کاربرد تئوری گشتاورهای خطی در تحلیل تناوب سیل حوزه‌های آبی‌خیز مرکزی ایران

سیدسعید اسلامیان۱ و ستار جاوشی بروجی‌ن۲

چکیده
روش‌های پیاده برای بررسی سیلاب حوزه‌های آبی‌خیز وجود دارند. که از جمله می‌توان به تحلیل منطقه‌ای سیلاب اشاره کرد. به‌وسیله تحلیل منطقه‌ای سیلاب ممکن بر ویژگی‌های نیرویی، انگیزه و اندازه‌گیری حوزه‌های آبی‌خیز پیدا کرد. از روشهای آماری در بررسی داده‌های مشاهداتی جهان استفاده می‌کنند. این روش‌ها درک و شناخت بهتر گشتاور و ریسک زمین‌لرزه‌ای امر مهم است. تئوری گشتاورهای خطی اساس پژوهش حاضر را تشکیل می‌دهد. در این پژوهش ۷۲ استگاه سیلابی واقع در منطقه مرکزی ایران بررسی گردید.

با استفاده از نرم‌افزار گشتاور خطی، منحنی چرخشی خطی در برای کشیدگی خطی و مناسب‌ترین توزیع‌های قابل پرازش برای هر یک از استگاه‌های محلولی تعیین شد. سپس به منظور حذف استگاه‌های غیر همگن، آزمون دل‌کارتیه ونبی بر پارامترهای نامه‌ای، آزمون یک‌نمونه و دو گروه در این مطالعه استفاده گردید. در مراحل بعدی، آزمون نیکوپسی برای تطابق نوع سیلاب‌های توزیع منطقه‌ای انجام و به ترتیب توزیع‌های لجستیک تعیین گردید. مقدار رتبه توزیع‌های تعیین گردید، برای توزیع سیلاب‌های منطقه‌ای چارک‌های منتخب انجام گرفت. نرمال توزیع باید، بی‌پرسون نوع سیلاب و باید مبتنی بر هر نوع سیلاب‌های مختلف منطقه‌ای چارک‌های منتخب انجام گرفت. در نهایت، مقدار تعیینی برای چارک‌های مختلف منطقه‌ای چارک‌های منتخب انجام گرفت.

واژه‌های کلیدی: گشتاور خطی، گشتاور ورژنی، تحلیل منطقه‌ای سیلاب

۱. دانشیار آماری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۲. عضو هیأت علمی، مرکز تحقیقات منابع طبیعی و امر دام، سازمان جهاد کشاورزی اصفهان
مقدمه
تحلیل منطقه‌ای سیال‌های شنیاب یکی از بحث‌ها که تیزترین موارد حوزه‌های جریان در هیدرولوژی است. مطالعات در هیدرولوژی سیال‌های باند، و سال‌های توهج پزوهندگان بسیاری را به گذر جریان هدایت کرده است. به علت آثار گسترده اقتصادی و زیست محیطی تحلیل منطقه‌ای سیال‌های اهمیت ویژه‌ای برخوردار است. بنابراین، پزوهش‌هایی در زمینه بهبود روش‌های تخمین سیال‌های شنیاب ادامه دارد.

در دهه‌های فحنان و هشدار میلادی بشریت تلاش‌ها صرف کسترش روش‌های کارآمد و توانایی سیال در ایستگاه‌های هیدرولوژی گردید. توزیع‌های آماری جدید و روش‌های تخمین کارآمدتر در مباحث هیدرولوژی معرفی شد، که بر اساس آنها مختص تحلیل تابع سیال یافته، که نظر می‌رسد که این روند تا حدودی در آغاز دهن نمود نیز آن‌ها گردیده است. تحلیل منطقه‌ای شاید پیاده‌ترین روش به منظور بهبود تخمین تابع سیال باشد. به نظر می‌رسد که تلاش‌های این زمینه مورد توجه پزوهندگان قرار گرفته است.

هدف از تحلیل منطقه‌ای سیال‌های تخمین مقدار جریان و تابع وقوع آن در یک حوزه مورد نظر است. در به بیانی که فواصل احتمالی وقوع نیز نامیده می‌شود، بطوریکه به طبیعت پروژه و پیامدهای سیال‌های شدید به عنوان مثال، سد و پدنه‌های مهار سیال‌های برای مقام‌تر در بررسی سیال‌های باید تاکید شود. البته بی‌توجهی به ترتیب 10 هزار و 50 سال در طول عمر فیل سازه طراحی می‌شود. رابطه میان‌گرده علت سیال و دوره وقوع آن به عنوان نمود سیال شناخت شده، و می‌تواند برای اهداف هندسی، همجون طراحی پل‌ها، سد‌ها، تهیه انجام آب و سازه‌های کنترل استفاده شود.

آدامسکی (1) در پژوهشی به مقایسه روش‌های غیر پرامتریک (Non-parametric procedures) و کسترش خطی (I-moment Linear moment) در تحلیل منطقه‌ای سیال (Linear moment)

حوزه‌های واقع در استان‌های انتاریو و کبک کانادا برخاست. وی در پژوهش خود از داده‌های حداکثر سالانه و سری‌های جزئی سیال استفاده کرد، و در نتیجه گام حوزه‌های مورد پراستی

را بر اساس شکل تابع تراکم و زمان وقوع سیال به 9 ناحیه همگن تقسیم نمود، به طوری که نواحی همگن مکانیسم تولید سیال مشابه داشتند. تنها این پژوهش نشان دهنده تأکید‌آمیز مدل‌های غیر پارامتریک جدید روشهای مختلف سیال، و در پی آن ضعف در تعیین نواحی همگن می‌باشد.

وگل و همکاران (11) با استفاده از تئوری کسترش خطی (Non-parametric procedures) و کسترش خطی (I-moment Linear moment)

کسترش روش‌های کارآمد و توانایی سیال در ایستگاه‌های هیدرولوژی گردید. توزیع‌های آماری جدید و روش‌های تخمین کارآمدتر در مباحث هیدرولوژی معرفی شد، که بر اساس آنها مختص تحلیل تابع سیال یافته، که نظر می‌رسد که این روند تا حدودی در آغاز دهن نمود نیز آن‌ها گردیده است. تحلیل منطقه‌ای شاید پیاده‌ترین روش به منظور بهبود تخمین تابع سیال باشد. به نظر می‌رسد که تلاش‌های این زمینه مورد توجه پزوهندگان قرار گرفته است.

هدف از تحلیل منطقه‌ای سیال‌های تخمین مقدار جریان و تابع وقوع آن در یک حوزه مورد نظر است. در به بیانی که فواصل احتمالی وقوع نیز نامیده می‌شود، بطوریکه به طبیعت پروژه و پیامدهای سیال‌های شدید به عنوان مثال، سد و پدنه‌های مهار سیال‌های برای مقام‌تر در بررسی سیال‌های باید تاکید شود. البته بی‌توجهی به ترتیب 10 هزار و 50 سال در طول عمر فیل سازه طراحی می‌شود. رابطه میان‌گرده علت سیال و دوره وقوع آن به عنوان نمود سیال شناخت شده، و می‌تواند برای اهداف هندسی، همجون طراحی پل‌ها، سد‌ها، تهیه انجام آب و سازه‌های کنترل استفاده شود.

آدامسکی (1) در پژوهشی به مقایسه روش‌های غیر پرامتریک (Non-parametric procedures) و کسترش خطی (I-moment Linear moment)

حوزه‌های واقع در استان‌های انتاریو و کبک کانادا برخاست. وی در پژوهش خود از داده‌های حداکثر سالانه و سری‌های جزئی سیال استفاده کرد، و در نتیجه گام حوزه‌های مورد پراستی
مواد و روش‌ها

مدل‌های منطقه‌ای تناوب سیل

پیش‌تر شیوه‌های منطقه‌ای تحلیل تناوب سیل مبتنی بر استفاده از دیه‌های اوج سالانه یا سری مناطق سالانه است. در حالی که در برخی از این روش‌ها از سری‌های جزئی استفاده می‌شود، در حال حاضر، روش‌های رگرسیون و سیل‌شناسی بیش از روش‌های دیگر رایج است. در حالی که روش رگرسیون به شکلی جدیدی در آیلندات منطقه‌ای استفاده می‌شود، روش سیل‌شناسی نیز مورد توجه پژوهشگان قرار گرفته است. به طوری که در تناوب سیل، نخست تابع میزان های شخصی است:

1. تهیه داده‌های ماهیت‌آمیز
2. تعیین مناطق همگن
3. انتخاب یک توزیع تناوب منطقه‌ای
4. تخمین پارامترهای توزیع تناوب منطقه‌ای
5. برآورد سیل در مناطق بدون استفاده
احتمال می‌باشند (5):

\[\hat{\beta}_r = E \left[X \left(F(X) \right)^r \right] \]

که در آن (6) تابع توزیع تجمعی \(X \) می‌باشد. تخمین‌های نمونه تاریخی از برای هر توزیع از روابط زیر به دست می‌آید:

\[\hat{\beta}_0 = \frac{1}{n} \sum_{j=1}^{n} X_j \]

\[\hat{\beta}_1 = \frac{1}{n-1} \sum_{j=1}^{n} \left(\frac{n-j}{n(n-1)} \right) X_j \]

\[\hat{\beta}_2 = \frac{1}{n(n-1)} \sum_{j=1}^{n} \left(\frac{(n-j)(n-j-1)}{n(n-1)(n-2)} \right) X_j \]

\[\hat{\beta}_3 = \frac{1}{n(n-1)(n-2)} \sum_{j=1}^{n} \left(\frac{(n-j)(n-j-1)(n-j-2)}{n(n-1)(n-2)(n-3)} \right) X_j \]

که در آن \(j \) داده‌های متغیر شده جریان \(X_i \) با عنوان به عنوان برگزیده داده مشاهداتی، و \(X_i \) به عنوان کوهکتیر داده می‌باشد. چهار گشدار خطي نوسنت که به عنوان ترکیبات خطي گشتاور خطي احتمال بین می‌شود عبارتند از (4):

\[\lambda_1 = \hat{\beta}_0 \]

\[\lambda_2 = 2\hat{\beta}_1 - \hat{\beta}_0 \]

\[\lambda_3 = 6\hat{\beta}_2 - 6\hat{\beta}_1 + \hat{\beta}_0 \]

\[\lambda_4 = 20\hat{\beta}_3 - 30\hat{\beta}_2 + 12\hat{\beta}_1 - \hat{\beta}_0 \]

در روابط فوق میانگین گشتاور خطي با دو ماباری از تمایل به مركز، و انحراف معیار گشتاور خطي با نوار معیاری از پراکندگی است. نسبت \(\lambda_4 \) به \(\lambda_2 \) به عنوان ضریب تغییرات گشتاور خطي (L-coefficient of variation (Lev)) که (skewness) کشیدگی گشتاور خطي (L-kurtosis (L. kurt) (Discordancy test) و آزمون ناهمگنی (Homogeneity test) است. این گشتاورهای مورد بررسی می‌باشد.

گشتاورهای خطي

(First-order statistics) هستند که به داده‌های متغیر (Variables) و برای نمونه‌گیری کرک‌گره داده مشاهداتی غیر اریب می‌باشند. بنابراین، کاربرد آنها برای تحلیل توابع سری (تعداد توزیع متسکی و تخمین پارامترهای توزیع) مناسب است (5) و (6).

گشتاورهای خطي از لحاظ نظیر میزان‌های بیشتر گشتاورهای متغیر داده‌ای، که در آن چهار گشتاور خطي نوسنت داده مشاهداتی است. به دنبال آن، که می‌تواند بین دو گشتاورهای خطي احتمال بین متغیر به عنوان داده‌های متغیر می‌باشد. چهار گشتاور خطي نوسنت که به عنوان ترکیبات خطي گشتاور خطي احتمال بین می‌شود عبارتند از (4):

\[\lambda_1 = \hat{\beta}_0 \]

\[\lambda_2 = 2\hat{\beta}_1 - \hat{\beta}_0 \]

\[\lambda_3 = 6\hat{\beta}_2 - 6\hat{\beta}_1 + \hat{\beta}_0 \]

\[\lambda_4 = 20\hat{\beta}_3 - 30\hat{\beta}_2 + 12\hat{\beta}_1 - \hat{\beta}_0 \]

در روابط فوق میانگین گشتاور خطي با دو ماباری از تمایل به مركز، و انحراف معیار گشتاور خطي با نوار معیاری از پراکندگی است. نسبت \(\lambda_4 \) به \(\lambda_2 \) به عنوان ضریب تغییرات گشتاور خطي (L-coefficient of variation (Lev)) که (skewness) کشیدگی گشتاور خطي (L-kurtosis (L. kurt) (Discordancy test) و آزمون ناهمگنی (Homogeneity test) است. این گشتاورهای مورد بررسی می‌باشد.

نظرات و مفاهیم کاربردهای گشتاورهای خطي

(First-order statistics) هستند که به داده‌های متغیر (Variables) و برای نمونه‌گیری کرک‌گره داده مشاهداتی غیر اریب می‌باشند. بنابراین، کاربرد آنها برای تحلیل توابع سری (تعداد توزیع متسکی و تخمین پارامترهای توزیع) مناسب است (5) و (6).

گشتاورهای خطي

(First-order statistics) هستند که به داده‌های متغیر (Variables) و برای نمونه‌گیری کرک‌گره داده مشاهداتی غیر اریب می‌باشند. بنابراین، کاربرد آنها برای تحلیل توابع سری (تعداد توزیع متسکی و تخمین پارامترهای توزیع) مناسب است (5) و (6).

گشتاورهای خطي

(First-order statistics) هستند که به داده‌های متغیر (Variables) و برای نمونه‌گیری کرک‌گره داده مشاهداتی غیر اریب می‌باشند. بنابراین، کاربرد آنها برای تحلیل توابع سری (تعداد توزیع متسکی و تخمین پارامترهای توزیع) مناسب است (5) و (6).

گشتاورهای خطي

(First-order statistics) هستند که به داده‌های متغیر (Variables) و برای نمونه‌گیری کرک‌گره داده مشاهداتی غیر اریب می‌باشند. بنابراین، کاربرد آنها برای تحلیل توابع سری (تعداد توزیع متسکی و تخمین پارامترهای توزیع) مناسب است (5) و (6).
آزمون همکارگی

اگر تغییرپذیری ایستگاه‌ها یا فضای پراکنش ایستگاه‌ها بزرگ باشد، احتمال تعلق این ایستگاه‌ها به یک مجموعه واحد را می‌تواند به وسیله آزمون همکارگی کشته شود. البته برای کنترل شرایط، ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد. همه این ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد.

آزمون همکارگی کشته شود. البته برای کنترل شرایط، ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد. همه این ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد.

آزمون همکارگی کشته شود. البته برای کنترل شرایط، ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد. همه این ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد.

آزمون همکارگی کشته شود. البته برای کنترل شرایط، ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد. همه این ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد.

آزمون همکارگی کشته شود. البته برای کنترل شرایط، ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد. همه این ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد.

آزمون همکارگی کشته شود. البته برای کنترل شرایط، ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد. همه این ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد.

آزمون همکارگی کشته شود. البته برای کنترل شرایط، ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد. همه این ایستگاه‌ها به یک مجموعه واحد می‌توانند باشد.

(الف) انتخاب توزیع مناسب با استفاده از نمودارهای گشتاورهای خصی

روابط توزیعی بین ری و برای توزیع‌های مختلف به دست آمده است. انتخاب یک توزیع پارامتری مناسب برای توصیف داده‌های مشاهدها مورد بررسی می‌گردد. برای مجازات میانگین پارامترهای R و T، منطقه با قطعه‌ای خاص توزیع‌ها هر توزیع، تئوری تغییرپذیری آنها بر اساس مقدار میانگین مربوطه است.

(ب) آزمون ناهماهنگی

اگر یک ایستگاه منفرد در نمودار گشتاور به محدوده فضای دو بعدی (X و Y) واقع شود، یک آزمون ناهماهنگی مستقل بر گشتاورهای خصی به عنوان نشانه‌هایی حذف ایستگاه از مجموعه ایستگاه‌های ورودی بررسی انجام می‌گیرد.

ارتباط میانگین با محاسبه آماره D اندازه‌گیری می‌شود. در نهایت که این برای پرکردن نسبت‌های گشتاورهای خصی برای ایستگاه i انتخابی است (V)

U_i = \left[L_{CVi}, z_{3i}, z_{4i} \right]^T

میانگین‌های گروه (U) و ماتریس کوریلیات‌های نمونه (S) به صورت زیر تعریف می‌شوند:

U = \frac{1}{N} \sum_{i=1}^{N} U_i

S = \left(\frac{1}{N-1} \sum_{i=1}^{N} (U_i - \bar{U})(U_i - \bar{U})^T \right)

D_i = \frac{1}{3} (U_i - \bar{U})^T S^{-1} (U_i - \bar{U})

به طوری که N تعداد کل ایستگاه‌های است. شاید ذکر است که D مشاهده‌ای در تاریخی که یک است. اگر آماره D میانگین به یک ایستگاه بیش از 3 باشد، داده‌های مشاهده‌ای آن ایستگاه‌های با دیگر ایستگاه‌های منطقه در نظر گرفته شده و در انتقال بررسی می‌شود. با این که در بین داده‌های مشاهده‌ای خطایی و چند یا ایستگاه مربوطه در این ناحیه همگون نیست.

وقتی H<1 باشد منطقه همگن، و وقتی H>2 باشد منطقه احتمالاً ناهماهنگ، و هنگامی که H<1 باشد منطقه غیر همگن است. (V) بنابراین، یک مجموعه از
ب) حوزه آبخز رمینیان

این حوزه در حاشیه شمال غربی تا غرب حوزه بهرگ می‌باشد. در این حوزه و کویرهای آن از نمک در شرق را در بین گسترده‌تری می‌باشد. به دلیل وجود شرکت‌های جنوبی‌ترین در این حوزه به دلیل وجود دامنه جنوبی، شرکت‌های شمال‌شرقی به محدوده حوزه بهرگ تبدیل شده است.

رتبه افزایش منطقه بررسی

زمین‌شناسی خاکی تونسی برای انتخاب اثرات توزیع منطقه بررسی Z

\\[Z\text{DIST} = \frac{\sum_{m=1}^{N_{\text{sim}}}(4m - \bar{x}_4) - \beta_4}{\sigma_4} \]

WHERE \(\beta_4 = 1 \), \(\sigma_4 = \sqrt{\frac{1}{(N_{\text{sim}} - 1)} \sum_{m=1}^{N_{\text{sim}}}(4m - \bar{x}_4)^2} - N_{\text{sim}} \beta_4^2 \)

\(x_4 \) میانگین توزیع داده‌ها

\(N_{\text{sim}} \) تعداد آزمون‌برداری

هگامی که داده‌های موجود در یک ناحیه همگن بوده و متعلق به یک توزیع پارامتری متغیر باشند، آزمون براون‌گراتس بنیان بر گشته‌های خطر انجام می‌گیرد که یکی از توزیع‌های رایج انتخاب و پارامترهای آن تخمین زده شود. پس نتایج گشته‌های سیل در داخل ناحیه بر اساس توزیع منطقه‌ای ملی‌تر توزیع زیر توزیع بر اساس توزیع خطر ناحیه و آماره Z نام می‌گیرد.

(1)

(2)

(3)

(4)

(5)
جدول 1: استگاه‌های هیدرومتری مورد بررسی

<table>
<thead>
<tr>
<th>عرض جغرافیایی</th>
<th>طول جغرافیایی</th>
<th>استگاه</th>
<th>رودخانه</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-01</td>
<td>50-47</td>
<td>قلعه شاهرخ</td>
<td>سواران</td>
<td>1</td>
</tr>
<tr>
<td>32-21</td>
<td>50-47</td>
<td>سواران</td>
<td>سواران</td>
<td>2</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>زاینده‌رود</td>
<td>3</td>
</tr>
<tr>
<td>32-00</td>
<td>50-47</td>
<td>زاینده‌رود</td>
<td>زاینده‌رود</td>
<td>4</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>5</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>6</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>7</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>8</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>9</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>10</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>11</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>12</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>13</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>14</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>15</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>16</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>17</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>18</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>19</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>20</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>21</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>22</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>23</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>24</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>25</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>26</td>
</tr>
<tr>
<td>33-20</td>
<td>50-47</td>
<td>سپیدرود</td>
<td>سپیدرود</td>
<td>27</td>
</tr>
</tbody>
</table>
شکل 1. منطقه مورد بررسی در ایران مرکزی

شکل 2. استگاه‌های مورد بررسی در حوزه‌های آبخیز زاینده‌رود و قم

از پنج زیر حوزه به نام‌های شهر، قم‌رود، قرچای، کویر اراک و میغان، کویر کاشان و قم یا دریاچه نمک است (شکل 2).

ج) حوزه آبخیز کارون شمالي

حوزه آبخیز کارون شمالي بخشی از حوزه آبخیز بزرگ کارون است، و با بهره‌برداری از دیگر حومه‌های نیازمند ۱۴۰۸ کیلومتر مربع در محدوده جغرافیایی ۴۲°۳۶ ۴۷° ۵۱° طول شرقی و ۳۱° ۳۱° ۶۰° عرض شمالی قرار دارد. این حوزه از سمت شمال و شمال شرق به
در ابتدای راه‌های این روستا، ناحیه‌ای جنگلی و بزرگسالی وجود دارد که می‌تواند به عنوان یک پارک ملی مورد استفاده قرار گیرد. این جنگلی‌های بزرگسالی باعث شده که این منطقه از نظر طبیعتی بسیار زیبا و سکونتگاهی برای این حیوانات می‌باشد. در این منطقه، گرمسیری و رطوبت بالا می‌تواند باعث شده که این جنگل‌ها بتوانند به عنوان یک پارک ملی مورد استفاده قرار گیرند. این پارک ملی می‌تواند به عنوان یک پارک ملی در این منطقه از نظر طبیعتی بسیار زیبا و سکونتگاهی برای این حیوانات می‌باشد. در این منطقه، گرمسیری و رطوبت بالا می‌تواند باعث شده که این جنگل‌ها بتوانند به عنوان یک پارک ملی مورد استفاده قرار گیرند.
جدول ۲. گشتاورهای خطی نوع اول تا چهارم ایستگاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>Lkurt</th>
<th>Lskew</th>
<th>Lev</th>
<th>L1</th>
<th>تعداد سال</th>
<th>شماره ایستگاه</th>
<th>ایستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/131</td>
<td>0/176</td>
<td>16/28</td>
<td>4/55</td>
<td>1</td>
<td>گدارکیک</td>
<td></td>
</tr>
<tr>
<td>0/174</td>
<td>0/598</td>
<td>175/979</td>
<td>36/47</td>
<td>2</td>
<td>تنج سولگان</td>
<td></td>
</tr>
<tr>
<td>0/323</td>
<td>0/373</td>
<td>50/113</td>
<td>94/8</td>
<td>3</td>
<td>تنج زردوئلو</td>
<td></td>
</tr>
<tr>
<td>0/488</td>
<td>0/1350</td>
<td>387/88</td>
<td>1019/42</td>
<td>4</td>
<td>بارز</td>
<td></td>
</tr>
<tr>
<td>0/146</td>
<td>0/191</td>
<td>0/91</td>
<td>10/91</td>
<td>5</td>
<td>ماربان</td>
<td></td>
</tr>
<tr>
<td>0/217</td>
<td>0/300</td>
<td>179/157</td>
<td>882/58</td>
<td>6</td>
<td>مرغک</td>
<td></td>
</tr>
<tr>
<td>0/285</td>
<td>0/438</td>
<td>233/999</td>
<td>787/47</td>
<td>7</td>
<td>ارمند</td>
<td></td>
</tr>
<tr>
<td>0/77</td>
<td>0/379</td>
<td>45/10</td>
<td>10/61</td>
<td>8</td>
<td>لردگان</td>
<td></td>
</tr>
<tr>
<td>0/19</td>
<td>0/182</td>
<td>273/71</td>
<td>329/984</td>
<td>9</td>
<td>کنا</td>
<td></td>
</tr>
<tr>
<td>0/127</td>
<td>0/133</td>
<td>372/147</td>
<td>1111/68</td>
<td>10</td>
<td>تنج نج</td>
<td></td>
</tr>
<tr>
<td>0/172</td>
<td>0/253</td>
<td>0/887</td>
<td>106/50</td>
<td>11</td>
<td>هنا</td>
<td></td>
</tr>
<tr>
<td>0/216</td>
<td>0/426</td>
<td>0/42</td>
<td>7/42</td>
<td>12</td>
<td>تنج استورجان</td>
<td></td>
</tr>
<tr>
<td>0/225</td>
<td>0/377</td>
<td>1/86</td>
<td>1/86</td>
<td>13</td>
<td>سواران</td>
<td></td>
</tr>
<tr>
<td>0/352</td>
<td>0/477</td>
<td>13/66</td>
<td>32/3</td>
<td>14</td>
<td>استکندری</td>
<td></td>
</tr>
<tr>
<td>0/286</td>
<td>0/593</td>
<td>0/903</td>
<td>0/59</td>
<td>15</td>
<td>مندرجان</td>
<td></td>
</tr>
<tr>
<td>0/217</td>
<td>0/394</td>
<td>0/450</td>
<td>120/96</td>
<td>16</td>
<td>پل زمانخان</td>
<td></td>
</tr>
<tr>
<td>0/240</td>
<td>0/576</td>
<td>0/34</td>
<td>6/4</td>
<td>17</td>
<td>سراب هنده</td>
<td></td>
</tr>
<tr>
<td>0/297</td>
<td>0/33</td>
<td>0/80</td>
<td>53/49</td>
<td>18</td>
<td>سد کلبایگان</td>
<td></td>
</tr>
<tr>
<td>0/111</td>
<td>0/08</td>
<td>28/21</td>
<td>117/88</td>
<td>19</td>
<td>تنج درکش</td>
<td></td>
</tr>
<tr>
<td>0/366</td>
<td>0/108</td>
<td>12/09</td>
<td>19/32</td>
<td>20</td>
<td>وانسان</td>
<td></td>
</tr>
<tr>
<td>0/106</td>
<td>0/11</td>
<td>0/543</td>
<td>191/92</td>
<td>21</td>
<td>بهشت آباد</td>
<td></td>
</tr>
<tr>
<td>0/37</td>
<td>0/36</td>
<td>0/39</td>
<td>13/92</td>
<td>22</td>
<td>چلگرد</td>
<td></td>
</tr>
<tr>
<td>0/214</td>
<td>0/28</td>
<td>29/43</td>
<td>299/83</td>
<td>23</td>
<td>قلعه شاه‌رخ</td>
<td></td>
</tr>
<tr>
<td>0/773</td>
<td>0/859</td>
<td>0/96</td>
<td>1/37</td>
<td>24</td>
<td>گیر آباد</td>
<td></td>
</tr>
<tr>
<td>0/667</td>
<td>0/354</td>
<td>0/75</td>
<td>0/75</td>
<td>25</td>
<td>قصر</td>
<td></td>
</tr>
<tr>
<td>0/524</td>
<td>0/77</td>
<td>0/123</td>
<td>0/7</td>
<td>26</td>
<td>بل هنجن</td>
<td></td>
</tr>
<tr>
<td>0/142</td>
<td>0/347</td>
<td>0/111</td>
<td>0/75</td>
<td>27</td>
<td>هستیجان</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های منطقه‌ای نسبت‌های گشتاور خطي

0/2451 0/354 0/45 1/000
جدول 2: مقادیر تخمینی دیپ لحظه‌ای استقلاها و منطقه در دوره مورد بررسی (متر مکعب بر ثانیه)

<table>
<thead>
<tr>
<th>شماره خمیر</th>
<th>استقلاه</th>
<th>احتمال وقوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

زبان زبان، می‌توان احتمال این که مجموعه استقلاها مورد بررسی متعلق به یک گروه گرا در نظر گرفت. جدول 7 نشان هر یک از ترکیب‌های آزمون‌های H در منطقه به ترتیب 1/4/3 و 1/4/2 است. به

در مجموع نشان دهنده همگنی بودن منطقه است.
جدول 4. انتخاب مناسب‌ترین توزیع برای پیش‌گاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>پیش‌گاه</th>
<th>توزیع مناسب‌تر</th>
</tr>
</thead>
<tbody>
<tr>
<td>بهشت‌آباد, جنگل، کتا, بارز, حنا, تنج زردآلو؛ بیل زمان‌خان</td>
<td>GPA (پارتوی تعیین‌یافته)</td>
</tr>
<tr>
<td>اسکندري، سد کلاپیان</td>
<td>GL (لیستیک تعیین‌یافته)</td>
</tr>
<tr>
<td>گیبرآباد، ازند، قصر، بیل هنجر</td>
<td>LN3 (لولک نرمال سه پارامتری)</td>
</tr>
<tr>
<td>زرک، قلعه شامله، مرغیک، گدار کیک، سولگان</td>
<td>GEV (مقادیر حد تعیین‌یافته)</td>
</tr>
<tr>
<td>تنج پنج، لردگان، ماریان، سراب هنده، سواران، وانشان</td>
<td>PE3 (پیرسون نوع سوم)</td>
</tr>
<tr>
<td>تنج اسفرجان، مندرجان</td>
<td>WAK (ویکی)</td>
</tr>
<tr>
<td>هسنجان</td>
<td>EXP (نمایی)</td>
</tr>
<tr>
<td>بهشت‌آباد</td>
<td>UNF (یک‌پارامتر)</td>
</tr>
<tr>
<td>تنج پنج، لردگان، ماریان</td>
<td>GUM, EV1 (کامبل، مقادیر حد نوع اول)</td>
</tr>
</tbody>
</table>

آزمون نیکوکی برایها به منظور تعیین مناسب‌ترین تابع توزیع منطقه

پس از اطمینان از همگنی بودن منطقه، انتخاب مناسب‌ترین تابع توزیع برای منطقه انجام می‌شود. روش مورد استفاده در انتخاب مناسب‌ترین تابع توزیع مبتنی بر آماره Z می‌باشد. که توسط

\[
Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}
\]

برای محاسبه

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

و

\[
\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

اماکنگی و والیس (V) تعیین شده و قبلاً تشريح شده است. نتایج حاصل از آزمون نیکوکی برترین در جدول 6 نشان داده شده است. برای با این جدول، به ترتیب توزیع‌های لیستیک تعیین یافته، مقادیر حد تعیین یافته، پیرسون نوع سوم و پارتو تعیین یافته، مناسب‌ترین تابع توزیع‌های منطقه برای براورد سیلاب و سیلاب‌ثباتی، جدول 7 نشان داده شده است.
جدول ۵ آزمون غیر یکنواختی ایستگاه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>D_i</th>
<th>Lkurt</th>
<th>Lskew</th>
<th>Lev</th>
<th>شماره ایستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/49</td>
<td>0/13</td>
<td>0/37</td>
<td>0/28</td>
<td>1 گدارکیک</td>
</tr>
<tr>
<td>0/43</td>
<td>0/47</td>
<td>0/59</td>
<td>0/79</td>
<td>2 گون سونکان</td>
</tr>
<tr>
<td>0/1</td>
<td>0/12</td>
<td>0/63</td>
<td>0/33</td>
<td>3 گنگ زردآلو</td>
</tr>
<tr>
<td>0/84</td>
<td>0/14</td>
<td>0/91</td>
<td>1/79</td>
<td>4 یارز</td>
</tr>
<tr>
<td>0/49</td>
<td>0/22</td>
<td>0/30</td>
<td>0/67</td>
<td>5 ماریان</td>
</tr>
<tr>
<td>0/77</td>
<td>0/28</td>
<td>0/43</td>
<td>2/39</td>
<td>6 مرکی</td>
</tr>
<tr>
<td>0/1</td>
<td>0/26</td>
<td>0/79</td>
<td>1/04</td>
<td>7 لرگان</td>
</tr>
<tr>
<td>0/73</td>
<td>0/04</td>
<td>0/82</td>
<td>0/01</td>
<td>8 ندا</td>
</tr>
<tr>
<td>0/83</td>
<td>0/21</td>
<td>0/62</td>
<td>0/79</td>
<td>9 نگ پنج</td>
</tr>
<tr>
<td>0/38</td>
<td>0/32</td>
<td>0/57</td>
<td>0/19</td>
<td>10 سرخان</td>
</tr>
<tr>
<td>0/5</td>
<td>0/39</td>
<td>0/47</td>
<td>0/27</td>
<td>11 سرخ اسپراین</td>
</tr>
<tr>
<td>0/82</td>
<td>0/29</td>
<td>0/43</td>
<td>0/20</td>
<td>12 سروان</td>
</tr>
<tr>
<td>0/41</td>
<td>0/12</td>
<td>0/68</td>
<td>0/10</td>
<td>13 اسکاندری</td>
</tr>
<tr>
<td>0/61</td>
<td>0/32</td>
<td>0/68</td>
<td>1/29</td>
<td>14 طرخان</td>
</tr>
<tr>
<td>0/1</td>
<td>0/06</td>
<td>0/04</td>
<td>0/11</td>
<td>15 مچنگ هنده</td>
</tr>
<tr>
<td>0/1</td>
<td>0/21</td>
<td>0/80</td>
<td>0/24</td>
<td>16 نگ کلیگان</td>
</tr>
<tr>
<td>0/8</td>
<td>0/23</td>
<td>0/40</td>
<td>0/20</td>
<td>17 نگ درخت</td>
</tr>
<tr>
<td>0/71</td>
<td>0/36</td>
<td>0/68</td>
<td>1/39</td>
<td>18 یانشان</td>
</tr>
<tr>
<td>0/1</td>
<td>0/00</td>
<td>0/11</td>
<td>0/17</td>
<td>19 پخشآباد</td>
</tr>
<tr>
<td>0/90</td>
<td>0/03</td>
<td>0/44</td>
<td>0/29</td>
<td>20 چله‌گرد</td>
</tr>
<tr>
<td>0/8</td>
<td>0/21</td>
<td>0/80</td>
<td>0/29</td>
<td>21 قلعه شاه‌رخ</td>
</tr>
<tr>
<td>0/9</td>
<td>0/23</td>
<td>0/57</td>
<td>0/24</td>
<td>22 گربیاود</td>
</tr>
<tr>
<td>0/67</td>
<td>0/45</td>
<td>0/64</td>
<td>0/37</td>
<td>23 قمصر</td>
</tr>
<tr>
<td>0/6</td>
<td>0/22</td>
<td>0/35</td>
<td>0/20</td>
<td>24 پل هنجه</td>
</tr>
<tr>
<td>0/84</td>
<td>0/14</td>
<td>0/34</td>
<td>0/11</td>
<td>25 هسته‌یان</td>
</tr>
<tr>
<td>0/78</td>
<td>0/34</td>
<td>0/27</td>
<td>0/98</td>
<td>میانگین وزنی</td>
</tr>
</tbody>
</table>

میانگین وزنی 0/369 87/948
جدول ۶: آزمون‌های همبستگی و نیکووی برای ایستگاه‌های مورد بررسی

آزمون همبستگی	NUMBER OF SIMULATIONS	500
	OBSERVED S.D. OF GROUP L-CV	111.4848
	SIM. MEAN OF S. D. OF GROUP L-CV	59.2535
	SIM. S. D. OF AVE. L-CV / L-SKEW DISTANCE	95.3109
	STANDARDIZED TEST VALUE, H1	0.25
	OBSERVED AVE. OF L-CV/L-SKEW DISTANCE	90.7641
	SIM. MEAN OF AVE. LCV/L-SKEW DISTANCE	27.5529
	STANDARDIZED TEST VALUE, H2	0.66
	OBSERVED AVE. OF L-SKEW/L-KURT DISTANCE	0.1941
	SIM. MEAN OF AVE. L-SKEW/L-KURT DISTANCE	0.240
	STANDARDIZED TEST VALUE, H3	1.14

آزمون برازندگی	GEN. LOGISTIC L-KURTOSIS	0.274
	Z VALUE	0.44
	GEN. EXTREME VALUE L-KURTOSIS	0.253
	Z VALUE	0.3
	GEN. NORMAL L-KURTOSIS	0.225
	Z VALUE	-1.31
	PEARSON TYPE III L-KURTOSIS	0.176
	Z VALUE	-3.03
	GEN. PARETO L-KURTOSIS	0.188
	Z VALUE	-2.62

مدیریت نتایج در منطقه بر اساس توزیع‌های معین

درک نتایج، می‌تواند به‌عنوان یک نشانه‌گر اصلی سیالاب، تخمین مقدار جریان با تناوب مختلف در منطقه مورد بررسی است. جدول ۷ برای توزیع‌های لجستیک تعمیم یافته، مقدار جدید تعیین یافته، نرمال تعمیم یافته و کشیدگی نمودار مورد بررسی در دوره‌های بازگشت مختلف را نشان می‌دهد. مهرین، بازگشت‌های منطقه‌ای توزیع‌های متغیر توسط روش کشتار مناسب تغییر کرده‌اند.

(استجواب ۸) ۸

بیشتر دارای توانایی، بیشتر انتظار می‌رود که هر چهار ایستگاه می‌باشد در شرایط مشابه از لحاظ هیدرولوژیک باشند. در حالی که تاریخ آزمون ناهمگنی خلاص آن را نشان می‌دهد. در نتیجه به نظر می‌رسد که کلمی بیش‌هادی برای مطالعه ناهمگنی منطقه مورد بررسی بسیار دلخواه است. نسبت، برای جدول ۴، مناسب‌ترین توزیع اختصاصی در ایستگاه‌های مشتقان توزیع نمایی است. در حالی که در ایستگاه‌های

همان‌گونه که گفته شد، نسبت‌های کشتار خشک نمونه، می‌باشد. ضریب پیوستگی ایستگاه‌های (Lkurt) و کشیدگی (Lskew) توزیع با استفاده از روش پیشنهادی هاسکینگ و والپس (۸) به دست می‌آید. میانگین ضرایب جولین و کشیدگی خطی منطقه‌ای به ترتیب ۰.۰۱۷ و ۲۳۷ است. با توجه به این که این ضرایب
جدول 7. توزیع‌های منتخب و مقادیر تخمینی دیگ برای دوره‌های بازگشت مختلف

<table>
<thead>
<tr>
<th>دوره بازگشت</th>
<th>20</th>
<th>10</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL</td>
<td>47/75</td>
<td>67/73</td>
<td>72/67</td>
</tr>
<tr>
<td>GEV</td>
<td>50/79</td>
<td>75/31</td>
<td>34/38</td>
</tr>
<tr>
<td>WAK</td>
<td>50/70</td>
<td>57/46</td>
<td>34/38</td>
</tr>
</tbody>
</table>

جدول 8. پارامترهای منطقه‌ای تخمینی توزیع‌های منتخب

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>توزیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL</td>
<td>70/72</td>
</tr>
<tr>
<td>GEV</td>
<td>42/63</td>
</tr>
<tr>
<td>WAK</td>
<td>12/64</td>
</tr>
</tbody>
</table>

سیاست‌گذاری

این پژوهش با استفاده از اعتبارات معاونت پژوهشی دانشگاه صنعتی اصفهان به اجرا در آمد، که به‌دین وسیله تشکر و قدردانی می‌گردد.

قمصر، بل هننج و گیر آباد مناسب‌ترین توزیع، لور نرمال سه پارامتری می‌باشد. در تعبیر دوی در مورد این که این چهار ایستگاه همگن بوده و جامدی شرایط لازم برای استفاده در تحلیل منطقه‌ای سیلاب می‌باشد مشکل است، به ویژه آن که این چهار ایستگاه در منطقه‌ای کاملاً خشک هستند، و در کنار دیگر ایستگاه‌های واقع در منطقه‌ای نیمه‌خشک نیمه‌ورزاب، در تحلیل منطقه‌ای سیلاب به کار می‌رود.

درجه نامه‌گی در داخل یک گروه از ایستگاه‌ها به وسیله معیار نامه‌گی H که به وسیله هاسکینگ و والسی (1976) پیشنهاد شده، به دست می‌آید. اساساً معیار نامه‌گی تغییرات متابع مورد استفاده