مطالعه تأثیر آلفا توكوفرون و پروپیل گالات بر میزان اکسیداسیون خون به خودی چربی، تغییرات فیزیکی و تغییرات شیمیایی در سوسیس آلمنی در طول مدت انبارماني
در سه بندی های مختلف

الهام خسروی ۱، شهرام دخانی ۲ و غلامحسین کیبری ۲

چکیده
فراورده‌های گوشتی کیک از پر مصرف‌ترین محصولات غذایی می‌باشند. درکی از مشکلاتی که در این نوع مواد غذایی ممکن است مطرح شود، تغییرات فیزیکی و شیمیایی آن، خصوصاً افزایش میزان اکسیداسیون چربی‌ها طی نگهداری طولانی مدت است. محدودیت محصولات مصنوعی آلیاژی مخصوص اکسیداسیون چربی‌ها در محصولات غذایی مصرف کننده‌ها، تغییرات ترکیبات سوپرس آلمنی دارد. تغییرات شیمیایی آلیاژی مصنوعی آلیاژی تأثیر دارد. در این پژوهش تأثیر آلیاژی آلیاژی تأثیر آلیاژی آلیاژی تأثیر آلیاژی آ...
مقدمه

اکسیداسیون غذایی خودی چربی در فرآورده‌های غذایی به‌کمک اکسیداسیون بی‌پیگمان در مقایسه با به‌کارگیریبع دل‌ساز می‌شود. تحقیقات

۷۶۰ ppm انجام شده نشان داد که غلظت‌های بیش از اثر پرو-اکسیداسیون روز لیپولیک اسید داشته و در غلظت‌های کمتر از ۳۸۰۰ ppm به عنوان یک ضد اکسیداسیون عمل می‌کند.

۱۶۰ ppm و همکارانش (Whang) و ۱۰۰ ppm و Heme (α-dl) تغذیه غذایی را روز اکسیداسیون چربی در گوشت

چرخ کروی خام و پخته شده خوراک پرسی کردن. در نمونه‌های خام نگه‌داری شده در دمای ۴ درجه سانتی‌گراد تا ۷۸ روز، TBA اختلاف قابل توجهی بین اعداد TBA همه نمونه‌ها افزایش یافت ولی افزایش کلی نموده‌ها همگام با هم بود و اختلاف قابل ملاحظه‌ای تند بین ارزیابی حسی آنها نبوده است. بعد از روز هفته‌های بلند دو زمان اعداد TBA و TBA گوشت افزایش یافت و اختلاف بین تیمارهای مختلف نیز کامال مشاهده نموده بود. در نمونه‌های پخته و نگه‌داری شده در دمای ۴ درجه سانتی‌گراد، در شاهد هم، TBA افزایش یافت ولی TBA در تیمارهای ویژه این TBA عده نمونه‌های حاوی ویژگی TBA اعداد E کمتری نسبت به تعداد TBA شاهد شناخته شدند.

۱۲ و همکارانش (Daniel) در مطالعه‌های که توسط دانشگاه

انجام گرفت، گوشت گاز پخته یکی از شرایط محاسباتی ۱۰۰ درصد CO۲ و مخلوطی از ۳۰ درصد O۲ و ۱۵ درصد N۲ به شدت و کلی نموده‌ها در دمای ۴ درجه سانتی‌گراد بردی مدت ۲۱ روز نگه‌داری شدند. پس از طی زمان اکسیداسیون از آزمایش‌های اکسیداسیونیکی روز آنها انجام گرفت، داراون بهترین عدد به نمونه‌های بهترین پخته شده تحت خلاء، داده داده در TBA را از نمونه به عنوان معیار برای ویژگی غذایی چربی خوراک (WOF) (Cold - Over) به‌کارگیری طعم در آخر پخت گوشت گاز پخته شده (۳)، یک تحقیق پخته نمونه (Flavor (۲۰۰)، گوشت خوراک پخته شده (۱۷) و گوشت مرغ پخته شده

مهم‌ترین اکسیداسیون غذایی طبیعی، تغذیه غذایی هم‌سنت به

در بیشتر گیاهان بیان می‌شود. در بررسی‌های انجام شده در رابطه با تیمارهای E روی اکسیداسیون چربی مشخص شده است که افزودن ویژگی‌های باعث جلوگیری از اکسیداسیون (Steak) چربی در گوشت خوراک گاز (۵) در استیمک (۳۸) و در گوشت خوراک (۱۵) و ۱۶ ویژگی (۲۰۰) نشان داده که (Mahoney and Graf) ماهوئی و گراف گاز خوراکی خنیه‌ای بیای ویژگی E اثر پرو-اکسیداسیون (۱۳) روی اکسیداسیون لیپولیک اسید دارد (۱۳). افزودن پشت از حد و ویژگی E به گوشت خوراک به‌اخت‌
(11). در نظر گرفت.
هدف این پژوهش بررسی اثر ضد اکسیدان‌های روی اکسیداسیون چربی سوپرسایط تولید در بسته‌های مختلف و نگهداری شده در دما 4 درجه سانتی‌گراد و 18- درجه سانتی‌گراد در دوره‌های زمانی مختلف و بررسی پاسخ آنها در 30 ماه‌های ابتهاگی می‌باشد.

مواد و روش‌ها
این پژوهش در آزمایشگاه‌های گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه صنعتی اصفهان انجام شده.
نموده‌های سوپرسایس در کارخانه لورک تو ایف در 35 کیلومتری اصفهان تولید شده‌اند.

روش نهی نمونه‌ها
برای این آزمایش چهار فرمول سوپرسایس آلمانی تهیه شد که تفاوت آنها تنها در نوع ضد اکسیدان بود که باره شده بود. از هر فرمول 40 کیلوگرم سوپرسایس تولید شد. بیماریه هعمارت بودند. نمونه‌ها به شکل هردی که بدون هیچ نوع ماده ضد اکسیدان نمونه‌های حاوی 200 ppm و نمونه چهارم نیز که دارای 200 پروپیل گالات (Propyl gallate) (PG) بود. مقدار ذکر شده ضد اکسیدان‌ها بر اساس روش مصرفی سیباست. کلیه مواد شیمیایی مورد استفاده در این پژوهش ساخت کارخانه مکرو‌هسترد. برای تولید این هر نمونه مقدار 1 مولولی داخل کاری کامالا مخلوط و از هر تیمیار 12 کیلوگرم در پوشش‌های سولوزی و 18 کیلوگرم در پوشش‌های پلی آمیدی بسته بندی و پخته شدند.

این آزمایش‌ها
به منظور نگهداری نمونه‌ها از هر نمونه 3- به سرخانه 2 درجه سانتی‌گراد و بقیه به سرخانه 18- درجه سانتی‌گراد منتقل شد. لازم به ذکر است که کلیه نمونه‌ها در داخل کارتن و در تاریکی...
روش‌های آماری تحلیل نتایج

در این پژوهش برای بررسی و تجزیه و تحلیل آماری داده‌های حاصل از آزمون‌ها، طرح اسلایب‌های متغیر، چندپوشینه سنجش داده‌ها استفاده شد. مقایسه میانگین‌ها نیز از طریق آزمون دانک انجمگرفت.

نتایج

برای بررسی میزان پیش‌转发ت اکسیدازون (اعداد پراکسید) و تفاوت‌های تأثیر آزمون، نتایج آزمون‌ها به صورت تصادفی یا تصادفی بررسی می‌شود. این پژوهش با استفاده از تفاوت‌های تأثیر آزمون، نتایج آزمون‌ها به صورت تصادفی یا تصادفی بررسی می‌شود. این پژوهش با استفاده از تفاوت‌های تأثیر آزمون، نتایج آزمون‌ها به صورت تصادفی یا تصادفی بررسی می‌شود.

جدول 1. مواد مصرفی جهت تهیه سوسیس آلمنی

<table>
<thead>
<tr>
<th>منبع</th>
<th>درصد 8</th>
<th>درصد 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیزر</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>خرید</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>خرید</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>خرید</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>خرید</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>خرید</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>خرید</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>خرید</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>خرید</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>خرید</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>خرید</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>خرید</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>خرید</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>خرید</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>خرید</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>لیزر</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>خرید</td>
<td>0.15</td>
<td>0.16</td>
</tr>
</tbody>
</table>
جدول 2: تجزیه و ارایاکس داده‌های مربوط به صفات مورد بررسی

<table>
<thead>
<tr>
<th>سابقه</th>
<th>پراکندگی</th>
<th>TBA</th>
<th>نمایش تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه آزادی میانگین مربعات</td>
<td>درجه آزادی میانگین مربعات</td>
<td>میانگین مربعات</td>
<td>میانگین مربعات</td>
</tr>
<tr>
<td>0.05</td>
<td>1/37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>0.05</td>
<td>0.37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>0.05</td>
<td>1/37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>0.05</td>
<td>0.37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>0.05</td>
<td>1/37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>0.05</td>
<td>0.37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>0.05</td>
<td>1/37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>0.05</td>
<td>0.37</td>
<td>0.79</td>
<td>0.80</td>
</tr>
</tbody>
</table>

**: معنی‌دار در سطح احتمال 0.01
جدول ۳ مقایسه تأثیر نوع پنبه بندی بر میزان اکسیداسیون خونی به خودی (اعداد TBA و پراکسید)

<table>
<thead>
<tr>
<th>نوع اکسیداسیون خونی به خودی</th>
<th>عدد پراکسید **</th>
<th>عدد TBA</th>
</tr>
</thead>
</table>
| سلولزی | 1/33 ± 0/65 ۷ | 1/19 ± 0/۷۶ | ۷
| پلی آمیدی | 1/۴۷ ± 0/۸۸ ۷ | ۱/۴۷ ± 0/۸۸ | ۷

میانگین‌های که در یک ستون دارای حرف مشترک هستند در سطح احتمال ۱ درصد فاقد اختلاف معنی‌داری می‌باشند.

* میلی‌گرم مالون اتانید در کیلوگرم ماده خشک سوپرس

** میلی‌اکی ویان در کیلوگرم روغن

شکل ۱: تأثیر ضد اکسیدان‌های مختلف و نوع پوشتی سوپرس بر میزان اکسیداسیون خونی به خودی

(عدد پراکسید) نمونه‌های نگه‌داری شده در دماه ۱۸ - درجه سانتی‌گراد به مدت ۶ ماه

پوشتی‌های سلولزی دیده می‌شود.

بررسی میزان اکسیداسیون سوپرس های تولید شده طی ۱۰ روز نگهداری در دماه ۴ درجه سانتی‌گراد بررسی‌های انجام شده نشان داد که پس از ۱۰ روز نگهداری نمونه‌ها در دماه ۴ درجه سانتی‌گراد، اثر نوع پنبه بندی بر
جدول 2. مقایسه تأثیر مدت انبارمانی - پوشش روی مقاومت برشی بافت* نمونه‌های سوپرس نگهداری شده در دمای 18 درجه سانتی‌گراد به مدت 6 ماه

<table>
<thead>
<tr>
<th>روش وارنر برانتر</th>
<th>روش استوانه نری</th>
<th>مدت انبارمانی (ماه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سلولار</td>
<td>پلی آمیدی</td>
<td>سلولار</td>
</tr>
<tr>
<td>89/85</td>
<td>100/2</td>
<td>120/2</td>
</tr>
<tr>
<td>84/1</td>
<td>239/4</td>
<td>131/4</td>
</tr>
<tr>
<td>83/1</td>
<td>322/4</td>
<td>130/4</td>
</tr>
<tr>
<td>83/51</td>
<td>375/1</td>
<td>130/1</td>
</tr>
<tr>
<td>83/72</td>
<td>392/1</td>
<td>130/1</td>
</tr>
<tr>
<td>83/73</td>
<td>420/3</td>
<td>130/1</td>
</tr>
<tr>
<td>83/72</td>
<td>420/3</td>
<td>130/1</td>
</tr>
</tbody>
</table>

* در هر یک از روش‌های اندازه‌گیری مقاومت برشی بافت، میانگین‌های که دارای یک حرف مشترک هستند در سطح احتمال 5 درصد فاقد اختلاف معنی‌دار می‌باشند.
جدول 5. میانگین تغییرات درصد رطوبت سوپس‌هایی پهنه بندی شده در پوشش سلولزی طی 6 ماه نگهداری در دمای 18- درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>دسته اساسنامه (ماه)</th>
<th>نوع ماده افزودنی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بدون ماده افزودنی</td>
</tr>
<tr>
<td></td>
<td>ویتنامی E (20 ppm)</td>
</tr>
<tr>
<td></td>
<td>ویتنامی E (50 ppm)</td>
</tr>
<tr>
<td></td>
<td>پرپلی کالسات (20 ppm)</td>
</tr>
</tbody>
</table>

جدول 7. مقایسه اثر مدت ابزاری - نوع پهنه بندی روی مقاومت برشی یافته و متوسط سوپس‌های نگهداری شده در دمای 4 درجه سانتی‌گراد به مدت 10 روز

روش واریان برترل | روش استوانه‌نوش |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>پلی آمید</td>
<td>پلی آمید</td>
</tr>
<tr>
<td>سلولزی</td>
<td>سلولزی</td>
</tr>
<tr>
<td>89/85</td>
<td>102/2</td>
</tr>
<tr>
<td>92/91</td>
<td>115/4</td>
</tr>
<tr>
<td>95/72</td>
<td>120/4</td>
</tr>
<tr>
<td>98/28</td>
<td>133/3</td>
</tr>
</tbody>
</table>

جدول 8. مقایسه تأثیر نوع پهنه بندی بر میزان اکسیداسیون خود به خودی (اعداد TBA و پراکسید)

نیمه‌نهایی سوپس‌های نگهداری شده در دمای 4 درجه سانتی‌گراد به مدت 10 روز

<table>
<thead>
<tr>
<th>نوع پهنه بندی</th>
<th>عدد پراکسید**</th>
<th>عدد TBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.41 ± 0.3 g</td>
<td>2.41 ± 0.17 g</td>
<td>2.41 ± 0.17 g</td>
</tr>
<tr>
<td>1/94 ± 0.2 g</td>
<td>1/94 ± 0.2 g</td>
<td>1/94 ± 0.2 g</td>
</tr>
</tbody>
</table>

میانگین‌هایی که در یک ستون دارای حرف مشترک هستند در سطح احتمال 5 درصد فاقد اختلاف معنی‌دار می‌باشند.

* میلی‌گرم مالون‌الدید در کیلوگرم ماده خشک سوپس
** میلی‌گرم آکسید در کیلوگرم روغن

جدول 9. مقایسه اثر مدت ابزاری - نوع پهنه بندی روی مقاومت برشی یافته و متوسط سوپس‌های نگهداری شده در دمای 4 درجه سانتی‌گراد به مدت 10 روز

مدت ابزاری (روز) | روش استوانه‌نوش |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>پلی آمید</td>
<td>پلی آمید</td>
</tr>
<tr>
<td>سلولزی</td>
<td>سلولزی</td>
</tr>
<tr>
<td>124/2</td>
<td>120/2</td>
</tr>
<tr>
<td>132/3</td>
<td>128/1</td>
</tr>
<tr>
<td>144/0</td>
<td>140/4</td>
</tr>
<tr>
<td>152/4</td>
<td>148/1</td>
</tr>
<tr>
<td>16/6</td>
<td>152/4</td>
</tr>
</tbody>
</table>

در هر یک از روش‌های اندازه‌گیری مقاومت برشی یافته میانگین‌هایی که دارای یک حرف مشترک هستند در سطح احتمال 5 درصد فاقد اختلاف معنی‌دار می‌باشند.

* گرم نیتر ب زانی تر مربع
مطالعه تأثیر آلфа توکوفرون و پروپیل گالات بر میزان اکسیداسیون خون به خودی...

روی عدد پراکسید در سطح احتمال ۵ درصد معنی‌دار بوده است (جدول ۴). بیشترین عدد پراکسید در سوپرسیس‌های شاهد بستنی‌شده نیتراتل و کمترین عدد پراکسید در سوپرسیس‌های حاوی PG بستنی‌شده در پوشش‌های اثری آمیدي دیده شد (شکل ۳).

ولی نوع پسته بندی، اثر معنی‌داری روی عدد TBA نداشت (جدول ۴). البته در هر دو نوع پسته بندی، عدد TBA نیز در هر دو نوع پوشش‌های بی‌کربوهیدرات و دایئی در این دو نوع پوشش مشابه بود و در نهایت بین میانگین اعداد آنها طی ۱۰ روز تفاوت معنی‌داری دیده نشد. TBA در مورد تأثیر ضد اکسیدانها در جلولگیری از اکسیداسیون چربی مشخص شد که نمونه‌های PG بی‌پرسی تأثیر را داشت. این مسئله تأثیر PG بی‌پرسی معنی‌داری در کمترین عدد TBA در مطالعه‌ای که در سال ۲۰۰۲ توسط آن (Ahn et al.) بر روی گوشت چرخ کرده یافته شده گزاره که مدت ۳ روز در دمای ۴ درجه سانتی‌گراد نگهداری شده بود، بررسی شد. نتایج نشان داد که تیمار حاوی آلфа توکوفرون در سطح احتمال ۵ درصد معنی‌داری داشت این داشت که نتایج به دست آمده از آزمایش‌های ما پیش این موضوع را تأیید می‌کند.

مقاومت برخی بافت سوپرسیس‌های نگهداری شده در دمای ۴ درجه سانتی‌گراد نیز به دو روش استفاده از استوانه توبی و استفاده از تیغه برانتر بذر ازبکی تیم کرد. بر اساس ۲ عدد م السلطانی م‌آمیزه کردن، مشخصی گردید که تیمارهای حاوی و با افزایش غلظت و درمان اکسیداسیون چربی جلولگیری شده (Lev) (۲۰۲۰) نشان داد که افزایش آلфа توکوفرون باعث جلولگیری از اکسیداسیون چربی در گشت بولفمون اشعه داده شده می‌شود (۱۲).

بر اساس نتایج به دست آمده مشخص شده که آلفا توکوفرون در غلظت ۵۰۰ ppm می‌باشد. اکسیداسیون مصنوعی PG با ۵۰۰ جایگزین مناسب براز خشک شده.

بحث

طی مدت انباریانه در هر دو دمای ۱۸ - درجه سانتی‌گراد و ۴ درجه سانتی‌گراد بی‌پرسی داشته و اکسیداسیون در نمونه‌های شاهد...
شکل 3. تأثیر ضد اکسیدان‌های مختلف و نوع پوشش سوسپس بر میزان اکسیداسیون خود بخودی (عدد پراکنده) نمونه‌های نگهداری شده در دمای 4 درجه سانتی‌گراد به مدت 10 روز.

شکل 4. تأثیر ضد اکسیدان‌های مختلف بر میزان اکسیداسیون خود بخودی (عدد TBA) نمونه‌های سوسپس نگهداری شده در دمای 4 درجه سانتی‌گراد به مدت 10 روز.
جدول 8. میانگین تغییرات درصد رطوبت نمونه‌های سوسمس بسته بندی شده در پوشش سولوژی طی 10 روز نگهداری در دمای 4 درجه سانتی‌گراد.

<table>
<thead>
<tr>
<th>نوع ماده افزودنی</th>
<th>10</th>
<th>7</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدنود ماده افزودنی</td>
<td>27/8</td>
<td>49/9</td>
<td>53/3</td>
<td>59/6</td>
</tr>
<tr>
<td>ویتامین E (200 ppm)</td>
<td>27/9</td>
<td>50/8</td>
<td>54/4</td>
<td>59/5</td>
</tr>
<tr>
<td>ویتامین E (500 ppm)</td>
<td>26/1</td>
<td>53/8</td>
<td>59/0</td>
<td>61/2</td>
</tr>
<tr>
<td>پروپیل کالات (200 ppm)</td>
<td>26/9</td>
<td>51/1</td>
<td>54/8</td>
<td>59/9</td>
</tr>
</tbody>
</table>

منو نهایی بسته‌بندی شده در پوشش پلی امیدی به جر مایه اول که مقاومت برخی کاهش جزئی نشان داده، در بقیه زمان‌ها مقدار ثابت بوده است. کاهش مقاومت برخی در ماه اول مربوط به آسیب ناشی از انجام می‌باشد. در بقیه حالات جویان مشکل تغییر بافت پس از رفع انجام در همه زمان‌ها متغیر بوده است، نتیجه برای همه یکسان بوده و در ضمن تاثیر انجام بر تأثیر عوامل پات‌گذار غلاف می‌باشد. بنابراین مقاومت برخی بافت نمونه‌های سوسمس بسته بندی شده در پوشش سولوژی پیچیده و باید حداکثر 3 روز دارد. در دمای 4 درجه سانتی‌گراد نیز با افزایش زمان نگهداری، مقاومت برخی بافت نمونه‌های سوسمس بسته بندی شده در پوشش سولوژی افزایش می‌یابد (جدول 8).

سیاستگرایی

از مدیریت و کادر محرک کارخانه تولید فراورده‌های گوشتی لورک نو به دلیل همکاری در تولید نمونه‌ها و نیز از آقای مهندس بهمن بهرامی به خاطر مساعدت‌های ایشان در انجام این تحقیق سیاستگرایی می‌گردد.

متن مورد استفاده

