شیب‌سازی روان‌های سطحی و تبخیر تغییر حوزه آب‌خیز معرف رود زرد با مدل استانفورد -۴

سیف‌الله امن و عبدالملک جنگری روزبهانی

چکیده

پیشینه پژوهش‌های حوزه‌های آب‌خیز و تخمین دم و حجم سیلاب‌برای طراحی و ارزیابی بشتر پروژه‌های آبی، جلوگیری از ترسایش‌های خاک و حفاظت منابع آب مورد نیاز است. برای تعیین و اکتشاف حوزه‌های آب‌خیز در شرایطی متفاوت، آب و هوایی، معمولاً از روشهای هیدرولوژی و نیز مدل‌های مختلف ریاضی استفاده می‌شود که شیب‌سازی گونه‌های مختلفی از بادهای هوا با استفاده از سیستم‌های هیدرولوژی و (SWM-IV) یا انجام می‌دهند. در این پژوهش از مدل پوسته استانفورد (BRAY) و شیب‌سازی دیگر شیب‌سازی حصول سیلاب‌های ماهانه و سالانه و تبخیر تغییر حوزه‌های معرف رود زرد با وسعت ۴۴۱ کیلومتر مربع، واقع در جنوب غربی ایران استفاده شده است. به منظور کنترل دقیق شیب‌سازی مدل تحلیل حساسیت پارامترهای ورودی نیز بررسی گردیده. برای استخراج مدل از اطلاعات هیدرولوژی موجود سال ۶۲-۱۱۵۵ (مجرداً از یژگانی فیریکی حوزه)، و برای ارزیابی مدل داده‌های سال ۷۵-۱۳۳۲ استفاده شد.

تایید شیب‌سازی انجام شده که حجم سیلاب‌های ماهانه و سالانه، حجم آب زیرزمینی، جریان زیر سطحی، تبخیر تغییر قابلیت ضریب روان‌های حوزه آب‌خیز مورد بررسی با درستی پیش‌بینی شیب‌سازی می‌شود. بررسی بین مقادیر شیب‌سازی شده و مشاهده شده حداکثر دیس متوسط روان‌های ضریب تغییر (22\(R^2\)) چون 0/8/1 با دست داد، نتایج به تایید مدل استانفورد-۴ برای پیش‌بینی شیب‌سازی هیدرولوژی سیلاب و تبخیر تغییر حوزه‌های آب‌خیز با مساحت‌های مختلف در ایران توصیه می‌گردد.

واژه‌های کلیدی: روان‌های، تبخیر تغییر، حوزه آب‌خیز، رود زرد، مدل ریاضی، مدل استانفورد-۴

۱ به ترتیب استاد و دانشجوی سابق کارشناسی ارشد آب‌خیز، دانشکده کشاورزی، دانشگاه شیراز
مقدمه
رونده صعودی رشد جمعیت جانور، پیشرفته صعت، آلودگی محیط زیست و ارتفاع سطح بهداشت باعث مصرف روزافروز آب شده است. با توجه به نتایج بودن نسبی ممنوعیت آب تجدید شدن، باید یادگیری این منابع به خوبی شناخته شود و امکان بررسی دقت کمی و کیفی آنها برای کاربرد بیشتر مصرف مشخص گردد (۲). نتیجه یا کمبود داده‌ها در مورد واکنش حزه‌های آبی آب‌رفتگی در راه به دقت وضعیت منابع آب یک از مناطق کاوش است (۳) (۴). یکی از راه‌های بر طرف تمود در این فقره، تعیین جزیات محیط (wastesheds) و پژوهش در مورد واکنش هیدرولوژی این نوع حزه‌های آبی (۵) و (۶). غیرین این حوزه به گونه‌نامه صورت می‌گیرد که حوزه نامی از اراضی پهناوری آنها را به دست آورده‌است. در این صورت این گونه حوزه‌ها باید در اندازه‌گیری و در انتخاب هیدرولوژی کمک در شناخت مؤلفه‌های جریان آب و تحلیل نتایج حاصل از آنها خواهد بود (۶). به علت تغییرات زمینی و مکانیک عوامل مؤثر در جریان آب حزه‌های آبی، شناخت همه آجز چرخه آب آنها از طریق تحلیل‌های نمونه‌برداری و اغلب غیر ممکن است (۵) (۶). مدل‌های هیدرولوژی برای غلبه بر این مشکل به وجود آمده‌اند. در سطح حزه‌های آبی دیتا به کار گرفته شده و توسط این تغییرات مؤلفه‌های زیادی از چرخه پیدا شده و بررسی شده است (۳) (۶). در این زمینه حزه‌های زیست یا جریان‌های زیستی (Generations) وارد در مورد ایفای نقش ایجاد (۷) در حزه‌های آبی انتخاب (یا انتخاب) از یک به یک گرفته شده است (۱۱). از آن جمله USDAHSL-IV، مدل SWM-IV، دسته‌ی سلسله‌ی مدل‌های HSP و مدل‌های SSARR (۱۲) و مدل‌های SEAMOD (۱۳) را می‌توان نام برد. بر اساس گیری مشکل به کاربردی این مدل‌ها اطلاعات زیادی است که برای ایجاد پروپوزال رودی (نهاد) لازم است. Stanford (۴) یا SWM-IV در این پژوهش، مدل استاندارد-۴ (۴) برای تخمین بی‌پر خون جریان (Watershed Model-IV) تبعیض و بررسی وضعیت چرخه آب حوزه‌های مصرفی

مواد و روش‌ها

ساختار کلی مدل استاندارد-۴
رابطه‌های رفتاری و فیزیکی مورد استفاده در این مدل بیشتر تجزیه‌بندی و از تحلیل داده‌های مناسب به ۴۰ حوزه آبی‌زیست آمریکا به دست آمده است (۱۴). در مدل هیدرولوژی آن برگرفت نفوذ و سطحی خاک‌های حوزه آبی، روند سیلاب و...

مقدار قرار می‌گیرد (سال ۱) تمام آب ذخیره شده در حوزه جریان تبعیض و بررسی وضعیت چرخه آب حوزه‌های مصرفی

۲
شیب‌سازی روان‌بندی و تبخیر تعرق حوزه آبخزی معرف، مدل مدل استاندارد-4

شکل 1. دیاگرام مدل استاندارد-4

در دیاگرام شکل 1، مدل استاندارد-4 به کار گرفته می‌شود تا هر چگونه مصرف آب در حوزه آبخزی توسط روان‌بندی و تبخیر تعرق تعیین شود. در این مدل، فرآیند تبخیر تعرق از خاک به صورت مکانی و زیست‌پردازی شناخته شده است. مدل به‌صورت توزیع احتمالی برای هر چیزی که در حوزه آبخزی رخ دهد، مورد استفاده قرار می‌گیرد.

$P = E + R + \Delta S$

که P کلیه ریزش‌های جوی، E تبخیر تعرق از سطح حوزه، R تغییرات کلی در حاله‌های بالایی و پایینی خاک و ΔS تغییرات کلی در حاله‌های بالایی و پایینی خاک را بیان می‌کند.

در این مدل، کلاه فرآیندهای هیدرولوژی، جز برگ‌بندی و روند سیلی (که بر اساس فاصله زمانی یک ساعته به‌زودی می‌شود) با فاصله زمانی 15 دقیقه‌ای در مدل بیان می‌شود. برگ‌بندی و تبخیر تعرق از ناحیه بالایی خاک که در این مدل به‌صورت توزیع احتمالی و پایینی خاک که در این مدل به‌صورت توزیع احتمالی می‌باشد.

یک ایمنی از این مدل در مورد روان‌بندی و تبخیر تعرق حوزه آبخزی استفاده می‌شود. اگرچه در بررسی سیل‌های ناشی از رگبارهای بزرگ طولانی مدت، مدل مورد استفاده قرار می‌گیرد. به‌عنوان مثال در مدل استاندارد-4 مدل در مورد برگ‌بندی بدون توزیع عمل مهم است (26).
جدول ١. حداکثر مقدار برگاب با پوشرهای مختلف (EPXm)

<table>
<thead>
<tr>
<th>نوع پوشر</th>
<th>حداکثر مقدار برگاب</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرتبع</td>
<td>٢/٥</td>
</tr>
<tr>
<td>چنگل</td>
<td>٣/٨</td>
</tr>
<tr>
<td>چنگل ابوه</td>
<td>٥/٠</td>
</tr>
</tbody>
</table>

جریان سطحی در مدل طراحی شده بود (Overland flow) و جریان کانالیزه شده (Chanalized) در نظر گرفته شد. اندازه جریان سطحی به عنوان ناتوانی از امکان نگهداری سطحی (Surface detention storage) با مبلغ زیر در مدل محاسبه می‌گردد:

\[q = \frac{1}{n} \times S^{1/2} \times (D/L)^{5/3} \times (1+0.6\left(\frac{D}{D_e}\right)^{1/3}) \times (D/L)^{5/3} \]

که:
- \(q \) به دی نمایندگی جریان سطحی (m³/s) در (mm) می‌باشد.
- \(D \) میانگین ضخامت گذرگاه (m/m)
- \(S \) میانگین شیب جریان آبخیز (m/m)
- \(n \) ضریب زیر میانگین
- \(L \) میانگین طول گذرگاه جریان سطحی در جریان آبخیز (m)

مقدار نگهداری سطحی در حالت تعدادی واحد عرض (m²/m) مقدار از مدل زیر مشابه است:

\[D_e = 0.000818 \times 10^{-0.6} \times n^{0.6} \times L^{1.6} \]

که:
- \(D_e \) شبدت بارندگی (m³/m)
- \(n \) عوامل دیگر در مدل ۳ تعیین شده است.

جریان کانالیزه: این روند در مدل از طریق تجربی محاسبه و ارائه می‌شود (٩). در این روش از هیستوگرام‌های کامپوتری جریان به عوامل آبخیز، بدون در نظر گرفتن اثر کاهشی دیدگاه ذره شده در کانال استفاده می‌شود.
حوزة معرف رود زرده

حوزة معرف رود زرده بنا توجهه به برائحةاته ده ساله بين الملل مهيدلورژی (International Hydrological Decade) جهانی پیوندکا در پیشتر کشورهاي مختلف، از جمله ایران، با اهداف تجهیز به پرهبادی از دهه‌های پیداشته شده از این حوزه آبیاری انجام شده است (1 و 2). نیازهای می‌توان در مناطق نزدیک این حوزه آبیاری، که فاقد آمار و اطلاعات هوشامی و هیدرولوژی بوده، با این که دهاده‌های آنها محدود است، از اطلاعات این حوزه معرف بایا ارژنتینا آیسی، مانند تسنیمیه، از دسته‌های آبیاری و زیست‌شناسی، و تأمینات انتقال آب استفاده شده‌اند. این حوزه در مناطق که دارای آمار و اطلاعات وینا بسیار پایدار است، می‌توان به کمک مدل استفاده از پژوهش‌های علمی را که دریافت یافته می‌شود، راهی درک کردن طبیعت زیست‌های آبیاری در این حوزه، کاربردهای آنها را بررسی کرد.

حوزه معرف رود زرده با دامنه تغییرات ارتفاع حدود ۴۰۰ تا ۳۰۰۰ متر از سطح دریا در جنوب غربی ایران و در مسیر رشته کوه‌های زاکرکس، بین طول‌های شمالی ۴۷°۱۶' تا ۴°۳۱' و عرض‌های شمالی ۳۲° و ۳۲° تا ۳۴° واقع شده است. رویدادهای رود زرده یکی از مراکز مهم رودخانه‌های جرایح است، که نشان دهنده آب و ملون تشکیل رودخانه جرایح را داده، به خلیج فارس می‌ریزد و راه‌پیمایی فیزیکی حوزه، با توجه به مسیر جریان رودخانه‌های، به صورت زیر است (1 و ۲):

سطح حوضه ۸۸۹۸۰ (۸۷۸۹۰) هکتار با شبیه‌سازی متوسط ۵۳۷ کیلومتر مربع (m²) و تراکم زیستی ۰/۱۷ کیلوگرام/m³.

میانگین ارتفاع حوزه از سطح دریا برای با ۱/۱۷ کیلومتر مربع (m²) طول جریان سطحی ۴۸۸۰۵ کیلومتر مربع (m²) با شبیه‌سازی متوسط ۰/۱۷ کیلومتر مربع (m²) ضرایب افت جریان‌های سطحی، زیرزمینی، و آب‌زیروزنه به ترتیب برابر با ۰/۸۷ و ۰/۳۸ و ۰/۷۸ می‌باشند.

در این حوزه در ایستگاه هوشامی باز می‌کند و رود زرده ماسی، که به ترتیب در ارتفاع ۷۵۰ متری و ۴۳۰ متری از سطح دریا قرار دارد، مرکز به ماسی نهر، تشکیل تیغه‌ی ایلیا یافته.

نتایج و بحث

تحليل نتایج حسابی مدل استفاده‌ـ4

پیش از این کارگیری هدف ریاضی برای شیب‌پذیری، تحلیل حسابی مقداری از مدل در این تغییرات عوامل مؤثر در روند هیدرولوژی صورت می‌گیرد. در این مدل مقدار تری گردیده است. تحلیل حسابی مدل استفاده‌ـ4 با استفاده از آمار و اطلاعات سال‌های ۱۳۵۰ تا ۱۳۵۶ از ارزیابی داده‌های پارامتر می‌زیر انجام یافته‌ـ4:

- شاخه‌ی شناختی CB
- شاخه‌ی شناختی CC
-情侣らのサインが見つかりました。
شکل ۲. موقعیت جغرافیایی، توبوگرافی و محل باران سنگ‌زهای حوزه آبخیر رود زرود (برگرفته از عففیلی روزبهانی، ۱۳۶۶).
نتایج و استنتاج نشان داد که مقادیر حجم خروجی سالیانه، ذخیره عکس و طول مدت میانگین یک درصد اختلاف دارند. ضریب ثبیت (R²)، 0/99 نشان دهنده توانایی مدل در پیش‌بینی ذخایر آبیاری با بهره‌برداری است. مقادیر ذخایر متوسط زیر آب و لحاظ های اوج سالیانه بین شده و پیش‌بینی شده در جدول 2 آورده شده است. ضریب ثبیت حجم ماهیانه 0/71 و 0/17 mm در واحد است.

شیب‌سازی

جدول 3 نتایج شیب‌سازی حداکثر دیگر روزانه و دیگر اوج لحاظ‌های سالیانه را نشان می‌دهد. با توجه به مقادیر جدول 3، حداکثر متوسط زیر آب ماهیانه در سال آبی 0/125-350 (سال دیگر) اتفاق افتاده و مقادیر این می‌باشد. همچنین شده است. اگرچه با کم کردن ضریب نفوذ سطحی (CB) مقدار این می‌باشد، ولی سیلاپ 11 دیم همان سال و سال‌های بعد مشابه ای، این تغییرات شده، سرانجام اختلال مقادیر شیب‌سازی شده و ثبت شده سیلاپ‌ها زیاد می‌گردد. به‌طور مثال، در ماه‌های حاوی افزایش و حداکثر طبیعی بین مقادیر ماهیاب و شده و ثبت شده و برپایه برای 8/2/6-5/35 درصد افت‌امکانی فردی می‌باشد. در همان وقت در واحد، وسیله مدل 2 ساعت و حداکثر 8 ساعت به دست آمد است. مدل، برخی از سیلاپ‌های کوچک و اکثریت این سیلاپ‌ها نمی‌توانسته است پیش‌بینی نماید. با توجه به کم بودن مقادیر آنها تأثیر زیادی بر دیگر بهره‌برداری. مقادیر حداکثر متوسط زیر آب و دیگر اوج شده و برای میانگین 130-350 بین 7/60 و 1/60 می‌باشد.

کارکرد و لزَنی (7) حساسیت پارامترهای فور و چگونگی تغییر مقادیر آنها را در محدوده‌های پیشنهاده شده تحلیل نمودند و USZN، LZSN، SGW و KW24 است. در مورد پارامترهای USZN درصد به دست آمد. در مورد USMN و KW24 حساسیت انتخاب دوره سالیانه و نشان داد که تغییرات آنها سیلو پارامترهای SGW و POWER و GWS بر توزیع جریان ماهیانه و شیب‌سازی آن مؤثر بوده و تأثیر چندانی بر حجم دیگر سالیانه نداشته و برپایه بهبود (تغییر تعقیبی) 7 تا حد زیادی در دقت برپایه حجم جریان سالیانه مؤثر است.

و استنتاج مدل استاندارد-4

با توجه به تحلیل حساسیت مدل، و استنجری و ارزیابی مدل، با آمار و اطلاعات یک دوره به دست آمده سالیانه متوالی از 1350 تا 1370، انجام پذیرفت. مقادیر اولیه پارامترهای برم‌گزار، نگهبانی و مقادیر ریتمی شده و این داده به طور دو پیشنهاد شده و به برای پیشنهاد کردنی در مورد مدل پارامترهای تا یک پیشنهادی از تئوری وارونکی صفر نظر کرده شد. برای و استنجری مدل، اطلاعات سال آبی 1350 تا 1370 به کار رفت. نتایج و استنجری در جدول 1 نشان داده شده است.
جدول ۲. حجم سالیانه پیش‌بینی شده و ثبت شده رودخانه رود در سال‌های ۱۳۵۵-۵۶.

<table>
<thead>
<tr>
<th>سال آبی</th>
<th>حجم سالیانه دبی (mm) پیش‌بینی شده</th>
<th>حجم سالیانه دبی ثبت شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶-۵۶</td>
<td>۲۹۵/۷</td>
<td>۲۸۸/۶</td>
</tr>
<tr>
<td>۲۷-۵۲</td>
<td>۳۱۶/۸</td>
<td>۲۹۸/۵</td>
</tr>
<tr>
<td>۲۸-۵۱</td>
<td>۲۷۵/۱</td>
<td>۲۸۸/۶</td>
</tr>
<tr>
<td>۲۹-۵۰</td>
<td>۵۱۶/۹</td>
<td>۵۰۸/۹</td>
</tr>
<tr>
<td>۳۰-۴۹</td>
<td>۳۲۶/۳</td>
<td>۳۲۸/۶</td>
</tr>
<tr>
<td>۳۱-۳۰</td>
<td>۳۳۵/۱</td>
<td>۳۲۶/۳</td>
</tr>
</tbody>
</table>

میانگین (مقدار مشاهده شده - مقدار پیش‌بینی شده)
مقدار مشاهده شده

جدول ۳. میزان تأخیر در لحظهای با دبی (m³/s) و متوسط اوج سالیانه مشاهده شده و شیب‌سازی شده در سال‌های مورد بررسی در جدول ۱ مراجعه شود.

<table>
<thead>
<tr>
<th>سال آبی</th>
<th>لحظهای با دبی (m³/s) درصد</th>
<th>متوسط اوج سالیانه درصد</th>
<th>لحظهای با دبی (m³/s) شیب‌سازی شده</th>
<th>متوسط اوج سالیانه شیب‌سازی شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶-۵۶</td>
<td>۴۰/۴</td>
<td>۲۰/۸</td>
<td>۸/۲</td>
<td>۸/۲</td>
</tr>
<tr>
<td>۲۷-۵۲</td>
<td>۳۴/۲</td>
<td>۲۱/۸</td>
<td>۹/۱</td>
<td>۹/۱</td>
</tr>
<tr>
<td>۲۸-۵۱</td>
<td>۳۷/۶</td>
<td>۱۸/۱</td>
<td>۶/۷</td>
<td>۶/۷</td>
</tr>
<tr>
<td>۲۹-۵۰</td>
<td>۳۴/۲</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۳۰-۴۹</td>
<td>۴۷/۶</td>
<td>۵۴/۸</td>
<td>۱۰/۷</td>
<td>۱۰/۷</td>
</tr>
<tr>
<td>۳۱-۳۰</td>
<td>۴۵/۸</td>
<td>۴۴/۳</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
</tbody>
</table>

شکل ۳. مقایسه سطوح مشاهده شده و شیب‌سازی شده در سال‌های ۱۳۵۵-۵۶.
شیب سازی روان‌بندی و تبیخ‌تعرق حوزه آبخiaz معرف روودوزه مدل استانفورد 4

قیبلی است، و نشان می‌دهد که مدل روان‌بندی شیب‌سازی سیلاب از حوزه‌های آبخیز‌برگ را دارد. با توجه به شکل 5، نتایج درصد میانگین بین حوزه و نت هم منطقه مناسب‌ترند. عدم انطباق جمعیت در دی راه‌های بین m3/s و 10 m3/s است و حدود 3 m3/s و 3 m3/s را در می‌گیرد.

مؤلفه غالب جریان روودوزه و ضربن روان‌بندی سالانه تحلیل رودخانه‌ای سال‌های آبی 1350-1355 حوزه آبخیز روودوزه نشان می‌دهد که نسبت به جریان‌های سطحی، جریان زیرسطحی حاد و جریان نوروزی بیشترین مقدار را دارد. با توجه به نتایج تحلیل جریان مورد اشاره و مقایسه آنها با مقدار کل پاپترگانه سالانه، مقدار ضریب هرز از در جریان روودوزه بین 21 تا 26 درصد با میانگین 147 درصد است.

تیبیخ‌تعرق حقيقة

تیبیخ‌تعرق حقيقة (ETc) یکی از مهم‌ترین مؤلفه‌های بایان آبی‌پس از جریان آبخیز است. با استفاده از مدل استانفورد 4، مقدار قابل شیب‌سازی نهایی مقدار بارندگی (P), تیبیخ‌تعرق ETc خلاصه و نتیجه‌گیری

مدل استانفورد 4 برای شیب‌سازی دی متوسط لحظه‌ای، مؤثر، و سطحی، و جریان‌های سطحی، تیبیخ‌تعرق بالقوه و محاسبه ضریب هرز از سطحی در حوزه آبخیز،
جدول 4. مقدار تبخیرتعرق حقيقی و شبیه‌سازی شده در سال‌های آبی 1355-60 در حوزه آبخیز مورد بررسی.

<table>
<thead>
<tr>
<th>سال آبی</th>
<th>RC (%)</th>
<th>RO (mm)</th>
<th>IF (mm)</th>
<th>GW (mm)</th>
<th>TRO (mm)</th>
<th>ET پ (PT) (mm)</th>
<th>PP (mm)</th>
<th>Eta (mm)</th>
<th>ETP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/6</td>
<td>9</td>
<td>69</td>
<td>190</td>
<td>290</td>
<td>0/24</td>
<td>517</td>
<td>226</td>
<td>876</td>
<td>1355/60</td>
</tr>
<tr>
<td>17/6</td>
<td>7</td>
<td>91</td>
<td>229</td>
<td>379</td>
<td>0/19</td>
<td>548</td>
<td>231</td>
<td>878</td>
<td>1355/59</td>
</tr>
<tr>
<td>18/6</td>
<td>6</td>
<td>76</td>
<td>288</td>
<td>448</td>
<td>0/13</td>
<td>566</td>
<td>216</td>
<td>866</td>
<td>1355/58</td>
</tr>
<tr>
<td>18/5</td>
<td>5</td>
<td>168</td>
<td>330</td>
<td>546</td>
<td>0/28</td>
<td>733</td>
<td>227</td>
<td>889</td>
<td>1355/57</td>
</tr>
<tr>
<td>18/4</td>
<td>4</td>
<td>25</td>
<td>142</td>
<td>242</td>
<td>0/33</td>
<td>382</td>
<td>249</td>
<td>778</td>
<td>1355/56</td>
</tr>
<tr>
<td>18/3</td>
<td>3</td>
<td>42</td>
<td>209</td>
<td>325</td>
<td>0/44</td>
<td>557</td>
<td>221</td>
<td>806</td>
<td>1355/55</td>
</tr>
</tbody>
</table>

شکل 5. انطباق حداکثر دو متوسط روزانه مشاهده شده و تخمین زده شده رود زرد، سال آبی 1355-60.

شکل 6. همبستگی نسبت تبخیرتعرق حقيقی به پارامتری سالانه حوزه رود زرد، سال آبی 1355-60.
شیمی‌زایی روان‌آوری سطحی و تیغ‌ته‌برق حوزه آبخز معرق روود یا مدل استانفورد-۴

آبخز معرق روود یا کار رفت. نتایج شیمی‌زایی نشان داد که این مدل در شیمی‌زایی دیگر سیالانه و ماهیان توانایی زیادی دارد. ولی در مورد دیگر میانگین متوسط روان‌های و نظرات مقدار قبلی نمی‌تواند. مقدار میانگین ضریب هر زمان سطحی برابر ۱۵.۸ درصد در پالت‌گر را تشکیل می‌دهد. مقدار میانگین متوسط تیغ‌ته‌برق حقیقی برای یک دوره یک ساله ۲۳۱۵/۲۹ میلی‌متری برابر ۲۳۱ میلی‌متر است. همچنین، جریان

متابع مورد استفاده

۱. غفوری روخت‌سپانی. م. ۱۳۸۴. تحلیل رقم سیکل هیدرولوژی در جریان معرق و آزمایش روود. پایان‌نامه کارشناسی ارشد.

۲. غفوری روخت‌سپانی. م. س. امین سیبانی و ن. طالب بیدختی. ۱۳۸۸. تحلیل رقم سیکل هیدرولوژی در جریان معرق و آزمایش روود. مجموعه مقالات سومین کنگره بین‌المللی مهندسی راه و ساختمان ایران، ۲۴ تا ۲۸ اردیبهشت، دانشگاه هندردی. دانشگاه شیراز.

