پایه جوجه خروس‌های مادر گوشته‌ای به جیره‌های خاوی سطوح مختلف

انرژی پروتئین و اسیدهای آمینه گوگرددار

عباسعلی قیصری، امید سرایانی، مهدی طبیانی

چکیده

در این پژوهش از ۳۴۰ فضه جوجه خروس مازاد مادر گوشته آهنین به صورت یک آزمایش فاکتوریل ۲*۲ دو سطح انرژی قابل سوخت و ساز دو (۳۰۰ و ۴۰۰ کیلوکالری در کیلوگرم) و سه سطح پروتئین و اسیدهای آمینه گوگرددار (۱۰ و ۱۲ درصد گیاهی، برای و ۱۲ درصد کمتر از مقدار پیشنهادی جداول اقتصادی غذایی طبیعی (۱۹۹۴) در قالب یک طرح کاملاً نیازمند با شش تیمار و چهار تکرار استفاده شد. نتایج به دست آمده از کل دوره آزمایش (۱۹ روزگی) نشان داد که سطوح مختلف انرژی جیره، تأثیر معنی‌داری بر وزن بدن و افزایش وزن روزانه داشت (۳۰۰ کیلوکالری در کیلوگرم، وزن بدن (۲۲۶ در مقایسه با ۲۱۲ گرم) و افزایش وزن روزانه (۲۴ در مقایسه با ۱۲ گرم در روز) افزایش یافته. مشابه با انرژی جیره تأثیر معنی‌داری بر خروک مصرفی، ضریب تبدیل غذا و اجزای لاسته نداشت. البته افزایش سطح پروتئین جیره، وزن بدن و افزایش وزن روزانه افزایش ویل ضریب تبدیل غذایی و همچنین دارد فرآیند کاهش نسبی وزن زنده را کاهش یافته (۰/۳۳). نتایج این پژوهش نشان داد که با تغییر جوجه خروس‌های مازاد مادر گوشته آهنین با جیره‌های خاوی ۲۳۰۰ کیلوکالری در کیلوگرم انرژی قابل سوخت و ساز و میزان پروتئین و اسیدهای آمینه گوگرددار مطلق توصیه NRC (۱۹۸۴) و یا ۱۰ درصد بالاتر از آن در دوره‌های صفر تا ۲۱/۲۴ تا ۲۲ و۲۴ روزگی می‌توان به سرعت رشد و وزن پایانی متفاوت درمان دست یافت.

واژه‌های کلیدی: جوجه خروس مادر گوشته، انرژی پروتئین، اسیدهای آمینه گوگرددار

مقدمه

جیره‌های پرتره‌زی سبب کاهش مصرف خوراک شده و گوگردی نمی‌توانند پروتئین مورد نیاز خود را دریافت کند (۱۲). تحقیقات نشان داد که احتمالات پروتئین شته، بسیار

میزان مصرف خوراک جوجه‌های گوشته‌ای به انرژی جیره و انرژی مورد نیاز آنها بستگی دارد به طوری که استفاده از

1. استفاده از علوم دامی، مرکز تحقیقات کشاورزی و منابع طبیعی استانه
2. مردان علوم دامی، دانشگاه کشاورزی، دانشگاه آزاد اسلامی واحد خوراسان

۱۸۵
پایگاه جوگه خروس های مادر گوشی به جریهای حاوی سطوح مختلف...

جدول ۱. نمایش تیمارها و سطوح مختلف انرژی و پروتئین مورد استفاده برای تنظیم جریهای آزمایشی در طی دوره های آغازین، تریم و پایانی

<table>
<thead>
<tr>
<th>سن (دور)</th>
<th>انرژی قابل سوخت و ساز (کیلوکالری در کیلوگرم)</th>
<th>مقدار پروتئین (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19/8</td>
<td>22</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>19/8</td>
<td>22</td>
</tr>
<tr>
<td>E</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

افراش وزن بالاتری در مقایسه با جوی های تغذیه شده با جریهای حاوی ۳۰ کیلوکالری در کیلوگرم انرژی قابل متابولیسم داشتند. این بخش از افزایش انرژی جربه تأثیر معنی داری بر وزن بدن و افزایش وزن جوجه‌ها در سنین ۲۱ و ۲۲ روزگری نداشت (۰/۵>P). ولی به هر حال همگام با افزایش انرژی قابل سوخت و ساز، وزن بدن و افزایش وزن جوجه‌ها افزایش یافت. این نتایج با نتایج چکسون و همکاران (۲۰۰۱) مبنی بر افزایش وزن بدن و اضافه وزن روزانه همگام با افزایش انرژی جربه، مطابق بود. افزایش سطح پروتئین جربه وزن بدن در سن ۲۹ روزگری افزایش جوجه‌ها در طی دوره سلیقه ضعیف و در صورت افزایش زیاد در حرکت معنی داری در دوره ۲۱ تا ۴۹ روزگری را به طور معنی داری افزایش داد (۰/۵>P). البته در سایر سنین اگرچه تأثیر معنی داری بر وزن بدن و افزایش وزن روزانه نداشت، ولی با افزایش سطح پروتئین، وزن بدن و افزایش وزن جوجه‌ها به طور قابل ملاحظه‌ای افزایش یافت. برخی از محققین این اشکال را به دنبال افزایش درصد پروتئین و نا محدود در نمایی ذخیره شده در لاش با مواد افزایش سطح پروتئین جربه ذکر کرده‌اند (۲۰۰۱). در این رابطه والدر و همکاران (۱۷) و جکسون و همکاران (۲۰۰۱) نیز افزایش اضافه وزن روزانه جوجه‌ها را به

نتایج و بحث

انرژی جربه تأثیر معنی‌داری بر وزن بدن جوجه‌ها در سن ۴۹ روزگری و همچنین میزان آغاز افزایش وزن آنها در کل دوره آزمایشی (صفر تا ۴۹ روزگری) داشتند (۰/۵>P)(جدول ۵). به طوری که جوجه‌های تغذیه شده با جریه‌های حاوی ۳۰۰۰ کیلوکالری در کیلوگرم افزایش قابل سوخت و ساز وزن بدن و
جدول 2. ترتیب و اجزای تشکیل دهنده جیره‌های آزمایشی در دوره آغازین (درصد)

<table>
<thead>
<tr>
<th>گروه‌های آزمایشی</th>
<th>اجزای جیره</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>105</td>
<td>215</td>
<td>537</td>
</tr>
<tr>
<td>167</td>
<td>1/3</td>
<td>1/5</td>
</tr>
<tr>
<td>230</td>
<td>1/33</td>
<td>1/42</td>
</tr>
<tr>
<td>330</td>
<td>1/33</td>
<td>1/42</td>
</tr>
</tbody>
</table>

ترکیبات محاسبه شده
انرژی قابل سوخت و ساز
کیلوکاری در کیلوگرم
پروتئین خام (درصد)
کلسیم (درصد)
فسفور رفاه (درصد)
میکرو-مبینتین (درصد)
لیزین (درصد)
انرژی پروتئین

مواد افزایش پروتئین و با درصد اسیدهای آمینه موجود در
جیره مصری آنها گزارش کرده‌اند. اثر مقابل انرژی قابل سوخت
و ساز در سطح پروتئین‌های جیره تأثیر معنی‌داری بر وزن بدن و
افزایش وزن روان‌زدن در طی دوره‌های مختلف و گل دوره
پروفیل بودن. علاوه بر این در جویانهای تغذیه شده با
جیره‌های حاوی 32 و به ویژه 32 کیلوکاری انرژی
قابل سوخت و ساز و سطح پروتئین‌های بهتر وزن بدن و

188
جدول 3: ترکیب و اجزای تشکیل دهنده چربی‌های آزمایشی در دوره رشد (درصد)

<table>
<thead>
<tr>
<th>گروه‌های آزمایشی</th>
<th>اجزای جیره</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>61/4</td>
<td>55/5</td>
</tr>
<tr>
<td>27/5</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>47/3</td>
<td>5/4</td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>1/17</td>
<td>1/4</td>
</tr>
<tr>
<td>118</td>
<td>180</td>
</tr>
</tbody>
</table>

تعداد محاسبه شده
انرژی قابل سوخت و ساز
(کیلوکالری در کیلوگرم)
پروتئین خام (درصد)
کلسترول (درصد)
فسفر فرعی (درصد)
میتیون+ میتیونین (درصد)
لیزین (درصد)

انرژی پروتئین

1. هر کیلوگرم مکمل و ویتامین حاوی ۴۲۰۰۰۰ واحد بین المللی ویتامین A، ۷۷۰۰۰ واحد بین المللی ویتامین D و ۱۲۰۰ واحد بین المللی ویتامین E.
2. هر کیلوگرم دی اس اس و دی اس اس حاوی ۱۵۰ واحد بین المللی ویتامین A.
3. هر کیلوگرم دی اس اس و دی اس اس حاوی ۱۶۰ واحد بین المللی ویتامین E.
4. هر کیلوگرم دی اس اس و دی اس اس حاوی ۳۲۰ واحد بین المللی ویتامین C.
5. هر کیلوگرم دی اس اس و دی اس اس حاوی ۲۵۰ واحد بین المللی ویتامین C.
6. هر کیلوگرم دی اس اس و دی اس اس حاوی ۱۰۰ کیلوگرم گردن و ۴۴۰ کیلوگرم کلارد و ۵۰۰ کیلوگرم مکمل معدنی شامل ۶۵ کیلگرم رژی، ۳۳۸ کیلجو رژی، ۱۰۰ کیلگرم رژی، ۶۵ کیلگرم رژی، ۱۹۰ کیلگرم رژی، ۸۵ کیلگرم رژی.

قطع چربان جراحی ماده گوشی به چربی‌های حاوی سطوح مختلف

بدکام کاهش مصرف غذای میانی افزایش جنگی مصرف غذای گروه‌های تغذیه شده با چربی‌های پر انرژی در مقایسه با کم انرژی، با میزان وزن و افزایش وزن بالاتر آنها مرتبط است. به طوری که این مسئله باعث در ضربان قلب گروه‌های فوق در کل دوره آزمایش شده است. از طرف دیگر در حالی که افزایش میزان پروتئین چربی تأثیری بر میانگین افزایش وزن مشاهده شد.

در مورد میانگین مصرف خوراک چربی‌های مورد آزمایش همانگونه که در جدول ۵ مشاهده می‌شود تغییرات انرژی چربی‌ها باعث تأثیر قابل ملاحظه‌ای در آن تنها در حالی که پیشنهاد محققین مسئله کاهش مصرف غذا بع میانگین افزایش جنگی چربی را گزارش کردهاند (۱ و ۱۳) به نظر می‌رسد که
جدول ۲. ترکیب و اجزای تشکیل دهنده جردهای آزمایشی در دوره پایانی (درصد)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۷۶</td>
<td>۷۳</td>
<td>۱۵</td>
<td>۸</td>
<td>۷</td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td>۱۹۷۹</td>
<td>۶۳</td>
<td>۱۵</td>
<td>۵</td>
<td>۸</td>
<td>۷</td>
<td>۸</td>
</tr>
<tr>
<td>۱۹۸۰</td>
<td>۷۳</td>
<td>۱۵</td>
<td>۸</td>
<td>۷</td>
<td>۸</td>
<td>۸</td>
</tr>
</tbody>
</table>

این جدول به ترتیب نسبت درصدی جردهای آزمایشی در دوره‌های مختلف ذکر شده است. در هر دوره، حجم و درصد هر جردهای آزمایشی مشخص شده است. ملاحظه شود که در تحقیقاتی که به شرح درمان انگیزه جردهای آزمایشی اختصاص داده می‌شود، نتایج به دست آمده از این تحقیقات اهمیت خاصی دارد.

مصروف غذا نداشت و لیست به‌واسطه آفزایش قابل ملاحظه اضافه وزن در حیاتی سرعت تکثیر جردهای ضریب تبدیل غذایی آنها به‌ساده‌ای نشان داده که میزان پروتئین جرده تأثیری بر مصرف خوراک ندارد مگر این که جرده از لحاظ
جدول 5 آثار سطحی مختلف انرژی و پروتئین بر میانگین رن بدن، اضافه وزن و مصرف خوراک در سنین مختلف

<table>
<thead>
<tr>
<th>صفات</th>
<th>نیمار</th>
<th>آماری</th>
<th>افزایش وزن (گرم)</th>
<th>مصرف خوراک (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-5</td>
<td>5-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11-15</td>
<td>16-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21-25</td>
<td>26-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31-35</td>
<td>36-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41-45</td>
<td>46-50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>آماری</th>
<th>0.05</th>
<th>0.01</th>
<th>0.001</th>
<th>0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

نکته: مجموعه‌ای از آماری‌ها و نتایج مربوط به آماری‌ها ذکر شده است Clan.
جدول 1: آثار برخی ژن‌های مختلف انسانی و پروتئین‌بر میانگین ضریب تبدیل غذایی در سنین مختلف و میانگین درصد لاغری و برخی از اجزای آن نسبت به وزن زندگی در سن 29 روزگی

<table>
<thead>
<tr>
<th>رنگ‌مانه‌ی جلثیه</th>
<th>کید</th>
<th>روغن</th>
<th>ضریب تبدیل (گرم/کیلوگرم)</th>
<th>صفر</th>
<th>صفر ۲۲</th>
<th>صفر ۳۴</th>
<th>صفر ۴۲</th>
<th>صفر ۵۰</th>
<th>صفر ۵۴</th>
<th>صفر ۶۲</th>
<th>صفر ۷۰</th>
<th>صفر ۷۲</th>
<th>صفر ۷۴</th>
<th>صفر ۷۶</th>
<th>صفر ۷۸</th>
<th>صفر ۸۰</th>
<th>صفر ۸۲</th>
<th>صفر ۸۴</th>
<th>صفر ۸۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۷</td>
<td>۷/۰۴</td>
<td>۲/۳</td>
<td>۷/۲/۳</td>
<td>۱/۸۶</td>
<td>۱/۸۳</td>
<td>۱/۹۸</td>
<td>۱/۵۲</td>
<td>۱/۵۶</td>
<td>۲/۵۰</td>
<td>۲/۴۴</td>
<td>۱/۹۹</td>
<td>۱/۸۹</td>
<td>۱/۸۹</td>
<td>۱/۹۵</td>
<td>۱/۹۵</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td></td>
</tr>
<tr>
<td>۰/۱۵</td>
<td>۱/۹۹</td>
<td>۲/۱۵</td>
<td>۷/۲/۳</td>
<td>۱/۸۶</td>
<td>۱/۸۳</td>
<td>۱/۹۸</td>
<td>۱/۵۶</td>
<td>۱/۵۶</td>
<td>۲/۵۰</td>
<td>۲/۴۴</td>
<td>۱/۹۹</td>
<td>۱/۸۹</td>
<td>۱/۸۹</td>
<td>۱/۹۵</td>
<td>۱/۹۵</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td></td>
</tr>
<tr>
<td>۰/۱۸</td>
<td>۱/۹۸</td>
<td>۲/۱۹</td>
<td>۷/۲/۳</td>
<td>۱/۸۶</td>
<td>۱/۸۳</td>
<td>۱/۹۸</td>
<td>۱/۵۶</td>
<td>۱/۵۶</td>
<td>۲/۵۰</td>
<td>۲/۴۴</td>
<td>۱/۹۹</td>
<td>۱/۸۹</td>
<td>۱/۸۹</td>
<td>۱/۹۵</td>
<td>۱/۹۵</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td></td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۱/۸۸</td>
<td>۲/۱۹</td>
<td>۷/۲/۳</td>
<td>۱/۸۶</td>
<td>۱/۸۳</td>
<td>۱/۹۸</td>
<td>۱/۵۶</td>
<td>۱/۵۶</td>
<td>۲/۵۰</td>
<td>۲/۴۴</td>
<td>۱/۹۹</td>
<td>۱/۸۹</td>
<td>۱/۸۹</td>
<td>۱/۹۵</td>
<td>۱/۹۵</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td></td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۲/۱۸</td>
<td>۲/۱۹</td>
<td>۷/۲/۳</td>
<td>۱/۸۶</td>
<td>۱/۸۳</td>
<td>۱/۹۸</td>
<td>۱/۵۶</td>
<td>۱/۵۶</td>
<td>۲/۵۰</td>
<td>۲/۴۴</td>
<td>۱/۹۹</td>
<td>۱/۸۹</td>
<td>۱/۸۹</td>
<td>۱/۹۵</td>
<td>۱/۹۵</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td>۱/۹۷</td>
<td></td>
</tr>
</tbody>
</table>

آمار مقایسه

۰/۰۲	۲/۱۱	۲/۱۱	۷/۱/۹	۱/۸۱	۱/۸۱	۱/۹۰	۱/۵۱	۱/۵۱	۲/۵۱	۲/۴۶	۱/۹۹	۱/۸۹	۱/۸۹	۱/۹۵	۱/۹۵	۱/۹۷	۱/۹۷	۱/۹۷
۰/۰۲	۲/۱۱	۲/۱۱	۷/۱/۹	۱/۸۱	۱/۸۱	۱/۹۰	۱/۵۱	۱/۵۱	۲/۵۱	۲/۴۶	۱/۹۹	۱/۸۹	۱/۸۹	۱/۹۵	۱/۹۵	۱/۹۷	۱/۹۷	۱/۹۷
۰/۰۲	۲/۱۱	۲/۱۱	۷/۱/۹	۱/۸۱	۱/۸۱	۱/۹۰	۱/۵۱	۱/۵۱	۲/۵۱	۲/۴۶	۱/۹۹	۱/۸۹	۱/۸۹	۱/۹۵	۱/۹۵	۱/۹۷	۱/۹۷	۱/۹۷
۰/۰۲	۲/۱۱	۲/۱۱	۷/۱/۹	۱/۸۱	۱/۸۱	۱/۹۰	۱/۵۱	۱/۵۱	۲/۵۱	۲/۴۶	۱/۹۹	۱/۸۹	۱/۸۹	۱/۹۵	۱/۹۵	۱/۹۷	۱/۹۷	۱/۹۷
۰/۰۲	۲/۱۱	۲/۱۱	۷/۱/۹	۱/۸۱	۱/۸۱	۱/۹۰	۱/۵۱	۱/۵۱	۲/۵۱	۲/۴۶	۱/۹۹	۱/۸۹	۱/۸۹	۱/۹۵	۱/۹۵	۱/۹۷	۱/۹۷	۱/۹۷

خطای معنای‌سازی (۵E)

میانگین کل
مینای مورد استفاده

1. اسکاتل، م. و. نیمی، و. ر.، و. پاک. 1370. نگهداری مرغ (ترجمه ج. بوریسنا). چالد اول، مؤسسه انتشارات امیرکبیر، اصفهان.
2. پارسیان، س. 1373. تأثیر سطح مختلف از تری و پروتئین بر صفات تولیدی و امکان استفاده از رشد جنین در پرورش جوجه‌های گوشتی. پایان نامه کارشناسی ارشد علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
3. یزدی، م. م. پورزاده، و. آرمانی. 1383. تأثیر سطح مختلف از تری و پروتئین بر صفات تولیدی جوجه‌های گوشتی. مجموعه مقالات اولین کنگره علوم دامی و آبزیان کشور، دانشگاه تهران، صفحه 192-244.
4. مرکز آمار ایران: 1382. آمار کیفی از مؤسسه پرورش مرغ مادرکدرک. دفتر انتشارات و اطلاع رسانی، تهران.
11. Miller, E. L. 2002. Protein Nutrition, Requirements or Farmed Livestock and Dietary Supply. Nutrition Laboratory, Department of Clinical Veterinary Medicine, University of Cambridge, United Kingdom.