ میلی گرم بیوتین. ۴۴ میلی گرم کلر. ۹۰ میلی گرم کلسیم. ۲۰۰ میلی گرم پتامین. ۱۰۰ کیلو روزی ۵۴۰ میلی گرم کلسیم. ۱۵۰ میلی گرم پتامین. ۴۰ میلی گرم کلر. ۲۰ میلی گرم پتامین.
جدول 9: آثار سطح مختلف اترزی و پروتئین بر میانگین رزن بدن، اضافه وزن و مصرف خوراک در سهین مختلف

<table>
<thead>
<tr>
<th>صفات</th>
<th>نماد</th>
<th>وزن بدن (گرم)</th>
<th>مصرف خوراک (گرم)</th>
<th>اضافه وزن (گرم در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اثرات آصلی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>متوسط بروزتین</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بالا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>متوسط</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پایین</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آثار متفاوت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>متوسط بروزتین</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بالا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>متوسط</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پایین</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول 6: آثار سطوح مختلف اتموزی و پروتئین بر میانگین ضریب تبدیل غذایی در سنین مختلف و میانگین درصد لاغری و برخی از اجزای آن نسبت به وزن زنده در سن 29 روزگی

<table>
<thead>
<tr>
<th>صفت</th>
<th>اجزای لاغر</th>
<th>ضریب تبدیل (گرم کم)</th>
<th>صفر</th>
<th>21-28</th>
<th>29-42</th>
<th>43-69</th>
<th>70-84</th>
<th>85-99</th>
<th>99 بیشتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبی‌آذری</td>
<td>0/17</td>
<td>0/20</td>
<td>0/13</td>
<td>0/17</td>
<td>0/19</td>
<td>0/16</td>
<td>0/18</td>
<td>0/17</td>
<td>0/18</td>
</tr>
<tr>
<td>مدت پروتئین</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
</tr>
<tr>
<td>مدت پروتئین</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
</tr>
</tbody>
</table>

آمار مقایسه‌ی

<table>
<thead>
<tr>
<th>آبی‌آذری</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدت پروتئین</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
</tr>
<tr>
<td>مدت پروتئین</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
</tr>
</tbody>
</table>

نمرات میانگین:

<table>
<thead>
<tr>
<th>آبی‌آذری</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
<th>0/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدت پروتئین</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
</tr>
<tr>
<td>مدت پروتئین</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
</tr>
</tbody>
</table>
پراکنش جوجه خرسه‌های ماده گوشته به چربی‌های حاوی سطوح مختلف

همکاران (۱۶) گزارش کرده‌اند که تغییرات نسبت انرژی به پروتئین جوجه به راندمان پیوندی و تولیدی جوجه‌های پروتئین بالا کمترین درصدی چربی جوفه را داشته. در این مطالعه برای ارزیابی نسبت این نوع پروتئین در سطح انرژی عملکرد پپلوژیکی جوجه‌ها به شهید بود. در حالی که نتایج پژوهش حاضر برای گزارش‌های آزمایشی (٢٠٩٧۲ِ۴رژینگی) نشان داد که در هر سطح از انرژی که کاهش نسبت انرژی به پروتئین ضربه تبدیل غذایی جوجه‌ها بهتر شده (جدول ۴). همچنین نتایج برخی از آزمایش‌ها حاکی از این است که افزایش سطح پروتئین جوجه حتی باعث افزایش رشد نشد، به‌ویژه بازدار خوراک را به همراه خواهد داشت. در این حال تأثیر پروتئین بر بهبود ضربه تبدیل غذایی احتمالاً به علت افزایش درصد پروتئین و به نتیجه آن رطوبت لاشه به موارد کاهش چربی می‌باشد. (٧ و ١٧).

در آزمایش حاضر نیز به نظر می‌رسد کیفیت غذایی بهبود تبدیل غذایی جوجه‌ها به چربی میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش میزان نسبت این نوع پروتئین ضربه جوجه‌های در هر سطح از انرژی که کاهش می‌باشد.

منابع مورد استفاده

١- اسکاتس، م. تسیمی، و برگ، ۱۳۵۰. تغذیه طرح (ترجیم ج. پوری‌رضا). جلد اول، مؤسسه انتشارات امیرکبیر، اصفهان.
٢- پارسی، س. ۱۳۸۳. تأثیر سطوح مختلف انرژی و پروتئین بر سطوح مختلف انرژی و پروتئین بر میزان تولیدی و امکان استفاده از رشد جنجالی در پورورش جوجه‌های گوشته. پایان نامه کارشناسی ارشد علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
٣- زیده، م. پوررضا. ۱۳۸۲. زدایش شیط و زالی. ۱۳۸۲. اثر سطوح مختلف انرژی و پروتئین بر تولیدی و امکان استفاده از تأمین گوگردگر از بر عملکرد جوجه‌های مادر مازاد جنس حق مادری و جوجه‌های خرسه‌های گوشته. مجموعه مقالات اولین کنگره علم دامی و آبی‌زیان کشور، دانشگاه تهران، صفحه ٤٢٣-٤٣٤.
٤- مرکز آمار ایران: ١۳۸٣. آمارگریزی از مؤسسه‌های پورورش طرح مادر گوشته دفتر انتشارات و اطلاع رسانی، تهران.

11. Miller, E. L. 2002. Protein Nutrition, Requirements or Farmed Livestock and Dietary Supply. Nutrition Laboratory, Department of Clinical Veterinary Medicine, University of Cambridge, United Kingdom.