کاربرد تپیو گشدارهای خطری در تحلیل تناوب سیل جوزه‌های آبیز مرکزی ایران

سیدسعود اسلامیان۱ و ستار چاوشی پروچنی۲

چکیده
روش‌های پیش‌آمده برای بررسی سیلاب جوزه‌های آبیز وجود دارد. که از جمله می‌توان به تحلیل مناطق‌های سیلاب اشاره کرد. ویژگی‌های تحلیل منطقه‌ای سیلاب منگی بر روی اقلیمی، آبیاری، و گلوله‌های جوزه‌های آبیز وجود دارد. از روش‌های آماری در بررسی داده‌های مشاهداتی جریان استفاده می‌کنند. این روش‌ها دارای شیوه‌های مشابهی است، هنگامی‌که و باعث روش گشتاور وزنی احتمال آماری گشتاورهای خطری اساس بهاره‌ای را به عنوان روش‌هایی جدید در تحلیل تناوب سیل جوزه‌های آبیز ایران نامیدند. تپیو گشدارهای خطری اساس بهاره‌ای را به عنوان روش‌هایی جدید در تحلیل منطقه‌ای سیلاب ایران پربر می‌شود. با استفاده از نرم‌افزار گشدار خطری منحنی جریانی خطری در بررسی کشاورزی خطری و مناسب‌ترین توزیع‌های نافرآیندی برای بررسی برای اینکه از این روش‌ها مطالعاتی تغییر شده‌است. به‌عنوان حلف‌های ایستگاه‌های معیار همگانی آزمون‌های همگانی جزئی بر پراپاپزامه‌های ناحیه‌ای و تاکیدی انجام گرفته و سری‌پذیر ایستگاه‌های جریان و گرچه برای تعیین ایستگاه‌های غیره منجمد که به عنوان ایستگاه‌های ناحیه‌ای و تاکیدی انجام شده‌اند. در جدول‌های بعد، آزمون‌های تکراری برای تعیین ناحیه‌ای تقارنی انجام، و به ترتیب توزیع‌های ناحیه‌ای جستجوی تعمیم یافته، متقابل حد تعمیم یافته، نرمال تعمیم یافته، پیش‌رسان نوع سوم و پارتو تعمیم یافته ناحیه‌ای تقارنی انجام ناحیه‌ای تقارنی توزیع خواهند شد. در نهایت، تفکیک ترمیمی دنیام به تناوب مختلف در منطقه تغییر و پارامترهای توزیع‌های تقریبی مناسب و ارزیابی هر گیاه گیاهان

واژه‌های کلیدی: گشدار خطری، گشتاور وزنی احتمال، تحلیل منطقه‌ای سیلاب

۱. دانشیار آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۲. عضو هیأت علمی، مرکز تحقیقات منابع طبیعی و امور دام، سازمان جهاد کشاورزی اصفهان

۱۳۸۲
مقدمه
تحلیل مقطعه‌ای سیال‌بندی یکی از بحث‌های گسترش‌یافته‌ای مورد توجه پژوهشگران بایستی را به خوب جلب کرده است. به علت این که سیال‌بندی، زیربخشهای مختلف سیال‌بندیهای سیال‌بندی از اهمیت ویژه‌ای برخوردار است، بنابراین، پژوهش در زمینه بهبود روشهای تخمین سیال‌بندی همچنان ادامه دارد.

در دهه‌های گذشته و هشتادی به دلایلی بیشتر تلاش‌ها صرف گسترش روشهای کارآمدی، تحلیل تابو سیال در استعمال‌های هیدرولوژیکی گردد. توزیع‌های آماری جدید و روش‌های تخمین کارآمده در سیال‌بندی تولید متفاوت‌های هیدرولوژیکی معرفی شد. که بخشی از آنها مختص تحلیل تابو سیال می‌باشند. به نظر می‌رسد که این روند نا متغیر در آغاز دهه نزدیک آن‌آکار گروه‌های است، تحلیل تابو سیالی با پیشرفت و بهبود تخمین تابو سیال، به نظر می‌رسد که تلاش در این زمینه مورد توجه پژوهشگران قرار گرفته است.

هدف از تحلیل مقطعه‌ای سیال‌بندی تخمین مقادیر جریان و تابو و قوع آن در یک حوضه مورد نظر است. دوره بازگشت، که فواصل احتمالی وقوع نمای‌های مورد نظر یک توزیع طبیعی پروژه و پیامدهای سیالبندی است. به عنوان مثال، سده و بنده‌های مهم سیال‌بندی برای مقاومت در برقراری سیال‌بندی یا دوره بازگشت تهیه 10 تا 50 سال در طول عمر نشان می‌دهد. در این تحقیق، می‌تواند به وقوع نشان دهنده یا سده مفید سازه طراحی می‌شود. روابط موجود بین عظیم سیال و دوره وقوع آن به عنوان مختصر تابو نشان می‌دهد. به توجه به اهداف مهندسی، همچون طراحی پله‌ها، سده‌ها، نهایت انحراف آب و سازه‌های سیال استفاده شود.

آمادفکسی (1) در پژوهشی به مقایسه روش‌های غیر پارامتری (Non-parametric procedures) و کشتار خظی (I-moment Linear moment) در تحلیل مقطعه‌ای سیالبندی (L-moment Ya Linear moment) حوزه‌های واقع در استان‌های انتاریو و کیک کانتارا برد. وی در پژوهش حوزه‌ای واقع در استان‌های جنوبی و غربی کانادا نتایج سنجشی دادند. سپسی در استفاده کرد و در نتایج کام حوزه‌های مورد بررسی
مواد و روش‌ها

مدل‌های منطقه‌ای نتایب سیل

بیشتر شیوه‌های منطقه‌ای تحلیل نتایب سیل مبنی بر استفاده از دیگر اوج سالانه‌های سری سالانه است. در حالی که در برخی دیگر از روش‌ها از سری‌های جزئی استفاده می‌شود. در حال حاضر، روش‌های رگرسیون سیل شاخص بیش از روش‌های دیگر رایج است. در حالی که روش رگرسیون به‌طور گسترده‌ای در آیلات متحد استفاده می‌شود، روش سیل شاخص نیز مورد توجه پژوهشگان واقع شده است.

عموماً تحلیل منطقه‌ای سیل شاخص پنج مرحله‌ای زیر است:

1. نسبت سیل شاخص منطقه‌ای
2. تغییرات محلی منطقه‌ای
3. پیش‌بینی نتایج
4. تحقیق و بررسی
5. برآورد سیل در مناطق بدون استفاده

است. کاربرد توری گشته‌ورتی خطر در بررسی سیلاب‌های نزول‌النگین نشان می‌دهد که سری سیلاب‌های سالانه منطقه سات کانتربری (South Canterbury) (Extreme value type 2 EV2) نباید برای پیش‌بینی در حال حاضر در حالی که بنابراین هر گونه تغییر در کاربری اراضی که بر جنوب سیلاب در جهت‌های آبیز تأثیر گذاشته است. می‌تواند منحنی باشد.

باید بیان کرد (11) هدف از پژوهش‌های این پژوهش بررسی روش‌های گشته‌ورتی خطر در تعنیش سیلاب در منطقه‌های کشور ایران است. معمولاً استفاده‌گران سنجش، می‌تواند در دوره‌های اداری بر مبنای جغرافیایی آب‌بری آب‌های سیلابی، بیشتر یکی از عوامل غذایی خاص شناخته می‌شود در این مورد، در عرض ناحیه همیگن یا مدل‌های این است. این در راستای همیگن ویژگی ویژگی‌های متمایز در سطح حوزه، نوع کاه و ظرفیت دیگرها در ناحیه‌ها و مرزهای آب‌های است. و ممکن است به عنوان یک نشانه برای ویژگی‌های این ناحیه دیگر باشد که بر تغییر منحنی تغییر تدریجی داشته و جابجایی نشده باشد.

پس از این ناحیه، که در این پژوهش مدل‌های آماری، انتخاب یک توزیع نتایب سیل مناسب است. این یک مشکل آماری عمومی است که معمولاً با محاسبه آمارهای توزیع از داده‌های مشاهده‌ای حل می‌شود. این رهایی‌های می‌تواند در تحلیل نتایب سیل به کار رود. به شرط آن که ملاحظات زیر در نظر گرفته شود: نخست این که داده‌های موجود یک نمونه تصادفی منحصر به فرد نبوده، بلکه یک دسته از نمونه‌های جمع آوری شده از استگاه‌های مختلف نشان داد. در این صورت این که توزیع منطقه‌ای با داده‌های مشاهده‌ای برای بسیار خوب‌شده باشد که کاشفی نیست، بلکه باید بلوغ انرژی‌های مناسب، این سیل از دیده که نسبت به انحرافات معقول هیدرولوژیک توزیع حقيقی نتایب سیل منطقه از توزیع نتایب سیل منطقه
نقطه حساس‌یابی (۵):

\[\beta_r = E[X]{\left[F(x) \right]^r} \]

که در آن (آ) نتایج توزیع تجمعی \(X \) می‌باشد. تخمین‌های نمونه برای هر توزیع از روابط زیر به دست می‌آید:

\[\beta_0 = \frac{1}{n} \sum_{j=1}^{n} X_j \]

\[\beta_1 = \frac{1}{n} \sum_{j=1}^{n} \left[\frac{(n-j)}{(n(n-1))} \right] X_j \]

\[\beta_2 = \frac{1}{n} \sum_{j=1}^{n} \left[\frac{(n-j)(n-j-1)}{n(n-1)(n-2)} \right] X_j \]

\[\beta_3 = \beta_2 \left(\frac{3n-2}{n-3} \right) \]

که در آن \(X \) داده‌های مرتب شده جزیان به عنوان توزیع کوچک‌ترین داده و \(X_n \) به عنوان کوچک‌ترین داده می‌باشد. چهار گشتاور خطي نحست که به عنوان ترتیبات خطي قابل حساب‌های زده می‌شوند عبارتند از (۶):

\[\lambda_1 = \beta_0 \]

\[\lambda_2 = 2\beta_1 - \beta_0 \]

\[\lambda_3 = 6\beta_2 - 6\beta_1 + \beta_0 \]

\[\lambda_4 = 20\beta_3 - 30\beta_2 + 12\beta_1 - \beta_0 \]

در روابط فوق میانگین گشتاور خطي یا یا مربوط به این نوع ترتیب نرمالی که یا از کمک‌سنج (L-coefficient of variation) می‌باشد. لسنر (Lskew) \(t_1 \) به عنوان ضریب گروهی گشتاور خطي یا یا به عنوان ضریب گروهی (L-kurtosis) یا لکارتیس (L.kurtosis) از می‌شود. یا از گشتاور خطي می‌توان آزمون همبسته (Discordancy test) و آزمون ناهم‌همگنی (Homogeneity test) ایستگاه‌های مورد بررسی را انجام داد.

گشتاورهای خطي

(ول از این جهت نظری می‌تواند بر گشتاورهای متعارف دانسته باشد. است که می‌تواند دامنه گسترش‌تری از توابع توزیع را مشخص کند. هنگامی که از یک ترتیب مشاهده‌ای توزیع (Order) می‌تواند نشان‌دهنده گسترش‌تری از توزیع داده‌های مشاهده‌ای با ترتیب به توان‌های ۲ و ۳ می‌باشد. یا به دنبال رتبیت وون بیشتری به داده‌های پرت داده می‌شود، و به‌طور معنی‌داری به این درباره بزرگ‌تر گشتاورهای خطي، توابع خطي از مقدار میانگین حساس‌یابی هستند و از این رو غیر از بوده، نسبت به داده‌های پرت حساس نیستند. همچنین بیشتر دیگر بزرگ‌تر گشتاور خطي نسبت به گشتاورهای وزنی احتمال، توانایی آنها در خلاصه‌کردن یک توزیع آماری به شباهت معنی‌دار است.

به‌طور کلی، مهرینی کاربردهای گشتاورهای خطي را می‌توان در حل مسئله مربوط به تعیین پارامترهای توزیع، تعیین توزیع، خلاصه‌کردن یک توزیع آماری، و مشاهده‌ای کردن نام برد. گشتاورهای خطي، ترتیبات خطي گشتاورهای وزنی
آزمون همگنی

آزمون همگنی یا میانگین‌های مختلف و در نتیجه اختلال نمایش داده شده‌است (4). انتخاب یک توزیع پارامتری مناسب برای توصیف داده‌های بیماری‌های مورد بررسی ممکن است مورد نیاز باشد، به طوری که باید از داده‌های مربوط به آزمون‌های میانگین پارامترهای مورد بررسی مکانیک مربوط به آزمون‌های انجام شود. به عنوان مثال، این آزمون‌ها با توجه به ۵۰۰ تای آزمونی معادل می‌تواند، سپس تغییر‌پذیری گسترش‌های مورد نظر را با گسترش‌های مورد نظر مقایسه‌های می‌نماید (7). در امر آزمون‌هایی که در بررسی تغییر‌پذیری آماره‌های خطا می‌تواند از آماره‌های خط خودکار گرفته شود:

\[H = \left(V_{\text{obs}} - \mu V \right) / \sigma V \]

به طوری که \(\mu V \) و \(\sigma V \) به ترتیب میانگین و انحراف معیار مقادیر، \(V_{\text{obs}} \) به‌صورت زیر تعیین می‌شود:

\[V_{\text{obs}} = \frac{N}{n_i(n_i - 1) \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right)} \sum_{i=1}^{n_i} \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right) \]

به طوری که \(n_i \) تعداد کلیه ایستگاه‌هایی است که به‌طور میانگین در آزمون‌های مختلف خط خطا گرفته شد. به‌طور کل، این آزمون‌ها با توجه به ۵۰۰ تای آزمونی معادل می‌تواند، سپس تغییر‌پذیری گسترش‌های مورد نظر را با گسترش‌های مورد نظر مقایسه‌های می‌نماید (7). در امر آزمون‌هایی که در بررسی تغییر‌پذیری آماره‌های خطا می‌تواند از آماره‌های خط خودکار گرفته شود:

\[H = \left(V_{\text{obs}} - \mu V \right) / \sigma V \]

به طوری که \(\mu V \) و \(\sigma V \) به ترتیب میانگین و انحراف معیار مقادیر، \(V_{\text{obs}} \) به‌صورت زیر تعیین می‌شود:

\[V_{\text{obs}} = \frac{N}{n_i(n_i - 1) \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right)} \sum_{i=1}^{n_i} \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right) \]

به طوری که \(n_i \) تعداد کلیه ایستگاه‌هایی است که به‌طور میانگین در آزمون‌های مختلف خط خطا گرفته شد. به‌طور کل، این آزمون‌ها با توجه به ۵۰۰ تای آزمونی معادل می‌تواند، سپس تغییر‌پذیری گسترش‌های مورد نظر را با گسترش‌های مورد نظر مقایسه‌های می‌نماید (7). در امر آزمون‌هایی که در بررسی تغییر‌پذیری آماره‌های خطا می‌تواند از آماره‌های خط خودکار گرفته شود:

\[H = \left(V_{\text{obs}} - \mu V \right) / \sigma V \]

به طوری که \(\mu V \) و \(\sigma V \) به ترتیب میانگین و انحراف معیار مقادیر، \(V_{\text{obs}} \) به‌صورت زیر تعیین می‌شود:

\[V_{\text{obs}} = \frac{N}{n_i(n_i - 1) \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right)} \sum_{i=1}^{n_i} \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right) \]

به طوری که \(n_i \) تعداد کلیه ایستگاه‌هایی است که به‌طور میانگین در آزمون‌های مختلف خط خطا گرفته شد. به‌طور کل، این آزمون‌ها با توجه به ۵۰۰ تای آزمونی معادل می‌تواند، سپس تغییر‌پذیری گسترش‌های مورد نظر را با گسترش‌های مورد نظر مقایسه‌های می‌نماید (7). در امر آزمون‌هایی که در بررسی تغییر‌پذیری آماره‌های خطا می‌تواند از آماره‌های خط خودکار گرفته شود:

\[H = \left(V_{\text{obs}} - \mu V \right) / \sigma V \]

به طوری که \(\mu V \) و \(\sigma V \) به ترتیب میانگین و انحراف معیار مقادیر، \(V_{\text{obs}} \) به‌صورت زیر تعیین می‌شود:

\[V_{\text{obs}} = \frac{N}{n_i(n_i - 1) \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right)} \sum_{i=1}^{n_i} \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right) \]

به طوری که \(n_i \) تعداد کلیه ایستگاه‌هایی است که به‌طور میانگین در آزمون‌های مختلف خط خطا گرفته شد. به‌طور کل، این آزمون‌ها با توجه به ۵۰۰ تای آزمونی معادل می‌تواند، سپس تغییر‌پذیری گسترش‌های مورد نظر را با گسترش‌های مورد نظر مقایسه‌های می‌نماید (7). در امر آزمون‌هایی که در بررسی تغییر‌پذیری آماره‌های خطا می‌تواند از آماره‌های خط خودکار گرفته شود:

\[H = \left(V_{\text{obs}} - \mu V \right) / \sigma V \]

به طوری که \(\mu V \) و \(\sigma V \) به ترتیب میانگین و انحراف معیار مقادیر، \(V_{\text{obs}} \) به‌صورت زیر تعیین می‌شود:

\[V_{\text{obs}} = \frac{N}{n_i(n_i - 1) \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right)} \sum_{i=1}^{n_i} \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right) \]

به طوری که \(n_i \) تعداد کلیه ایستگاه‌هایی است که به‌طور میانگین در آزمون‌های مختلف خط خطا گرفته شد. به‌طور کل، این آزمون‌ها با توجه به ۵۰۰ تای آزمونی معادل می‌تواند، سپس تغییر‌پذیری گسترش‌های مورد نظر را با گسترش‌های مورد نظر مقایسه‌های می‌نماید (7). در امر آزمون‌هایی که در بررسی تغییر‌پذیری آماره‌های خطا می‌تواند از آماره‌های خط خودکار گرفته شود:

\[H = \left(V_{\text{obs}} - \mu V \right) / \sigma V \]

به طوری که \(\mu V \) و \(\sigma V \) به ترتیب میانگین و انحراف معیار مقادیر، \(V_{\text{obs}} \) به‌صورت زیر تعیین می‌شود:

\[V_{\text{obs}} = \frac{N}{n_i(n_i - 1) \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right)} \sum_{i=1}^{n_i} \left(\frac{(LCV_i) - (\text{Mean})^2}{\text{Mean}} \right) \]
آزمون نیکویی برای توزیع‌های اولیه (Goodness of fit test)

هنگامی که داده‌های موجود در یک ناحیه همگن بوده و متعلق به یک توزیع پارامتری معین باشند، آزمون پارامتری مختص به گسترش‌های خطي انجام می‌گیرد. از یکی از توزیع‌های رایح انتخاب و پارامتر‌های آن تعیین می‌شود. سپس ناپایداری سیل در داخل یک ناحیه بر اساس توزیع منطقه‌ای مناسب تیپ‌های توزیع می‌شود. معیار پارامتری برای توزیع بر اساس گسترش‌های خطي تیپ و آماره Z تابعی که می‌گیرد:

\[Z_{DIST} = \left(\frac{\mu - \hat{\mu}}{\sigma} \right) \]

که \(Z_{DIST} \) نقطه مورد بررسی شماره حوزه‌ی بزرگ در مرکز ایران به‌نام‌های زاینده‌رود کارون شما و قم می‌باشد (شکل‌های 1 تا 3) از مجموع 36 میزان این‌ها موجود در این منطقه.

تا 2430 عرض شامل فاز‌بندی دارد. یک‌نفر این حوزه 14374 کیلومتر مربع بوده. به‌نظر این‌ها در استان اصفهان و بخش کوچکی از آن در استان‌های چهار محال و بختیاری و فارس واقع است. این حوزه از کوه‌های شروع شده و به بافت‌های گاواری ختم می‌گردد. از شمال به حوزه آب‌انبار اصلی دریاچه‌ای که شرق به حوزه آب‌انبار ایلام و کورس سیاه کو، از جنوب به حوزه‌ی کورس ایران و سیرجان و غرب و جنوب غربی به حوزه آب‌انبار رودخانه قارون محدود می‌شود (شکل 2).

از گسترش‌های مورد بررسی

پرای انجام کلیه‌ها و ناحیه‌ی در سطح منطقه‌ای XFIT

استفاده شده است (من) اوله این برنامه توسط هاسکینگ (5) به زبان فرانسوی ارائه شده ولی توسط نویسنده بیان مقاله و برایش و به نرم‌افزار قابل کاربرد تبدیل شده است. این برنامه توانایی بررسی 12 توزیع آماری متنازل یعنی گاما، مقدار حاصل تعیین باین، لجستیک تعیین یافته، نرمال، پارامتر تعیین یافته، گامیبل.
جدول 1: ایستگاه‌های هیدرومتری مورد بررسی

<table>
<thead>
<tr>
<th>عرض جغرافیایی</th>
<th>طول جغرافیایی</th>
<th>ایستگاه</th>
<th>روند</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>33-0-40</td>
<td>-59-0-27</td>
<td>پل‌سنج</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32-0-00</td>
<td>-59-0-27</td>
<td>زاینده‌رود</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>32-0-00</td>
<td>-59-0-27</td>
<td>سواران</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>32-0-00</td>
<td>-59-0-26</td>
<td>سمندگان</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>31-0-50</td>
<td>-59-0-27</td>
<td>زرچمه</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>31-0-50</td>
<td>-59-0-27</td>
<td>آب ونک</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>31-0-50</td>
<td>-59-0-27</td>
<td>آب ونک</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>32-0-00</td>
<td>-59-0-26</td>
<td>بهشت‌آباد</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>کلیپیان</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>33-0-40</td>
<td>-59-0-27</td>
<td>اردکان</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>جووان</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>کوه‌نگ</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>گدار کیک</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>امام</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>ماربیه</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>حنا</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>گل‌بلگان</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>سراب‌هنده</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>مرغک</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>پارز</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>چشمه‌رودگان</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>گه‌رود</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>بن‌رود</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>بل‌هنج</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>رازروود</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>رستم</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>سردار</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>سردار</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>کلیپیان</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>33-0-21</td>
<td>-59-0-45</td>
<td>سد کلیپیان</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
شکل 1. منطقه مورد بررسی در ایران مرکزی

شکل 2. استقلاهای مورد بررسی در حوزه‌های آبخیز زاینده‌رود و قم

از پنجم زیر حوزه به نام‌های شور، قم‌رود، قره‌چای، کویر اراک و میغان، کویر کاشان و قم با دریاچه نمک است (شکل 2).

تایج و بحث

مقدار مشاهدات جریان و دی‌ایج لحظه‌ای در طول پژوهش، گردآوری و در چارچوب فاصله و رودی برنامه XFIT استفاده شده است.

حوزه آبخیز کارون شمالی

حوزه آبخیز کارون شمالی به‌شکلی از حوزه آبخیز پزگ کارون است. یا به‌نام 1447 کیلومتر مربع در حده‌های جغرافیاییی 34°34′ تا 35°41′ طول شرقی و 18°16′ تا 42°03′ عرض شمالی قرار دارد. این حوزه از سمت شمال و شمال شرق به
شکل ۳. ایستگاه‌های مورد بررسی در جوهر آبی‌خیز کارون شمالی

منحنی، و توزیع‌های دارای چهار یا پنج پارامتر نظیر ویکسی به صورت ناحیه نشان داده است. این نمونه‌ها، مناسب‌ترین توزیع برای ایستگاه‌های مورد بررسی به دست آمده است.

آزمون ناهماهنگی

به منظور تعیین ایستگاه‌هایی که در فضای ۴ و ۵ نسبت به ایستگاه‌های دیگر پرست می‌باشند، امکان‌های ناهماهنگی که توسط هاستینگز و والپم (۷) پیشنهاد گردیده است برای کلیه ایستگاه‌های مورد بررسی به دست آمده، که نتایج حاصل در جدول ۴ نشان داده شده است. بنابراین، ایستگاه‌هایی که دارای آماره‌ای ناهماهنگی بیش از ۳ باشند به عنوان ایستگاه پر رفتگی و در این مجموعه ایستگاه‌های مطالعاتی کنار گذاشته می‌شوند. بنابراین ترتیب ایستگاه‌های شماره ۴ و ۲۴، پس از پارز و گریبان، ایستگاه‌های پر رفتگی و از دیگر مراحل پژوهش کنار گذاشته شد.

آزمون همگنی

همان‌گونه که پیشتر ذکر شد، اگر تغییر بی‌پایداری فضای ۳ و ۵ شده است، جداول ۲ و ۳ خروجی برنامه فوق را نشان می‌دهد.

همان‌گونه که در جدول ۲ دیده می‌شود، سطح نشان‌دهنده ایستگاه، سطح سوم سال‌های آماری و سطح دوم بعدگشتارهای خطي نوع اول این ایستگاه‌های مورد بررسی را نشان می‌دهد. همچنین، نسبت‌های میانگین گشتارهای خطی منطقه‌ای در انتهای جدول آورده شده است. از مقادیر گشتارهای خطی نوع دوم، سوم، و چهارم ایستگاه‌های مورد بررسی برای ترکیب منحنی گشتارهای خطی (عموماً منحنی ضریب چولگی خطی در پارابولیک چشیدگی خطی) استفاده می‌شود.

منحنی گشتارهای خطی ابزار مناسب بر تعیین توزیع‌های آماری مناسب در ایستگاه‌های هیدرودرمی است. نمودار ۱ مقادیر گشتارهای خطی نوع سوم و چهارم ایستگاه‌های مطالعاتی را به صورت نقطه شکل نشان می‌دهد. در این نمودار منحنی‌های مربوط به هر یک از توزیع‌های آماری مورد بررسی رسم شده است. لازم به یادآوری است که توزیع‌های آماری دارای پایایی دو پارامتر نظیر گام‌بند، نرم‌ال، مقادیر حد نوع اول و یکنوناخت به صورت نقطه و توزیع‌های دارای سه پارامتر به صورت...
جدول 2. گشتاورهای خطي نوع اول تا چهارم ایستگاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>Lkurt</th>
<th>Lskew</th>
<th>Lev</th>
<th>L1</th>
<th>تعداد سال ایستگاه</th>
<th>شماره ایستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/131</td>
<td>0/176</td>
<td>0/167</td>
<td>16/28</td>
<td>5/4/5</td>
<td>1</td>
</tr>
<tr>
<td>0/474</td>
<td>0/098</td>
<td>0/179</td>
<td>175/99</td>
<td>266/87</td>
<td>2</td>
</tr>
<tr>
<td>0/118</td>
<td>0/333</td>
<td>0/113</td>
<td>50/113</td>
<td>94/68</td>
<td>3</td>
</tr>
<tr>
<td>0/048</td>
<td>0/135</td>
<td>3/88</td>
<td>38/78</td>
<td>1019/42</td>
<td>4</td>
</tr>
<tr>
<td>0/146</td>
<td>0/191</td>
<td>1/169</td>
<td>179/267</td>
<td>88/08</td>
<td>5</td>
</tr>
<tr>
<td>0/548</td>
<td>0/285</td>
<td>0/438</td>
<td>233/899</td>
<td>787/47</td>
<td>6</td>
</tr>
<tr>
<td>0/276</td>
<td>0/792</td>
<td>0/123</td>
<td>45/190</td>
<td>1/10</td>
<td>7</td>
</tr>
<tr>
<td>0/190</td>
<td>0/827</td>
<td>3/23</td>
<td>27/23</td>
<td>29/48</td>
<td>8</td>
</tr>
<tr>
<td>0/127</td>
<td>0/133</td>
<td>3/172</td>
<td>172/417</td>
<td>111/78</td>
<td>9</td>
</tr>
<tr>
<td>0/122</td>
<td>0/253</td>
<td>0/887</td>
<td>7/67</td>
<td>1/18</td>
<td>10</td>
</tr>
<tr>
<td>0/216</td>
<td>0/626</td>
<td>0/879</td>
<td>8/79</td>
<td>7/42</td>
<td>11</td>
</tr>
<tr>
<td>0/325</td>
<td>0/378</td>
<td>7/199</td>
<td>7/49</td>
<td>12/86</td>
<td>12</td>
</tr>
<tr>
<td>0/392</td>
<td>0/477</td>
<td>0/123</td>
<td>13/275</td>
<td>32/3</td>
<td>13</td>
</tr>
<tr>
<td>0/286</td>
<td>0/593</td>
<td>8/53</td>
<td>5/53</td>
<td>3/23</td>
<td>14</td>
</tr>
<tr>
<td>0/217</td>
<td>0/364</td>
<td>0/480</td>
<td>4/480</td>
<td>125/96</td>
<td>15</td>
</tr>
<tr>
<td>0/250</td>
<td>0/477</td>
<td>0/304</td>
<td>34/334</td>
<td>36/0</td>
<td>16</td>
</tr>
<tr>
<td>0/297</td>
<td>0/337</td>
<td>1/800</td>
<td>17/800</td>
<td>53/45</td>
<td>17</td>
</tr>
<tr>
<td>0/111</td>
<td>0/080</td>
<td>2/87</td>
<td>28/87</td>
<td>11/78</td>
<td>18</td>
</tr>
<tr>
<td>0/366</td>
<td>0/129</td>
<td>19/39</td>
<td>9/19</td>
<td>1/92</td>
<td>19</td>
</tr>
<tr>
<td>0/067</td>
<td>0/112</td>
<td>0/000</td>
<td>1/000</td>
<td>0/000</td>
<td>20</td>
</tr>
<tr>
<td>0/037</td>
<td>0/039</td>
<td>0/106</td>
<td>13/106</td>
<td>17/0</td>
<td>21</td>
</tr>
<tr>
<td>0/214</td>
<td>0/828</td>
<td>8/32</td>
<td>279/83</td>
<td>27/0</td>
<td>22</td>
</tr>
<tr>
<td>0/733</td>
<td>0/057</td>
<td>0/196</td>
<td>1/096</td>
<td>1/37</td>
<td>23</td>
</tr>
<tr>
<td>0/507</td>
<td>0/146</td>
<td>0/337</td>
<td>0/53</td>
<td>1/5</td>
<td>24</td>
</tr>
<tr>
<td>0/534</td>
<td>0/793</td>
<td>0/113</td>
<td>9/71</td>
<td>1/10</td>
<td>25</td>
</tr>
<tr>
<td>0/142</td>
<td>0/334</td>
<td>3/111</td>
<td>3/75</td>
<td>9/75</td>
<td>26</td>
</tr>
<tr>
<td>0/245</td>
<td>0/765</td>
<td>0/601</td>
<td>1/000</td>
<td>1/000</td>
<td>27</td>
</tr>
</tbody>
</table>

میانگین‌های منطقه‌ای نسبت‌های گشتاور خطي
جدول 3. مقادیر تخمینی دیگر لحظه‌ای ابستگاه‌ها و موقعیت در دوره مورد بررسی (متر مکعب بر ثانیه)

<table>
<thead>
<tr>
<th>شناسه</th>
<th>ابستگاه</th>
<th>۱۹۹۹</th>
<th>۱۹۹۹</th>
<th>۱۹۹۸</th>
<th>۱۹۹۷</th>
<th>۱۹۹۶</th>
<th>۱۹۹۵</th>
<th>۱۹۹۴</th>
<th>۱۹۹۳</th>
<th>۱۹۹۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
<td>۱۰۲۴</td>
<td>۹۹۹</td>
<td>۹۸۳</td>
<td>۹۶۸</td>
<td>۹۵۸</td>
<td>۹۴۸</td>
<td>۹۳۸</td>
<td>۹۲۸</td>
<td>۹۱۸</td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td>۹۳۴</td>
<td>۹۰۷</td>
<td>۸۸۳</td>
<td>۸۶۸</td>
<td>۸۵۸</td>
<td>۸۴۸</td>
<td>۸۳۸</td>
<td>۸۲۸</td>
<td>۸۱۸</td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td>۸۵۸</td>
<td>۸۳۴</td>
<td>۸۱۳</td>
<td>۷۹۸</td>
<td>۷۸۸</td>
<td>۷۷۸</td>
<td>۷۶۸</td>
<td>۷۵۸</td>
<td>۷۴۸</td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td>۷۷۴</td>
<td>۷۵۸</td>
<td>۷۴۳</td>
<td>۷۲۸</td>
<td>۷۱۸</td>
<td>۷۰۸</td>
<td>۶۹۸</td>
<td>۶۸۸</td>
<td>۶۷۸</td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td>۶۹۴</td>
<td>۶۸۴</td>
<td>۶۷۳</td>
<td>۶۶۳</td>
<td>۶۵۸</td>
<td>۶۴۸</td>
<td>۶۳۸</td>
<td>۶۲۸</td>
<td>۶۱۸</td>
</tr>
<tr>
<td>۶</td>
<td></td>
<td>۶۱۸</td>
<td>۶۱۳</td>
<td>۶۰۸</td>
<td>۵۹۸</td>
<td>۵۸۸</td>
<td>۵۷۸</td>
<td>۵۶۸</td>
<td>۵۵۸</td>
<td>۵۴۸</td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td>۵۴۸</td>
<td>۵۳۳</td>
<td>۵۲۳</td>
<td>۵۱۳</td>
<td>۵۰۸</td>
<td>۴۹۸</td>
<td>۴۸۸</td>
<td>۴۷۸</td>
<td>۴۶۸</td>
</tr>
<tr>
<td>۸</td>
<td></td>
<td>۴۶۸</td>
<td>۴۵۳</td>
<td>۴۴۳</td>
<td>۴۳۳</td>
<td>۴۲۳</td>
<td>۴۱۳</td>
<td>۴۰۳</td>
<td>۳۹۳</td>
<td>۳۸۳</td>
</tr>
<tr>
<td>۹</td>
<td></td>
<td>۱۳۶۴</td>
<td>۱۳۵۳</td>
<td>۱۳۴۲</td>
<td>۱۳۳۲</td>
<td>۱۳۲۲</td>
<td>۱۳۱۲</td>
<td>۱۳۰۲</td>
<td>۱۲۹۲</td>
<td>۱۲۸۲</td>
</tr>
</tbody>
</table>

قراردادهای کوپی‌های گشدارهای خشی در تحمل نیازهای کل هزینه‌های آینه‌امکرای ایران

در جدول فوق، می‌توان افتتاح‌ها را به‌کمک ابستگاه‌های نمونه‌برداری مورد بررسی می‌تواند بک جمعیت منفرد نباشد. در این مورد، ابستگاهی منطقه‌ای همگون گزارش خصوصی بررسی‌کرده سه ابستگاه مورد استفاده Lskew و Lev برای ترکیبی از H۲ و H۳ و یرایکی از Lskew و Lkurt طبق تعیین در
نمودار ۱ نسبت‌های گشتاور خطي برای چند توزیع آماری مدل

جدول ۴ انتخاب مناسب ترین توزیع برای استگاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>استگاه</th>
<th>توزیع مناسب</th>
</tr>
</thead>
<tbody>
<tr>
<td>بهشت‌آباد، چنگرد، کانه پایین، منگین زردآلو، بل زمانداز</td>
<td>GPA</td>
</tr>
<tr>
<td>اسکندريه، سد کلایگان</td>
<td>GL</td>
</tr>
<tr>
<td>کیرآباد، ازنده، قم، هنجر</td>
<td>جستیجک</td>
</tr>
<tr>
<td>رزک، قلعه شاه‌آباد</td>
<td>LN3</td>
</tr>
<tr>
<td>زرهگاه، گزاراک، سیوگان</td>
<td>GEV</td>
</tr>
<tr>
<td>تربیت، لردهاران، ماریان</td>
<td>PE3</td>
</tr>
<tr>
<td>ژن اسفران، مهراجان</td>
<td>تاخودن</td>
</tr>
<tr>
<td>همت‌آباد</td>
<td>EXP</td>
</tr>
<tr>
<td>منگین زردآلو</td>
<td>UNF</td>
</tr>
<tr>
<td>لردهاران، ماریان</td>
<td>GUM, EV1</td>
</tr>
</tbody>
</table>

آزمون نیکویی بر اساس به منظور تعیین مناسب‌ترین تابع توزیع

منطقه

پس از اطمینان از همگن بودن منطقه، انتخاب مناسب‌ترین تابع توزیع برای منطقه انجام می‌شود. روش مورد استفاده در انتخاب مناسب‌ترین تابع توزیع مبتنی بر آماره Z می‌باشد. که توسط

۱۲
جدول 5: آزمون غیر یک‌نواختی استگاه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>D1</th>
<th>Lkurt</th>
<th>Lskew</th>
<th>Lcv</th>
<th>استگاه</th>
<th>شماره استگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>0/13</td>
<td>0/37</td>
<td>16/28</td>
<td>گدارکیک</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>0/57</td>
<td>0/59</td>
<td>175/979</td>
<td>نگ سونگان</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0/12</td>
<td>0/33</td>
<td>195/123</td>
<td>نگ زردآلو</td>
<td>3</td>
</tr>
<tr>
<td>81</td>
<td>0/04</td>
<td>0/135</td>
<td>189/38</td>
<td>یار</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>0/02</td>
<td>0/014</td>
<td>1/91</td>
<td>ماریمان</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0/24</td>
<td>0/467</td>
<td>769/757</td>
<td>مرتفک</td>
<td>6</td>
</tr>
<tr>
<td>77</td>
<td>0/08</td>
<td>0/438</td>
<td>333/99</td>
<td>ارمیند</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0/26</td>
<td>0/379</td>
<td>203/22</td>
<td>لرگان</td>
<td>8</td>
</tr>
<tr>
<td>53</td>
<td>0/01</td>
<td>0/882</td>
<td>727/36</td>
<td>کنیا</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>0/01</td>
<td>0/433</td>
<td>272/71</td>
<td>نگ پنج</td>
<td>10</td>
</tr>
<tr>
<td>43</td>
<td>0/012</td>
<td>0/253</td>
<td>2/887</td>
<td>حنا</td>
<td>11</td>
</tr>
<tr>
<td>83</td>
<td>0/021</td>
<td>0/492</td>
<td>4/349</td>
<td>نگ اسفرجان</td>
<td>12</td>
</tr>
<tr>
<td>38</td>
<td>0/024</td>
<td>0/537</td>
<td>5/499</td>
<td>سواران</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>0/029</td>
<td>0/477</td>
<td>123/268</td>
<td>استکردی</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>0/028</td>
<td>0/593</td>
<td>4/653</td>
<td>مدرنجن</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>0/021</td>
<td>0/494</td>
<td>4/65</td>
<td>بل زمانخان</td>
<td>16</td>
</tr>
<tr>
<td>37</td>
<td>0/025</td>
<td>0/497</td>
<td>38/413</td>
<td>سراب هنده</td>
<td>17</td>
</tr>
<tr>
<td>42</td>
<td>0/029</td>
<td>0/403</td>
<td>17/840</td>
<td>سد کلیانگان</td>
<td>18</td>
</tr>
<tr>
<td>41</td>
<td>0/012</td>
<td>0/482</td>
<td>28/821</td>
<td>نگ درشک</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>0/016</td>
<td>0/408</td>
<td>192/79</td>
<td>روانشان</td>
<td>20</td>
</tr>
<tr>
<td>1/1</td>
<td>0/000</td>
<td>0/432</td>
<td>527/23</td>
<td>بهشت‌آباد</td>
<td>21</td>
</tr>
<tr>
<td>45</td>
<td>0/03</td>
<td>0/424</td>
<td>4/83</td>
<td>چنگرد</td>
<td>22</td>
</tr>
<tr>
<td>1/1</td>
<td>0/021</td>
<td>0/480</td>
<td>28/34</td>
<td>قلعه شاهرخ</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>0/023</td>
<td>0/407</td>
<td>1/94</td>
<td>گیارآباد</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>0/027</td>
<td>0/458</td>
<td>16/44</td>
<td>قمصر</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>0/054</td>
<td>0/02</td>
<td>76/13</td>
<td>بل هنجه</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>0/014</td>
<td>0/035</td>
<td>3/11</td>
<td>هستیجان</td>
<td>27</td>
</tr>
</tbody>
</table>

میانگین وزنی: 87/948

Downloaded from jpp.iut.ac.ir at 19:15 IRDT on Sunday September 8th 2019
جدول 6. آزمون‌های همگنی و نیوکلی برای بررسی ایستگاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>آزمون همگنی</th>
<th>NUMBER OF SIMULATIONS = 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM. MEAN OF S. D. OF GROUP L-CV = 111.4848</td>
<td></td>
</tr>
<tr>
<td>SIM. S. D. OF AVE. L-CV / L-SKEW DISTANCE = 95.3109</td>
<td></td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H₁ = 0.25</td>
<td></td>
</tr>
<tr>
<td>OBSERVED AVE. OF L-CV/L-SKEW DISTANCE = 90.7641</td>
<td></td>
</tr>
<tr>
<td>SIM. MEAN OF AVE. LCV/L-SKEW DISTANCE = 27.5529</td>
<td></td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H₂ = 0.66</td>
<td></td>
</tr>
<tr>
<td>OBSERVED AVE. OF L-SKEW/L-KURT DISTANCE = 0.1941</td>
<td></td>
</tr>
<tr>
<td>SIM. MEAN OF AVE. L-SKEW/L-KURT KISTANCE = 0.1668</td>
<td></td>
</tr>
<tr>
<td>SIM. S. D. OF AVE. L-SKEW/L-KURT DISTANCE = 0.240</td>
<td></td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H₃ = 1.14*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>آزمون پرزندگی</th>
<th>GEN. LOGISTIC L-KURTOSIS = 0.274</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z VALUE 0.44*</td>
<td></td>
</tr>
<tr>
<td>GEN. EXTREME VALUE L-KURTOSIS = 0.253</td>
<td></td>
</tr>
<tr>
<td>Z VALUE -0.3*</td>
<td></td>
</tr>
<tr>
<td>GEN. NORMAL L-KURTOSIS = 0.225</td>
<td></td>
</tr>
<tr>
<td>Z VALUE -1.31*</td>
<td></td>
</tr>
<tr>
<td>PEARSON TYPE III L-KURTOSIS = 0.176</td>
<td></td>
</tr>
<tr>
<td>Z VALUE -3.03</td>
<td></td>
</tr>
<tr>
<td>GENER. PARETO L-KURTOSIS = 0.188</td>
<td></td>
</tr>
<tr>
<td>Z VALUE -2.62</td>
<td></td>
</tr>
</tbody>
</table>

شناخته شدند. لازم به یادآوری است که توزیع‌هایی که به علامت سطح مشخص شدند به عنوان توزیع مناسب انتخاب شدند.

مدیریت تخمین دیگر مجموعه برای توزیع‌های مختلط

آخرين گام در تحلیل منطقه‌ای سیلاب، تخمین مقادیر جریان با تناوب مختلف در منطقه مورد بررسی این است. جدول 7 برای توزیع‌هایی که لجستیک تعمیم یافته، مقادیر حد تعمیم یافته، نرمال تعمیم یافته، و رئولوژیک مقادیر تخمین دیگری در دوره‌های بازارگشته مختلف را نشان می‌دهد. همچنین بارامترهای منطقه‌ای توزیع‌های مختلط توسط روش گشتاور حسی به راحتی کسب می‌گردد.

است (جدول 8).

پیشنهادها

همان‌گونه که گفته شد، نسبت‌های گشتاور خصوصی نمونه، صفری (Lkurtosis و شاید (L-skew) توزیع با استفاده از روش پیشنهادی هاکسینگ و والپس (8) به دست می‌آید. میانگین ضرایب جولنگی و شایدی کالکی خصوصی منطقه به ترتیب 0.4379 و 0.3377 است. با توجه به این که این ضرایب
جدول 7- توزیع‌های منتفی و مقادیر نخستین دیپ برای دوره‌های پازگشت مختلف

<table>
<thead>
<tr>
<th>دوره پازگشت</th>
<th>1000</th>
<th>100</th>
<th>10</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL</td>
<td>2099/71</td>
<td>777/72</td>
<td>320/81</td>
<td>187/89</td>
</tr>
<tr>
<td>GEV</td>
<td>1801/77</td>
<td>759/31</td>
<td>347/76</td>
<td>190/31</td>
</tr>
<tr>
<td>WAK</td>
<td>1144/3</td>
<td>888/73</td>
<td>226/6</td>
<td>55/50</td>
</tr>
</tbody>
</table>

جدول 8- پارامترهای منطقه‌ای تحمینی توزیع‌های منتفی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>توزیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>GL</td>
</tr>
<tr>
<td>-</td>
<td>GEV</td>
</tr>
<tr>
<td>0/057</td>
<td>WAK</td>
</tr>
</tbody>
</table>

سیاست‌گذاری

این پژوهش با استفاده از اعتبارات معانوت پژوهشی، دانشگاهی، صنعتی اصه‌بان، به آجا در آمده است، که باید وسیله نشری و قدردانی می‌گردد.

قمصر، بل هنگر و گیبرای در نظریه نموده مورد بررسی با آنچه از یک ناحیه همگون انتظار می‌رود، مقایسه می‌کند. تغییرات بین استقلاlez مورد انتظار از ناحیه متنوع کاربر بزرگ توزیع چهار پارامتری کاملاً به دست می‌آید.

منابع مورد استفاده