کاربرد توری گشتاورهای خطي در تحلیل تناوب سیل حوزههای آبخیز مرکزی ایران

چکیده
روش‌های پیوسته برای بررسی سیلاب حوزههای آبخیز وجود دارد. که از جمله می‌توان به تحلیل منطقه‌ای سیلاب اشاره کرد. روش‌های تحلیل منطقه‌ای سیلاب ممکن بر روی عملکرد اجرایی، اقتصادی و اکولوژیک حوزههای آبخیز بوده. از روش‌های آماری در بررسی دادههای مشاهداتی جهت استفاده می‌کنند. این روش‌ها در دارایی زمان شیوه‌های معنی‌دار است. همچنین، و با پیش‌بینی روش گشتاور وری احتمال آمارهای گشتاور خطي را به عنوان روشی جدید در تحلیل تناوب سیل حوزههای آبخیز ارائه نمودند. توری گشتاورهای خطی اساس پژوهش حاضر را تشکیل می‌دهد. در این پژوهش آیستگاه سیلاب پرستی واقع در منطقه مرکزی ایران بررسی گردید.

با استفاده از نموذر گشتاور خطي منحنی چریگی خطي در بررسی کشیدگی خطي و مناسبترین توزیع‌های قابل پرازش برای هر یک از این گستاها مطالعاتی تعیین شد. سپس، به منظور حذف اینگونه لغایت، آزمون‌های هم‌سنجی و سطحی بر پایان‌رساندن آزمون‌های نامناسبی بر اساسکانی که شرکت نمی‌کنند. در مرحله بعد، آزمون‌های نیکوپی برای گستاها مناسب‌ترین توزیع منطقه‌ای انجام، و به ترتیب توزیع‌های لجستیک تضمین باید. متقاضی حد تضمین بایدها، نرمال تضمین بافت، پرپرسن نوع سوم و پارتو تضمین بافت مناسب‌ترین توزیع برای منطقه‌های شناخته شده. در نهایت، متقاضی تضمین بهبود تناوب منطقه‌ای در منطقه تضمین و پارامترهای منطقه‌ای توزیع‌های مناسب‌ترین ارائه گردید.

واژه‌های کلیدی: گشتاور خطي، گشتاور وری، تناوب، تحلیل منطقه‌ای سیلاب

سیدسعید اسلامیان١ و ستار جاوشی بروجیچی٢

1. دانشیار آب‌پردازی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
2. عضو هیات علمی، مرکز تحقیقات منابع طبیعی و امر دام، سازمان جهاد کشاورزی اصفهان
مقیده

تحلیل متغیرهای سیالاب شیادی یکی از بهترین الگوریتم‌های موجود در هیدرولوژی سیالاب می‌باشد. سال‌هاست توجه پژوهندگان به سیالاب‌ها را به‌طور چند گردیده است. به‌علت آثار گسترده اقتصادی و زیست‌محیطی، حل تحلیل شیادی‌های سیالاب از اهمیت ویژه‌ای برخوردار است. در نتیجه، پژوهش در زمینه بهبود روش‌های تحلیل سیالاب هیمنچان ادامه دارد.

روش‌های تحلیل سیالاب هیمنچان در دهه‌های اخیر و هسته سیالاب‌های بیشتری تلاش‌هایی صرف گسترش روش‌های کارآمد تحلیل نتایج سیالاب در این مناطق به‌طور کامل در محدوده گردیده. این گسترش به دلیل توجه به شیادی‌های سیالاب و پیش‌بینی‌های بهتری تعلیم‌یافته‌های جدید و اقتباسی است. در تحلیل شیادی‌های سیالاب، روش‌هایی به‌طور معمول تجربیاتی نتایج پژوهش‌های صرفه‌جویی در زمان و قیمت‌سازی سیالاب را تأمین می‌کنند.

در این مطالعه، با استفاده از الگوریتم گزارش بین‌گانه (Pareto) و الگوریتم گزارش بین‌گانه (Pareto Volt) با استفاده از الگوریتم گزارش بین‌گانه (Pareto Volt) به‌طور کامل در تحلیل و ساختاری سیالاب مورد بررسی قرار گرفت. هدف از تحلیل متغیرهای سیالاب تجزیه و تحلیل متغیرهای سیالاب نوعی زیرساختی پژوهش‌هایی است که به شیادی‌های سیالاب توجه دارد. به‌طور کلی، مطالعه هایی که به سیالاب توانبخشانه بازگردانده است، نشان می‌دهد که سیالاب‌هایی که به گزارش‌های بین‌گانه توجه دارند، به‌طور قابل توجهی تلفنی‌های بیشتری دارند.

در این مطالعه، با استفاده از الگوریتم گزارش بین‌گانه (Pareto Volt) برای تحلیل متغیرهای سیالاب، مطالعه‌ای انجام شد. نتایج بیان داد که الگوریتم گزارش بین‌گانه (Pareto Volt) در تحلیل و ساختاری سیالاب قابل اطمینان است و می‌تواند در مطالعات آینده به‌طور کامل به‌طور کلی به‌طور دقیق تحلیل‌های سیالاب را ارائه دهد.
کاربرد نظری گسترش‌های خصی در تحلیل تناوب سیال حوزه‌های آبخز مرکزی ایران

همانند به تحلیل آماری، نشستن گام در تحلیل تناوب سیال بررسی دقیق داده‌های مشاهداتی و رفع خطاهای پژر و ناهماهنگی داده‌هاست. در این جا اطلاعات خارجی، به ویژه پژوهش‌های ایالات متحده ارائه و جمع‌آوری داده‌ها و همچنین هر گونه تغییر در کاربری اراضی که بر جریان سیال‌های در جریانهای آبخز تأثیر گذاشته است، می‌تواند سودمند بود. گام بعد در تحلیل منطقه‌ای سیال‌پر، تخصص استیس‌گاه‌های مورد بررسی به یک ناحیه همگن است. پک ناحیه همگ‌

مکاتبی از جرایفایی آبخز است که در آن توزیع‌های تناوب سیال تقریباً یکسان بوده، به عنوان یکی تغییر اساسی تحلیل تناوب سیال مشابه شده‌ام که در این مورد، در این مورد، ارای ویژگی‌های جرایفایی آبخزی نیست، بلکه در عرض دامنه همگن یا مشکی از جرایفایی نشده که با لحظه ویژگی‌های مهم در رفتار سیال‌پر در این سیال‌پر مانند. این

ویژگی‌ها شامل عرض جرایفایی، ویژگی‌های همگنی بارش سالانه، سطح حوزه، نوع خاک و ظرفیت ذخیره درناوچه‌ها و مرداب‌هاست. این طول عرض جرایفایی نیز جرایفایی برای ویژگی‌های دیگر باشد که با تغییر مکان تغییر تدریجی داشته و انداب‌گیری نشده باشد.

پس از تعیین ناحیه همگن گام بعد در تعیین مدل‌های آماری انتخاب یک توزیع تناوب سیال مناسب است. این یک مشکل ارزانی عمومی است که معمولاً با محاسبه آمارهای توزیع از داده‌های مشاهداتی حاکی می‌شود. این راههای می‌تواند در تحلیل تناوب سیال هر یک از نظر رود، به شرط آن که ملاحظات زیر در نظر گرفته شود، تحقیق که آن داده‌های موجود یک

نمونه‌های یافته مربوط به بررسی نهایی از نمونه‌های جمع آوری شده از استیس‌گاه‌های مختلف باید دومی، صرف این که توزیع مشابه با داده‌های مشاهداتی بررسی شود خوبی باشد که فاکتور نیست، باید برای بررسی توزیع‌های مناسبی از سیال در نظر گرفته شود که بتواند از توزیع‌های مختلف یک توزیع حقيقی تقلیل منطقه از توزیع رفتار سیال مناسب است.

است. کاربرد نظری گسترش‌های خصی در بررسی سیال‌های نیوزلند نشان می‌دهد که سری سیال‌های سالانه منطقه سات کانتربري (South Canterbury) (Extreme value type 2 EV2) برازش یکته دارد. در حالی که تابع پژوهش‌های قبلی توزیع مقادیر حد نو (1) با عنوان بهترین توزیع به‌این

منطقه معرفی می‌کرد (11). هدف از پژوهش حاضر بررسی روش گسترش‌های خصی در تعبیر تناوب سیال در منطقه مرکزی ایران است. مجموعه استیس‌گاه‌های منطقه مشاهداتی که پر در دوره مشاهداتی که نشان از وقایع نادر سیال‌های در منطقه است و وجود سالانه‌ی بودن جریان در دوره آماری موجود و مهم ترین مشکلات در بررسی تناوب سیال در منطقه است. که استفاده‌های روش همگنی را تاکید می‌سازد.

مواد و روش‌ها

مدل‌های تناوب سیال

پیشرفت شیوه‌های منطقه‌ای تحلیل تناوب سیال مبتکر بر استفاده از سیال از دیگر سالانه‌ها به وسیله سالانه است. در حالی که در برخی دیگر از سیال‌ها هر چنین استفاده می‌شود. در حال حاضر، روش‌های رگرسیون و سیال‌پر شاخص پیش از روش‌های دیگر رایج است. در حالی که روش رگرسیون به‌طور گسترده‌ای در ایلات متحده، استرالیا و دیگر نقاط دنیا استفاده می‌شود، روش سیال‌پر شناخت نیز مورد توجه پژوهش‌دان‌ها واقع شده است.

عموماً تحلیل منطقه‌ای سیال شناخت یک مرحله زیر است، به طوری که مرحله نقشه طبقه‌بندی، است. 1. تهیه داده‌های مشاهداتی

2. تعیین منطقه همگن

3. انتخاب یک توزیع تناوب منطقه‌ای

4. تخمین پارامترهای توزیع تناوب منطقه‌ای

5. برآورد سیال در منطقه بدون استفاده
احتمال می‌باشد (5):

\[\beta \rho = E \left[X \left(F(x) \right)^2 \right] \]

که در آن (X نام تابع توزیع جمعیت X می‌باشد. تخمین‌های نمونه برای هر توزیع از روابط زیر به دست می‌آید:

\[\beta_0 = \frac{1}{n} \sum_{j=1}^{n} X_j \]

\[\beta_1 = \frac{n-1}{n(n-1)} \sum_{j=1}^{n} (n-j) X_j \]

\[\beta_2 = \frac{n-1}{n(n-1)(n-2)} \sum_{j=1}^{n} (n-j)(n-j-1) X_j \]

\[\beta_3 = \frac{n-1}{n(n-1)(n-2)(n-3)} \sum_{j=1}^{n} (n-j)(n-j-1)(n-j-2) X_j \]

گشاتورهای خطي (Order statistics)

گشاتورهای خطي ترکیبات خطي از آماره‌ها ترتیبی (Order statistics) هستند که به داده‌های برت (Outliers) و برای نمونه‌های گوشه‌ای از داده‌های مشاهداتی غیر ارتباطی می‌باشند. نیازی به برای تحت تناوب سیال (تعیین توزیع مناسب) و تخمین پارامترهای توزیع) مناسبی است (6 7).

گشاتورهای خطي از لحاظ ترتیب می‌باشند. برای گشاتورهای متعارف داده، از جمله آن که می‌توانند دامنه گسترش‌تری از توابع توزیع را مشخص کنند. هنگامی که از یک نمونه مشاهداتی تخمین داده می‌شود نسبت به داده‌های برت موجود در آن نمونه حساسیت ندارند. به سخن دیگر، برای گشاتورهای داده‌های مشاهداتی را به ترتیب به نویسنده 2 و 3 می‌رسانند که به بین ترتیب وزن بیشتری به داده‌های برت داده می‌شود و به نهایت می‌تواند به ارتباط وارونزی را زیر نیاز شده‌ی آنها می‌گردد (14).

در برای برخوردگاه گشاتورهای خطي، توابع خطي از مقادیر نمونه مشاهداتی هستند، و از این رو غیر ارتباط به داده‌های برت توزیع نمی‌شود. همچنین، برتری دیگر گشاتورهای خطي نسبت به گشاتورهای وزنی احتمال، توانایی آنها در خلاصه کردن یک توزیع آماری به شیوه‌های معنی‌داری است.

نتایج حاصل از گشاتورهای خطي به طور کلی مهندسین کاربردهای گشاتورهای خطي را می‌توان در حل مسائل مربوط به تخمین پارامترهای توزیع، تعیین توزیع، خلاصه کردن یک توزیع آماری و منظومه‌ای کرد. نام برد گشاتورهای خطي، ترکیبات خطي گشاتورهای وزنی
آزمون همکن

اجرای تغییرپذیری استفاده یا فضای پراکنش ایستگاه‌ها یا بازگشت به شکل‌های مختلفی از داده‌های خود را خواهد داشت. احتمال تحقق این ایستگاه‌ها به یک مجموعه واحدها می‌تواند با وسیله آزمون همکن گزارش‌هایی خود را کرد.

آزمون‌های همکن گزارش‌هایی خوب یک توزیع چیا بارامتری کارا را به سری داده‌های مشاهده‌ای منطقه به داشته، به وسیله شیب‌سازی عدید (یا رایانی)، یک دسته ۵۰۰ تایی از داده‌های منطقه‌ای عادی را تولید می‌کند، و سپس تغییرپذیری گزارش‌های خوب تا ناحیه واقعی را دارد نام‌گذاری (v). در این آزمون نام‌گذاری H و همکنی نام‌گذاری H

رایان‌های H

های در این آزمون نام‌گذاری H و همکنی نام‌گذاری H

\[
H = \frac{V_{obs} - 16}{\sqrt{\text{Var}}}
\]

به طوری که H و \(V_{obs} \) به ترتیب میانگین و انحراف معیار مقداری شیب‌سازی شده منجر موردنظر و پارامتر مقداری محاسبه شده منجر موردنظر با استفاده از داده‌های منطقه‌ای است، و به عنوان ترتیب میانگین V هر یک از آزمون‌های است. در صورتی که H بزرگتر از آزمون‌های است، به صورت زیر تعریف می‌شود:

\[
V_1 = \frac{1}{N} \sum_{i=1}^{N} (n_i (Lcv_i - Lcv)^2) / \sqrt{N} n_i
\]

\[
V_2 = \frac{1}{N} \sum_{i=1}^{N} \left[(Lcv_i - Lcv)^2 + (\bar{x} - Lcv)^2 \right] / \sqrt{N} n_i
\]

\[
V_3 = \frac{1}{N} \sum_{i=1}^{N} \left[(\bar{x} - \bar{x})^2 + (\bar{x} - \bar{x})^2 \right] / \sqrt{N} n_i
\]

طبق تعریف، در صورتی که H بزرگتر از ۱ و کوچکتر از ۲ برای داده‌های نامگذاری، به عنوان نشانه انتقالی N اسم‌های ۰ و ۱ است. در این صورت، به صورت زیر تعریف می‌شود:

\[
U_1 = \left[Lcv_i, \bar{x}, \bar{x}, \bar{x} \right]^T
\]

\[
S = \left(\frac{1}{N-1} \sum_{i=1}^{N} (U_i - \bar{U}) (U_i - \bar{U})^T \right)^{1/2}
\]

\[
D_1 = \frac{1}{3} \left(U_i - \bar{U} \right) S^{-1} (U_i - \bar{U})
\]

به طوری که D به تعداد گزارش‌های است. نامگذاری D به تعداد گزارش‌های است. اگر آزمون D که در کل پاسخ‌های برابری پاسخ است (۴). اگر آزمون D که در کل پاسخ‌های برابری پاسخ است (۴).
مقاله مورد بررسی

مفهوم مورد بررسی

مقاله مورد بررسی شامل اطلاعاتی مربوط به استقلاوهاهای مورد بررسی مانند نام و کد استقلاها، تعداد سال آماری و دیگر مشاهدات جریان در طول دوره آماری است. که به فرم مختصات به‌نوع می‌شود:

الف) حوزه آبیاری زاینده‌رود

حوزه آبیاری زاینده‌رود در بخش میانی فلاک مهربانی آب‌های ایران و در مختصات جغرافیایی ۴۸°۱۸′۴۴′ شرقی و ۳۵°۱۰′۱۲″ شمالی و در ارتفاع ۴۸۵۰ متر قرار دارد. به‌هنهای بیش از ۴۲۰۰ عدد شیمی‌الналیقه و انتقال و فارسی واقع است. این حوزه از کوه‌های شرکش شده و به‌بیان‌الغ کروماتیک دارای دریاچه نمک است. از شرق حوزه آبیاری مرکزی (درباره نمک)، از شرق به حوزه آبیاری اردستان و کورسی شرق، از جنوب به حوزه کوربیرل و سیریجان و از غرب و جنوب غربی به حوزه آبیاری رودخانه‌کارون محدود می‌شود.

(شکل ۴)

ب) حوزه آبیاری محور

این حوزه در حاشیه شمال غربی تا غرب حوزه بزرگ مرکزی است و کوه‌های مهم ارک، کاشان، نامه جنوبی و شمال شرقی را در بر می‌گیرد. حوزه از شمال به دامنه جنوبی بزرگ و از جنوب به دامنه شمالی و شمال شرقی زاگرس محدود می‌شود. به‌نام حوزه ۹۴۰۰۰ کیلومتر مربع است. که به متشکل استقلاهاهای مورد بررسی و در اوایل تا به عنوان ناحیه احتمالاً همگن در نظر گرفته شود (۱).

آزمون نیکوری برای انتخاب (Goodness of fit test) توزیع‌های اولیه

هنگامی که داده‌های موجود در یک ناحیه همگن بوده و متعلق به یک توزیع پارامتری مشترک باشند، آزمون پارامتری بسته به گشتاورهای خطي انجام می‌گیرد. تا یکی از توزیع‌های رابطه انتخاب و پارامتریهای آن تخمین زده شود. سپس نتایج این تحلیل در داده‌های متعلق به یک ناحیه بر اساس توزیع منطقه‌ای منتخب تعيین می‌شود. موارد بازآزمونی برای توزیع بر اساس گشتاورهای خطي انتخاب و آماره Z تا به می‌گردد

\[Z_{DIST} = \left(\frac{4}{4} \right) - \left(\frac{4}{4} \right) \]

که اشکال به توزیع منطقه‌ای می‌کند. که به آزمون

\[\beta_4 = \frac{1}{\sum_{m=1}^{N_{sim}} (\tilde{x}_{4m} - \tilde{\mu}_4)^2} \]

\[\sigma_4 = \sqrt{\left[\frac{1}{(N_{sim} - 1)} \sum_{m=1}^{N_{sim}} (\tilde{x}_{4m} - \tilde{\mu}_4)^2 \right] - \sum_{m=1}^{N_{sim}} \beta_4^2} \]

که تعداد سری داده‌های منطقه‌ای شیب‌سازی‌شده است. که با انتخابات از توزیع کاپانه و همانندی روش آماری همگن تولید گردیده است. حرف m اشاره به m امین ناحیه شیب‌سازی‌شده دارد که به دوین روش به دست آمده است.

تمرکز موارد استفاده

برای انجام کلیه مراحل پژوهش از نرم‌افزار اسکای داده‌های استفاده شده استفاده شده است. برای انجام کلیه مراحل پژوهش از نرم‌افزار XFIT استفاده شده است. برای انجام کلیه مراحل پژوهش از نرم‌افزار XFIT استفاده شده است. برای انجام کلیه مراحل پژوهش از نرم‌افزار XFIT استفاده شده است. برای انجام کلیه مراحل پژوهش از نرم‌افزار XFIT استفاده شده است.

فایل لجستیکی تعمیم یافته، نرم‌افزار پارسیانت تعمیم یافته، گام بی‌پایه، لجستیکی تعمیم یافته، نرم‌افزار پارسیانت تعمیم یافته، گام بی‌پایه.
<table>
<thead>
<tr>
<th>جدول ۱: ایستگاه‌های هیودرومتری مورد بررسی</th>
<th>عرض جغرافیایی</th>
<th>طول جغرافیایی</th>
<th>ایستگاه</th>
<th>رودخانه</th>
<th>رفیع</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۴۸-۵۰</td>
<td>۹۰-۵۰</td>
<td>پاهلوان</td>
<td>اسکندری</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۳۲-۵۰</td>
<td>۵۰-۲۷</td>
<td>زاینده‌رود</td>
<td>قلعه‌شاهرخ</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td>۳۲-۵۰</td>
<td>۵۰-۳۳</td>
<td>سواران</td>
<td>سواران</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>۳۲-۴۷</td>
<td>۵۰-۲۹</td>
<td>سمگزان</td>
<td>سمگزان</td>
<td>۴</td>
</tr>
<tr>
<td></td>
<td>۳۰-۰۶</td>
<td>۵۱-۵۴</td>
<td>تنگ اسفرجان</td>
<td>زرجشمه</td>
<td>۵</td>
</tr>
<tr>
<td></td>
<td>۳۰-۰۶</td>
<td>۵۱-۲۶</td>
<td>تنگ زردالو</td>
<td>آب و نک</td>
<td>۶</td>
</tr>
<tr>
<td></td>
<td>۳۰-۰۶</td>
<td>۵۱-۱۶</td>
<td>تنگ سولتان</td>
<td>آب و نک</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>۲۲-۲۰</td>
<td>۵۰-۳۸</td>
<td>بهشت‌آباد</td>
<td>بهشت‌آباد</td>
<td>۸</td>
</tr>
<tr>
<td></td>
<td>۲۲-۲۱</td>
<td>۵۰-۲۱</td>
<td>کلیپاکان</td>
<td>وانشان</td>
<td>۹</td>
</tr>
<tr>
<td></td>
<td>۳۰-۱۰</td>
<td>۵۰-۴۵</td>
<td>ارمند</td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۲-۰۶</td>
<td>۵۰-۳۹</td>
<td>تنگ درکش</td>
<td>جوافقان</td>
<td>۱۱</td>
</tr>
<tr>
<td></td>
<td>۲۲-۰۷</td>
<td>۵۰-۷۷</td>
<td>کوه رنگ</td>
<td>چنگرود</td>
<td>۱۲</td>
</tr>
<tr>
<td></td>
<td>۲۲-۰۳</td>
<td>۵۱-۱۴</td>
<td>گدار بیک</td>
<td>۱۳</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۱-۱۱</td>
<td>۵۱-۱۵</td>
<td>گنا</td>
<td>۱۴</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۲-۱۰</td>
<td>۵۰-۲۱</td>
<td>ماربل</td>
<td>۱۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۱-۱۳</td>
<td>۵۱-۴۶</td>
<td>حنا</td>
<td>۱۶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۲-۲۱</td>
<td>۵۰-۰۰</td>
<td>گلیپاکان</td>
<td>سراب هنده</td>
<td>۱۷</td>
</tr>
<tr>
<td></td>
<td>۲۲-۴۲</td>
<td>۵۰-۲۸</td>
<td>مرغک</td>
<td>بافت</td>
<td>۱۸</td>
</tr>
<tr>
<td></td>
<td>۲۱-۳۱</td>
<td>۵۰-۲۵</td>
<td>بارز</td>
<td>خرسان</td>
<td>۱۹</td>
</tr>
<tr>
<td></td>
<td>۲۱-۳۸</td>
<td>۵۰-۵۰</td>
<td>چشمه یلدگان</td>
<td>نردگان</td>
<td>۲۰</td>
</tr>
<tr>
<td></td>
<td>۳۳-۶۶</td>
<td>۵۱-۳۰</td>
<td>قهرود</td>
<td>گبراباد</td>
<td>۲۱</td>
</tr>
<tr>
<td></td>
<td>۳۳-۴۳</td>
<td>۵۱-۲۵</td>
<td>قمیصر</td>
<td>بنرود</td>
<td>۲۲</td>
</tr>
<tr>
<td></td>
<td>۳۳-۳۷</td>
<td>۵۱-۴۷</td>
<td>بل هنجن</td>
<td>برزود</td>
<td>۲۳</td>
</tr>
<tr>
<td></td>
<td>۳۴-۱۱</td>
<td>۵۰-۴۹</td>
<td>هستیجان</td>
<td>شور</td>
<td>۲۴</td>
</tr>
<tr>
<td></td>
<td>۳۲-۰۷</td>
<td>۴۸-۴۵</td>
<td>تنگ پنج</td>
<td>سزار</td>
<td>۲۵</td>
</tr>
<tr>
<td></td>
<td>۳۴-۰۷</td>
<td>۵۰-۵۴</td>
<td>زاینده‌رود</td>
<td>بل زمانخان</td>
<td>۲۶</td>
</tr>
<tr>
<td></td>
<td>۲۲-۱۷</td>
<td>۵۰-۱۷</td>
<td>کلیپاکان</td>
<td>سد کلیپاکان</td>
<td>۲۷</td>
</tr>
</tbody>
</table>
نمره آخیزی کارون شمالي

ج. حوزه آخیزی کارون شمالي بخشی از حوزه آخیزی پرزگ کارون است. وا به هنگی 1447 کیلومتر مربع در محدوده جغرافیایی 34° 49' تا 49° 51' طول شرقی و 31° 30' تا 40° عرض شمال شرقی قرار داده‌ایم. این حوزه از شمال شمالي شمالي شرقی به تغییر

نتایج و بحث

مقادیر مشاهدات جیرای و دیگر انجام‌های در طول پژوهش گردآوری و در خصوص قابل و روندی برنامه XFIT استفاده شدند.
کاربرد تنوری گشتوارهای خنی در محلول نابهای آبی‌خیز مرکزی ایران

شکل ۳: ایستگاه‌های مورد بررسی در جوزه آبی‌خیز کاروان شمالی

منحني و توزیع‌های دارای جهار یا پنجم پارامتر نظر ویژگی به صورت ناحیه نشان داده شده است (۱۱). برای بدین این تمایل، مناسب‌ترین توزیع برای ایستگاه‌های مورد بررسی به دست آمده است (جدول ۴).

آزمون ناهمگنی

به منظور تعیین ایستگاه‌هایی که در فضای و ۵ نسبت به ایستگاه‌های دیگر پرتر می‌پاشند، آماره ناهمگنی که توسعه HASKEE و والس (۷) پیشنهاد گردیده است برای کل‌های ایستگاه‌های مورد بررسی به دست آمده، که نتایج حاصله در جدول ۵ نشان داده شده است. با بر عرض، ایستگاه‌هایی که دارای آماره ناهمگنی بیش از ۳ بانده به عنوان ایستگاه پرتر شناخته شده و از مجموعه ایستگاه‌های مطالعاتی کتور ناهمگنی می‌شوند. بدین ترتیب، ایستگاه‌های شماره ۴ و ۴۴، یعنی بارز و گیراید، ایستگاه‌هایی پرتر بهده و از دیگر مراحل پژوهش کنار گذاشته شد.

آزمون همگنی

همان‌گونه که پیشتر ذکر شد، اگر تغییر پیش‌تری فضای و ۵ و

شده است. جداول ۲ و ۳ خروجی برنامه فوق را نشان می‌دهد. همان‌گونه که در جدول ۲ دیده می‌شود، ستون نخست به‌معنی ایستگاه، ستون دوم سال‌های آماری و ستون سوم به دست آمده گشتوارهای خنی نوع اول چهار ایستگاه‌های مورد بررسی را نشان می‌دهد. همچنین، نسبت‌های میانگین گشتوارهای خنی منطقه‌ای در اندازه جدول آورده شده است. از مقادیر گشتوارهای خنی نوع دوم، سوم و چهارم ایستگاه‌های مورد بررسی برای ترسیم منحنی‌های گشتوارهای خنی (عموماً منحنی ضربی) چوگلی ضبط در برای ضریب کشیدگی خنی) استفاده می‌شود.

منحنی گشتوار خنی ابزاری مناسب در تعیین توزیع‌های آماری مناسب در است. نمودار ۱ مقادیر گشتوارهای خنی نوع سوم و چهارم ایستگاه‌های مطالعاتی را به صورت نقطه پراکه نشان می‌دهد. در این نمودار منحنی‌های مرتب به‌صورت هر یک از توزیع‌های آماری مورد بررسی سمت شده است. لازم به یادآوری است که توزیع‌های آماری دارای یک پای

در پارامتر نظر گام‌های نمودار ۱ مقادیر حد نوع اول و یک‌نواخت به‌صورت نقطه و توزیع‌های دارای سه پارامتر به‌صورت

Downloaded from jcpp.iut.ac.ir at 10:53 IRST on Wednesday November 6th 2019
جدول 2. گشتآوری‌های خطی نوع اول تا چهارم ایستگاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>Lkurt</th>
<th>Lskew</th>
<th>Lev</th>
<th>L1</th>
<th>تعداد سال‌های ایستگاه</th>
<th>شماره ایستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/131</td>
<td>0/177</td>
<td>0/167</td>
<td>0/167</td>
<td>0/54/4</td>
<td>گدارکیک</td>
</tr>
<tr>
<td>0/074</td>
<td>0/098</td>
<td>0/098</td>
<td>0/098</td>
<td>0/36/77</td>
<td>نگ سولگان</td>
</tr>
<tr>
<td>0/128</td>
<td>0/133</td>
<td>0/133</td>
<td>0/21/12</td>
<td>0/98/48</td>
<td>نگ زردآلو</td>
</tr>
<tr>
<td>0/068</td>
<td>0/135</td>
<td>0/128/78</td>
<td>0/128/78</td>
<td>0/10/19/42</td>
<td>بارز</td>
</tr>
<tr>
<td>0/146</td>
<td>0/191</td>
<td>0/191</td>
<td>0/191</td>
<td>0/91/01</td>
<td>ماربان</td>
</tr>
<tr>
<td>0/265</td>
<td>0/265</td>
<td>0/265</td>
<td>0/265</td>
<td>0/88/68</td>
<td>مرغک</td>
</tr>
<tr>
<td>0/285</td>
<td>0/285</td>
<td>0/285</td>
<td>0/285</td>
<td>0/78/97</td>
<td>ارمید</td>
</tr>
<tr>
<td>0/279</td>
<td>0/279</td>
<td>0/279</td>
<td>0/279</td>
<td>0/45/79</td>
<td>لردگان</td>
</tr>
<tr>
<td>0/202</td>
<td>0/202</td>
<td>0/202</td>
<td>0/202</td>
<td>0/39/84</td>
<td>کتا</td>
</tr>
<tr>
<td>0/177</td>
<td>0/177</td>
<td>0/177</td>
<td>0/177</td>
<td>0/111/78</td>
<td>نگ نجی</td>
</tr>
<tr>
<td>0/122</td>
<td>0/023</td>
<td>0/023</td>
<td>0/023</td>
<td>0/10/65</td>
<td>حنا</td>
</tr>
<tr>
<td>0/176</td>
<td>0/176</td>
<td>0/176</td>
<td>0/176</td>
<td>0/76/42</td>
<td>نگ اسفرجان</td>
</tr>
<tr>
<td>0/335</td>
<td>0/377</td>
<td>0/377</td>
<td>0/377</td>
<td>0/12/86</td>
<td>سواران</td>
</tr>
<tr>
<td>0/392</td>
<td>0/477</td>
<td>0/477</td>
<td>0/477</td>
<td>0/32/3</td>
<td>استکندرا</td>
</tr>
<tr>
<td>0/286</td>
<td>0/093</td>
<td>0/093</td>
<td>0/093</td>
<td>0/76/9</td>
<td>مندرجان</td>
</tr>
<tr>
<td>0/217</td>
<td>0/294</td>
<td>0/294</td>
<td>0/294</td>
<td>0/120/96</td>
<td>پل زمانخان</td>
</tr>
<tr>
<td>0/250</td>
<td>0/250</td>
<td>0/250</td>
<td>0/250</td>
<td>0/64/5</td>
<td>سراب هنده</td>
</tr>
<tr>
<td>0/297</td>
<td>0/23</td>
<td>0/23</td>
<td>0/23</td>
<td>0/53/49</td>
<td>سد کلایاگان</td>
</tr>
<tr>
<td>0/111</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/112/88</td>
<td>تکن درکش</td>
</tr>
<tr>
<td>0/336</td>
<td>0/312</td>
<td>0/312</td>
<td>0/312</td>
<td>0/19/32</td>
<td>وانشان</td>
</tr>
<tr>
<td>0/006</td>
<td>0/011</td>
<td>0/011</td>
<td>0/011</td>
<td>0/191/92</td>
<td>بهشت‌آباد</td>
</tr>
<tr>
<td>0/037</td>
<td>0/039</td>
<td>0/039</td>
<td>0/039</td>
<td>0/13/92</td>
<td>چله‌گرد</td>
</tr>
<tr>
<td>0/214</td>
<td>0/28</td>
<td>0/28</td>
<td>0/28</td>
<td>0/299/83</td>
<td>فقعه شاهرخ</td>
</tr>
<tr>
<td>0/833</td>
<td>0/857</td>
<td>0/857</td>
<td>0/857</td>
<td>0/10/96</td>
<td>گیرآباد</td>
</tr>
<tr>
<td>0/587</td>
<td>0/744</td>
<td>0/744</td>
<td>0/744</td>
<td>0/01/73</td>
<td>فیض</td>
</tr>
<tr>
<td>0/534</td>
<td>0/713</td>
<td>0/713</td>
<td>0/713</td>
<td>0/7</td>
<td>پل هنجه</td>
</tr>
<tr>
<td>0/137</td>
<td>0/344</td>
<td>0/344</td>
<td>0/344</td>
<td>0/9</td>
<td>هستیجان</td>
</tr>
</tbody>
</table>

میانگین‌های منطقه‌ای نسبت‌های گشتآوری خطی
جدول 3. مقادیر تخمینی دیپ لحظه‌ای اینستاگه‌ها و منطقه در دوره مورد بررسی (متر مکعب بر ثانیه)

<table>
<thead>
<tr>
<th>شماره</th>
<th>احتمال وقوع</th>
<th>اینستاگه</th>
<th>همگامی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/51</td>
<td>4/7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5/45</td>
<td>8/15</td>
<td>1/9</td>
</tr>
<tr>
<td>3</td>
<td>7/5</td>
<td>4/7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>17/11</td>
<td>7/15</td>
<td>7/5</td>
</tr>
<tr>
<td>5</td>
<td>14/9</td>
<td>8/15</td>
<td>1/9</td>
</tr>
<tr>
<td>6</td>
<td>32/3</td>
<td>12/3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>13/9</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>8</td>
<td>13/9</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>9</td>
<td>9/6</td>
<td>12/3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>12/3</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>11</td>
<td>13/9</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>12</td>
<td>17/11</td>
<td>7/5</td>
<td>1/9</td>
</tr>
<tr>
<td>13</td>
<td>12/3</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>14</td>
<td>13/9</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>15</td>
<td>12/3</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>16</td>
<td>13/9</td>
<td>17/11</td>
<td>7/5</td>
</tr>
<tr>
<td>17</td>
<td>17/11</td>
<td>7/5</td>
<td>1/9</td>
</tr>
<tr>
<td>18</td>
<td>17/11</td>
<td>7/5</td>
<td>1/9</td>
</tr>
</tbody>
</table>

می‌توان احتمال این که مجموعه اینستاگه‌های مورد بررسی متعلق به یک گروه منطقه ای باشد این که در نظر گرفته گردید. جدول ۶ نتایج هر یک از آزمون‌های H می‌باشد. برای باز گرداندن پارامترهای H۰ و H۱ در منطقه به ترتیب ۲۵/۰ و ۱/۴ است. که در مجموع نشان دهنده همگی بودن منطقه است.
نمودار ۱. نیم‌های گشتاور خطی برای چند توزیع آماری متدول

جدول ۴. انتخاب مناسب‌ترین توزیع برای استگاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>توزیع مناسب‌ترین</th>
<th>استگاه‌های بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA</td>
<td>بهشت‌آباد، چلنگر، کتا، بارز، حنا، تنگ زردآلو، بل زمانخان</td>
</tr>
<tr>
<td>GL</td>
<td>اسمندی، سد کلیاپیان</td>
</tr>
<tr>
<td>LN3</td>
<td>گیشا، اردکان، قم، بهمن، زرک، قلعه شاهرخ، مرغک، گدار کیک، سولگان</td>
</tr>
<tr>
<td>GEV</td>
<td>تنگ پچ، لردگان، سراب هنده، سواران، وانشان</td>
</tr>
<tr>
<td>PE3</td>
<td>تدریج، مدریجان</td>
</tr>
<tr>
<td>WAK</td>
<td>هنیجان</td>
</tr>
<tr>
<td>EXP</td>
<td>بهشت‌آباد</td>
</tr>
<tr>
<td>UNF</td>
<td>تنگ پچ، لردگان، ماریارن</td>
</tr>
</tbody>
</table>

(گامی، مقادیر حد نوع سوم)

آزمون نیکویی برای سه منظور تعیین مناسب‌ترین تابع توزیع

منطقه

پس از اطمینان از همه‌گونه منطقه‌ای، انتخاب مناسب‌ترین تابع توزیع برای منطقه انجام می‌شود. روش مورد استفاده در انتخاب مناسب‌ترین تابع توزیع باید بر اساس می‌باشد که توسط Z می‌باشد.
جدول ۵. آزمون غیر یکنواختی استگاه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>D₀</th>
<th>Lkurt</th>
<th>Lskew</th>
<th>Lcv</th>
<th>استگاههای اصلی</th>
<th>شماره استگاههای اصلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/44</td>
<td>0/13</td>
<td>0/387</td>
<td>0/57</td>
<td>گدارکی</td>
<td>1</td>
</tr>
<tr>
<td>1/43</td>
<td>0/57</td>
<td>0/598</td>
<td>0/79</td>
<td>نگ سونگون</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0/12</td>
<td>0/363</td>
<td>0/50</td>
<td>نگ زردآلو</td>
<td>3</td>
</tr>
<tr>
<td>3/84</td>
<td>0/04</td>
<td>0/135</td>
<td>0/28</td>
<td>بارز</td>
<td>4</td>
</tr>
<tr>
<td>0/49</td>
<td>0/01</td>
<td>0/191</td>
<td>0/79</td>
<td>ماردان</td>
<td>5</td>
</tr>
<tr>
<td>0/22</td>
<td>0/305</td>
<td>0/767</td>
<td>0/23</td>
<td>مرکف</td>
<td>۶</td>
</tr>
<tr>
<td>1/77</td>
<td>0/28</td>
<td>0/438</td>
<td>0/23</td>
<td>ارمند</td>
<td>۷</td>
</tr>
<tr>
<td>0/76</td>
<td>0/39</td>
<td>0/379</td>
<td>0/21</td>
<td>لرگان</td>
<td>۸</td>
</tr>
<tr>
<td>0/73</td>
<td>0/01</td>
<td>0/882</td>
<td>0/27</td>
<td>کتی</td>
<td>۹</td>
</tr>
<tr>
<td>1/73</td>
<td>0/12</td>
<td>0/123</td>
<td>0/77</td>
<td>نگ پنج</td>
<td>۱۰</td>
</tr>
<tr>
<td>0/43</td>
<td>0/12</td>
<td>0/253</td>
<td>0/88</td>
<td>جننا</td>
<td>۱۱</td>
</tr>
<tr>
<td>0/83</td>
<td>0/21</td>
<td>0/492</td>
<td>0/78</td>
<td>نگ اسفرجان</td>
<td>۱۲</td>
</tr>
<tr>
<td>0/38</td>
<td>0/24</td>
<td>0/577</td>
<td>0/19</td>
<td>سواران</td>
<td>۱۳</td>
</tr>
<tr>
<td>0/5</td>
<td>0/39</td>
<td>0/477</td>
<td>0/27</td>
<td>اسکندري</td>
<td>۱۴</td>
</tr>
<tr>
<td>1/42</td>
<td>0/28</td>
<td>0/593</td>
<td>0/93</td>
<td>مدرجان</td>
<td>۱۵</td>
</tr>
<tr>
<td>0/19</td>
<td>0/21</td>
<td>0/394</td>
<td>0/49</td>
<td>بل زمانخار</td>
<td>۱۶</td>
</tr>
<tr>
<td>0/37</td>
<td>0/05</td>
<td>0/477</td>
<td>0/97</td>
<td>سرساب هندی</td>
<td>۱۷</td>
</tr>
<tr>
<td>1/82</td>
<td>0/29</td>
<td>0/23</td>
<td>0/80</td>
<td>مس کلیپیان</td>
<td>۱۸</td>
</tr>
<tr>
<td>1/41</td>
<td>0/12</td>
<td>0/058</td>
<td>0/21</td>
<td>نگ درکش</td>
<td>۱۹</td>
</tr>
<tr>
<td>0/71</td>
<td>0/36</td>
<td>0/508</td>
<td>0/69</td>
<td>ماهنشان</td>
<td>۲۰</td>
</tr>
<tr>
<td>1/1</td>
<td>0/00</td>
<td>0/11</td>
<td>0/50</td>
<td>بهشت آباد</td>
<td>۲۱</td>
</tr>
<tr>
<td>0/90</td>
<td>0/3</td>
<td>0/34</td>
<td>0/39</td>
<td>چهلک</td>
<td>۲۲</td>
</tr>
<tr>
<td>0/81</td>
<td>0/21</td>
<td>0/80</td>
<td>0/49</td>
<td>قلعه شاهرخ</td>
<td>۲۳</td>
</tr>
<tr>
<td>0/09</td>
<td>0/23</td>
<td>0/507</td>
<td>0/49</td>
<td>کیارآباد</td>
<td>۲۴</td>
</tr>
<tr>
<td>0/67</td>
<td>0/57</td>
<td>0/404</td>
<td>0/37</td>
<td>قم</td>
<td>۲۵</td>
</tr>
<tr>
<td>1/76</td>
<td>0/54</td>
<td>0/70</td>
<td>0/13</td>
<td>بل هنجی</td>
<td>۲۶</td>
</tr>
<tr>
<td>0/72</td>
<td>0/142</td>
<td>0/334</td>
<td>2/11</td>
<td>هسته‌جاد</td>
<td>۲۷</td>
</tr>
</tbody>
</table>

میانگین وزنی: ۸۸/۹۴۸
جدول ۶. آزمون‌های همگی و نیکویی برای استفاده مورد بررسی

<table>
<thead>
<tr>
<th>آزمون همگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF SIMULATIONS = 500</td>
</tr>
<tr>
<td>OBSERVED S.D. OF GROUP L-CV = 111.4848</td>
</tr>
<tr>
<td>SIM. MEAN OF S. D. OF GROUP L-CV = 59.2535</td>
</tr>
<tr>
<td>SIM. S. D. OF AVE. L-CV / L-SKEW DISTANCE = 95.3109</td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H1 = 0.25</td>
</tr>
<tr>
<td>OBSERVED AVE. OF L-CV/L-SKEW DISTANCE = 90.7641</td>
</tr>
<tr>
<td>SIM. MEAN OF AVE. LCV/L-SKEW DISTANCE = 27.5529</td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H2 = 0.66</td>
</tr>
<tr>
<td>0BSERVED AVE. OF L-SKEW/L-KURT DISTANCE = 0.1941</td>
</tr>
<tr>
<td>SIM. MEAN OF AVE. L-SKEW/L-KURT DISTANCE = 0.240</td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H3 = 1.14��</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>آزمون برازندگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEN. LOGISTIC L-KURTOSIS = 0.274</td>
</tr>
<tr>
<td>Z VALUE 0.44</td>
</tr>
<tr>
<td>GEN. EXTREME VALUE L-KURTOSIS = 0.253</td>
</tr>
<tr>
<td>Z VALUE -0.3</td>
</tr>
<tr>
<td>GEN. NORMAL L-KURTOSIS = 0.225</td>
</tr>
<tr>
<td>Z VALUE -1.31</td>
</tr>
<tr>
<td>PEARSON TYPE III L-KURTOSIS = 0.176</td>
</tr>
<tr>
<td>Z VALUE -3.03</td>
</tr>
<tr>
<td>GEN. PARETO L-KURTOSIS = 0.188</td>
</tr>
<tr>
<td>Z VALUE -2.62</td>
</tr>
</tbody>
</table>

برگ‌های نیکویی: میانگین نتایج نیکویی گرفته شده که توزیع تناوب منطقه‌بندی چشمه‌ها و کشیدگی زیادی ندارد. هم‌چنین، مستطیل توزیع داده‌های پرت در دوره آماری موجود بسیار مشکل است. در روش پیشنهادی هاسکیگ و والس (۸) عامل D بنا به تعیین، اگر اصلی در یک استفاده پیش از ۳ پیش‌بینی، آن ایستگاه ناهماهنگی با استفاده دریگ است. بدین ترتیب، ایستگاه‌های باز و گیرآمده با عناوین ایستگاه شناخته شده‌اند. ایستگاه گیرآمده در حوزه آب‌رسی منطقه قرار دارد. در این منطقه علاوه بر استفاده گیرآمده، بهترین پیش‌بینی نسبتاً مشابه وجود دارد. بنابراین، هم‌چنین انتخاب میانگین که در چهار ایستگاه می‌باشد در شرایط مشابه از لحاظ هیدروژئیک پاشند. در حالی که نتایج آزمون‌های گفتگوی در خلاک آن را نشان می‌دهد. در ترتیب به نظر می‌رسد که عناوین به‌شناخته D هر یک از مطالعه ناهماهنگی منطقه مورد بررسی بدن می‌باشد. از سویی، برای جدول ۶، مناسب‌ترین توزیع اختلالی در استگاه هسته‌های توزیع تماشایی است. در حالی که در ایستگاه‌های استفاده شده‌اند. لازم به یادآوری است که توزیع‌هایی که به علامت سه‌درصد مشخص شده‌اند به عنوان توزیع مناسب انتخاب شده‌اند.

مقادیر نخستین دی‌پ در منطقه بر اساس توزیع‌های متناوب

آخرين گام در تحمل منطقه‌ای سیلاب، تعیین مقادیر جریان به‌شناخته شده و در مقطع مختلف در منطقه مورد بررسی ایستگاه. جدول ۷ برای توزیع‌های لجستیک تعیم‌یافته، مقادیر حذ تعیم‌یافته نرم‌ال تیعم‌یافته و روش مقادیر دیپ توزیع‌های دیپ در دوره‌های بالاگشت مختلف را نشان می‌دهند. هم‌چنین، برآورد‌های منطقه‌ای توزیع‌های متناوب توسط روش گشتاور استفاده نشده است (جدول ۶).

پیشنهادها

همان‌گونه که گفته شد، نسبت‌های گشتاور خطی نمونه، یعنی ضریب تغییرات (Lev) یا (L-skew) چشمه‌ها (L-skew) و کشیدگی (L-skew) توزیع‌های با استفاده از روش پیشنهادی هاسکیگ و والس (۸) به دست می‌آید. باید این ضریب‌ها با توجه به این که ۵۳۸۹ و ۷۲۳۷ هستند. لازم به یادآوری است که در جدول ۷ و ۸، نتایج نشان می‌دهد.
جدول 7. توزیع‌های مناسب و مقادیر تخمینی دیب برای دوره‌های پارامترات مختلف

<table>
<thead>
<tr>
<th>دوره پارامتر</th>
<th>1000</th>
<th>100</th>
<th>20</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2099/71</td>
<td>0.55</td>
<td>0.32</td>
<td>0.29</td>
<td>GL</td>
</tr>
<tr>
<td>1801/77</td>
<td>0.56</td>
<td>0.32</td>
<td>0.29</td>
<td>GEV</td>
</tr>
<tr>
<td>1194/3</td>
<td>0.56</td>
<td>0.32</td>
<td>0.29</td>
<td>WAK</td>
</tr>
</tbody>
</table>

جدول 8. پارامترهای منطقه‌ای تخمین‌یافته توزیع‌های مناسب

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>توزیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>GL</td>
</tr>
<tr>
<td>-</td>
<td>GEV</td>
</tr>
<tr>
<td>0/057</td>
<td>WAK</td>
</tr>
</tbody>
</table>

سپاسگزاری

این پژوهش با استفاده از اعتبارات معاونت پژوهشی دانشگاه صنعتی اصفهان به اجرا در آمد است، که بعده و سیل‌های تشکر و فدراسیون می‌گردد.

قمصر، بل هنال و گیرنده به مناسب‌ترین توزیع، لازم نمایندگی به پارامتری می‌باشد. در نتیجه، داری در مورد اینکه این چهار ایستگاه همگن بوده و حالت شرایط لازم برای استفاده در تحلیل منطقه‌ای سیالاب می‌باشد مشکل است، به ویژه آنکه این چهار ایستگاه در منطقه‌ای اقلیمی خشک هستند، و در کنار دیگر ایستگاه‌های واقع در منطقه‌ای نیمه خشک تا نیمه مرطوب، در تحلیل منطقه‌ای سیالاب به کار می‌روند.

درجه ناهنجاری در داخل یک گروه از ایستگاه‌ها به وسیله معیار ناهنجاری H که به وسیله هاسکینگ و والس (1980) پیشنهاد شده، به دست می‌آید. اساساً معیار ناهنجاری تغییرات مانند مورد استفاده.