مقاومت در برابر جریان در رودخانه‌های با بستر سنگی

حسین افضلی‌مهر، مطهره حیدرپور و سیدحسین فرشی

چکیده

در این پژوهش با بررسی گرایش پارامترهای کلی یعنی سرعت متوسط جریان در چند سطح مقطع از رودخانه‌های خاکی واقع در اطراف نهالنده، پارامترهایی موثر بر سرعت متوسط تقلیدی در هر نیم‌خازن سرعت جریان و توزیع نیروهای سرعت بر اساس تعریفی که به سری، مقاومت در برابر جریان و عوامل مؤثر بر آن، با استفاده از داده‌های اندازه‌گیری شده، برای جریان‌های یک‌ناوخت و غیر یک‌ناوخت بررسی شده است.

تاریخ پژوهش: نشان می‌دهد که هر گونه تغییر در شکل نسبت به‌گاریچی متوسط جهانی سرعت با منظور کنار گذاشتن شکل سطح مقطع رودخانه و یا ضریب تعیین زیری مواد بستر برای فشرد مشخصه رودخانه تاثیری بر فشرد مشخصه رودخانه ندارد. در حالتی که مقدار ثابت گازگرفتن (عرض از میدان) معادله توزیع جهانی سرعت به صورت نامی‌کار در Parametric عدد گزارشگر و پارامتر شیلدز می‌تواند تا حدی برآورد مقاومت در برابر جریان را بهبود ببخشند. معمولاً، در نظر گرفتن لایه‌های شکل و ضریب تعیین زیری در موارد نمایا، پیشینی مقاومت در برای جریان را بهبود می‌بخشد. از سوی دیگر به کارگردهای مشخصاتی که مراجعه چون ضخامت و اندازه حرکت وجود نمی‌کنند می‌تواند در نیم‌خازن سرعت، ضریب هیپس‌گراف در معادله پیشنهادی برای مقاومت در برابر جریان ممفی‌می‌سازد. معادله پیشنهادی حاصل از اندازه‌گیری‌های توزیع سرعت جریان غیر یک‌ناوخت در رودخانه‌های قیزی، برای جریان‌های آب حداکثر سرعت جریان واقع در سطح آب و شبک خط انرژی از عوامل مؤثر بر مقاومت در برابر جریان می‌باشد.

واژه‌های کلیدی: فاکتور شکل، ضریب تعیین زیری، ضخامت و اندازه حرکت، می‌تواند، رودخانه‌های سنگی

1. به ترتیب استادانان و دانشجوی سابق کارشناسی ارشد آب‌یاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مقدمه

از آن جا که معادله‌های حاکم بر هیدرولیک رودخانه برمبای معرفی گردیده است، رودخانه‌ها با شیب ملایم یا شیب‌دار، کاربردی ار روابط برای رودخانه‌های مناطق کوهستانی که دارای شیب نیستند، در پی بیشتر مقالات در برای جریان به خاطر عوامل رو به روست. هیدرولیک مناطق کوهستانی از دو جهته نیاز به بررسی دارد:

1. تخمین نامنظم مقاومت در برای جریان توسط روابط موجود به روی در رودخانه‌های با شیب رو به روی، تحقیق و پروژه‌های بسیاری انجام گرفته است.
2. تخمین به طور کلی، دوره مورد استفاده در برای جریان تا کنون ارائه‌شده است. نوع اول کاملاً تجربی و به اساس برآورده می‌شود و نوع دوم به صورت نیمه‌تجربی کار می‌کند.

اراسته و ایمن کردن این پروژه روش‌های جریان به پیشنهاد جریان‌ها که به‌طور باز‌رسانی شده با دفت برآورد مقاومت در برای جریان با توجه به نوع جریان (پیکنولوگی و غیر پیکنولوگی) بیشتر کالری‌ها را رودخانه و مشخصات هیدرولوکی آنها وابسته است. بنابراین، هر نوع خط از توانایی‌های پرورشی بررسی به دست داده می‌شود.

مقاومت در برای جریان در کانال‌های باز توسط روابط:

ضریب زیری مانند (۰.۵)، ضریب زیری شری (C)، و فاکتور اصطکاک‌داری‌های (I) توصیف شده در میان این روابط می‌باشد. مقاومت اصطکاک‌داری‌های (I) در معادله به صورت پارامتر تبدیل عمل می‌کند.

فاکتور اصطکاک‌داری در میان این پارامتر و غیره در معادله به صورت:

$$I = \frac{F}{W}$$

$$\frac{F}{W} = \frac{um}{\sqrt{g}}$$

در این رابطه، $$um$$ مساحت، $$F$$ مساحت، $$W$$ مساحت، $$S_r$$ شبکه خط از گرانشی (G) برای جریان در کانال باز، تنش درهم (G) غیر پرورشی غیر می‌باشد در برای جریان بی‌شکل، بطور آن‌ها این نیرو را به منشأ خودشان که
مواد و روش‌ها
برای رسیدن به اهداف این پژوهش از دو دسته داده‌های اندازه‌گیری شده استفاده شده است. دسته اول داده‌های جاری شده از 140 رودخانه شنی واقع در کشورهای کانادا، آمریکا، انگلستان، نیوزلند، ایرلند شمالی و ایتلیا است. دسته دوم داده‌ها شامل 24 نمونه سرعت اندازه‌گیری شده در شرایط جاریان دائمی یا نیروگیری، در محوطه محور مرکزی چهار بازه 50 متری رودخانه شنی گاماسب ساز در اطراف نهان‌ترین می‌باشد.

1) در سطح اول جریان در رودخانه‌ها یکسکوخت در نظر گرفته شده است. بنابراین، مشخصات هیدرولیکی همچنین سرعت نسبی جاریان، عرض رودخانه و عمق جریان از یک سطح مقطع به مختصات نسبی می‌باشد. جدول 1 دانه‌ای اندازه‌گیری شده در 140 رودخانه شنی در شرایط جاریان یکسکوخت را نشان می‌دهد. در سطح دوم باید به سرعت، آن‌ها را به صورت ضرورت یا ضرورت بامدادن، که این خود باعث می‌شود سرعت بند شود. لازم به یادآوری است، رودخانه‌گیماسب یکی از شاخصهای اصلی رود گرخ است. که دارای سرعت بندی با قطر متوسط شیب تندازی با صورت دانه‌ای با مشخصه می‌باشد. جدول 2 دانه‌ای اندازه‌گیری شده و محاسبه شده در چهار بازه مورد بررسی در رودخانه‌گیماسب را نشان می‌دهد.

در این پژوهش برای اندازه‌گیری سرعت نقطه‌ای و تعیین نیم‌سرعت از واگذار در سطح نسبی کم‌پراکنده در محققی مختلف هر یک از 24 سطح مقطع رودخانه استفاده گردید. (5) از آن جا که در یک رودخانه ضخامت لایه مرازی تقیبی را برای سرعت جریان انتخاب می‌کنیم. از آنجا که در یک رودخانه، ضخامت لایه مرازی تقیبی برای سرعت جریان انتخاب می‌شود. از طریق اندازه‌گیری سرعت به طور میانگین از 15 سرعت نقطه‌ای از کف رودخانه‌ها تا سطح آب در مراکز مختلف استفاده گردید. همچنین، در طول بزه 50 متری شش نیم‌سرعت به فواصل یکدیگر 12 متری از افزایش محور محور اصلی رودخانه‌گیماسب شده. برای برداشت شیب بانده و

سطح مقطع رودخانه یک دستگاه ترازیبی به کار رفته.

اندازه‌گیری قطر مشخص مواد رسوبی در رودخانه توسط روش ولمن (13) تغییر گردیده که با این اساس مقادیر d_{50} از $64.3 	ext{ mm}$ تغییر می‌یابد. در بررسی مسئله مقاومت در برای بررسی، وزن ذرات مهم‌ترین سر را دارد. بنابراین، هر چه قطر ذرات زیادتر باشد، مقادیر مقاومت در برای بررسی جریان بیشتر خواهد شد. در این پژوهش به پایگاه از مراجع هیدرولیک (7). قطر D_{50} عنوان قطر مشخص مواد رسوبی رودخانه گاماسب به عنوان آن با اثبات گردید.

احتراف یکی از قطر در رسوب برای چهار بانده مورد بررسی در رودخانه‌گاماسب می‌باشد.

برای بررسی از پژوهش ماندن برد (7)، استفاده مستقیم از قطر مشخص است. نظر D_{50} با ررا برای کسرهای شنی کنایه نمی‌شود، بنابراین مقدار D_{50} که برای اکتشافات مواد رسوبی (Kg) در هر یک از آن‌ها مورد بررسی شود، که در آن μ_{16} به صورت تخمینی شده است. یک D_{50} تحقیق شده که در آن μ_{16} به صورت $6.8d_{50}$ تمایلی به زیر سرعت بست. در این گزارش در مورد این نتیجه و نتیجه‌گیری‌های اصلی رود گرخ است. که دارای سرعت بندی با قطر متوسط شیب تندازی با صورت دانه‌ای با مشخصه می‌باشد. جدول 2 دانه‌ای اندازه‌گیری شده و محاسبه شده در چهار بازه مورد بررسی در رودخانه‌گیماسب را نشان می‌دهد.

در این پژوهش برای اندازه‌گیری سرعت نقطه‌ای و تعیین نیم‌سرعت از واگذار در سطح نسبی کم‌پراکنده در محققی مختلف هر یک از 24 سطح مقطع رودخانه استفاده گردید. (5) از آن جا که در یک رودخانه ضخامت لایه مرازی تقیبی را برای سرعت جریان انتخاب می‌کنیم. از آنجا که در یک رودخانه، ضخامت لایه مرازی تقیبی برای سرعت جریان انتخاب می‌شود. از طریق اندازه‌گیری سرعت به طور میانگین از 15 سرعت نقطه‌ای از کف رودخانه‌ها تا سطح آب در مراکز مختلف استفاده گردید. همچنین، در طول بزه 50 متری شش نیم‌سرعت به فواصل یکدیگر 12 متری از افزایش محور محور اصلی رودخانه‌گیماسب شده. برای برداشت شیب بانده و

$H = \frac{\delta}{\theta} = \frac{1}{\theta} \left(1 - \frac{d_{50}}{D_{50 \text{max}}} \right)$
جدول ۱. دامنه پارامترهای اندام‌گیری شده برای ۱۴۰ روختانه شنی خارج از ایران در شرایط جریان یکنواخت

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>دامنه تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_m (m/s)</td>
<td>۰/۲۵-۳/۸</td>
</tr>
<tr>
<td>W (m)</td>
<td>۲/۰-۷/۸</td>
</tr>
<tr>
<td>h (m)</td>
<td>۰/۲-۲/۵</td>
</tr>
<tr>
<td>d_{50} (mm)</td>
<td>۰/۲-۱۸/۰</td>
</tr>
<tr>
<td>S</td>
<td>۰/۰۰۰۱-۰/۴۵</td>
</tr>
</tbody>
</table>

جدول ۲. دامنه پارامترهای اندام‌گیری شده در چهار بانه از روختانه گاماسپای (d$_{84}$ = ۲۲/۴۰۱۰ میکرون) در شرایط جریان یکنواخت

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>دامنه تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>h (m)</td>
<td>۰/۱۸۳-۰/۵۵</td>
</tr>
<tr>
<td>u_m (m)</td>
<td>۰/۰۱-۱/۹</td>
</tr>
<tr>
<td>W (m)</td>
<td>۵/۰-۱۳</td>
</tr>
<tr>
<td>A (m2)</td>
<td>۱/۸۵-۳/۷۶</td>
</tr>
<tr>
<td>Q (m3/s)</td>
<td>۱/۲۰-۵/۶</td>
</tr>
<tr>
<td>Fr</td>
<td>۰/۰۱-۰/۷۷</td>
</tr>
<tr>
<td>S</td>
<td>۰/۱۲۱-۰/۱۶۹</td>
</tr>
<tr>
<td>S_f</td>
<td>۰/۰۰۵۴-۰/۰۰۶۹</td>
</tr>
<tr>
<td>u_{max} (m/s)</td>
<td>۰/۶۲۲-۱/۶۱۵</td>
</tr>
</tbody>
</table>

در این پژوهش فرض می‌شود:

1. اثر پوشش گیاهی در دریاچه‌های روختانه قابل گشت باشد.

2. روختانه‌ها بدون موانع رایج در بستر جریان مانند تخته سنگها و شکل‌های بستر روختانه‌های شنی نظر ویژه‌ی هیستم را گسترش می‌دهند.

3. روختانه‌ها و پایه‌های میل مورد بررسی از لحاظ انتقال رسوب و فرسایش در تعریف می‌باشند. هنگامی که اندام‌گیری گاماسپای شده در ۱۴۰ روختانه با بستر شنی در کشورهای ذکر شده (۲) در فرآیند، شامل عمق متوسط جریان، فاصله میانه در رسوب، سرعت متوسط جریان، شیب روختانه و عرض روختانه به همراه پارامترهای هیدرولیکی مانند عدد فرود، پارامتر B تعیین می‌شود. بنابراین، B به پراکنش داده می‌شود:

\[u = \frac{(\delta - 0)u_{max}}{4.48}\delta \]

که در اینجا ضخامت های جدا به جای B و اندام‌گیری δ به صورت زیر تعیین می‌شود:

\[\delta = \int_{0}^{h} \left(1 - \frac{u}{u_{max}} \right) dy \]

\[\theta = \int_{0}^{h} \frac{u}{u_{max}} \left(1 - \frac{u}{u_{max}} \right) dy \]

۲۲
فاکتور شکل (h) اعمال شده است، در حالت که تأثیر فاکتور تغییر زیر (7/8) در نظر گرفته نشده است. در معادلات ارائه شده رابطه 2، تأثیر در عامل معیار شکل و ضریب تغییر زیر (7/8) در نظر گرفته شده است. عامل معیار (h) 3 بند در نظر گرفته شده است. در معیار شکل و ضریب تغییر زیر (7/8)، بدون در نظر گرفتن فاکتور شکل ارائه شده است.

همانگونه که تاثییج جدول 3 دریافت می‌شود، در هر چهار معادله ضریب تبین تقریبی یکسان است، و عرض از مبدأ جدول 3 معادله ضریب و یکسان نمی‌شود. اگرچه تأثیر فاکتور محله در شیب معادله رگرسیون برای 1 بیشتر از تأثیر ضریب تغییر زیر در معادله رگرسیون 4 است (این موضوع در نواره به یک رشته حوزه آزمایش و مواد نظر و تأثیر برخی عوامل از ادوار گیری نسبت به آزاد شده). و لیکن به طور کلی می‌توان نتیجه گیری کرد که اثر فاکتور محله (h) و ضریب تغییر زیر (7/8) در پیش بینی مقدار در برای جریان در معادله‌های ممکن قابل گفتن است.

در ادامه، تلاقی شد معادله‌های نمایی که در آنها افزون برابر

\[
\frac{h}{k_s} = a + b
\]

(اف) معادله‌های نمایی

معادله‌های که در آنها مقدار در برای جریان نشان داده می‌شود، به صورت قابل توجهی در مراجعه ارائه شده است (7 و 8). هدف این بخش از پژوهش بررسی توانایی پیش‌بینی معادله‌های نمایی با استفاده از داده‌های 140 رودخانه شی واقع در خاک کشور، با در نظر گرفتن تأثیر حضور و یا عدم حضور فاکتور شکل (h) و ضریب تغییر زیر (7/8) می‌باشد. جدول 3 معادله‌های نمایی مختلف به دست آمده توسط 140 رودخانه شی در این پژوهش در با تأثیر گرفتن تأثیر حضور و یا عدم حضور فاکتور شکل و ضریب تغییر زیری نشان می‌دهد. در معادله ارائه شده در رابطه 2، اثر

مقدمات در برای جریان در رودخانه‌های با پرست شی

شیلدز و فاکتور شکل به منظور گسترش و پرپرسی

معادله‌های مقدار در برای جریان به کار می‌رود. پارامتر

شیلدز به صورت [4\(\sigma_s\delta\)] \(\gamma = \frac{\delta}{h^2}\) تعیین می‌شود که در حالت جریان یکنواخت نشان بررسی برادر

\(\gamma = \frac{\delta}{h^2}\) است. \(\delta\) می‌تواند میلی‌سانتی‌متر باشد. پارامترهای دیگر قیاس تعیین شده است.

مقدار عریض داده‌ها برای هر معادله مورد

بررسی استفاده از معادله رگرسیون به صورت زیر است:

\[
\hat{y} = b + a x
\]

که در آن \(\hat{y}\) مقدار پیش‌بینی شده مقدار در برای جریان توسط یک معادله مربوط به معادله در برای جریان توسط معادله \(a\) و \(b\) تابع خاصی و \(R^2\) از مبدأ معادله رگرسیون است. به‌طوری که هدف استفاده \(a\) و \(b\) در دارایی \(1\) و ضریب تبین \(0\) می‌باشد.

نتایج و بحث

بحث در پاره معادله‌های مقدار در برای جریان و مدل‌الزی

توسعه آنها را می‌توان به شکل زیر دسته‌بندی کرد:

1. مقدمات جریان یکنواخت

الف) معادله‌های نمایی

معادله‌های که در آنها مقدار در برای جریان نشان داده می‌شود، به صورت قابل توجهی در مراجعه ارائه شده است (7 و 8). هدف این بخش از پژوهش بررسی توانایی پیش‌بینی معادله‌های نمایی با استفاده از داده‌های 140 رودخانه شی واقع در خاک کشور، با در نظر گرفتن تأثیر حضور و یا عدم حضور فاکتور شکل (h) و ضریب تغییر زیر (7/8) می‌باشد. جدول 3 معادله‌های نمایی مختلف به دست آمده توسط 140 رودخانه شی در این پژوهش در با تأثیر گرفتن تأثیر حضور و یا عدم حضور فاکتور شکل و ضریب تغییر زیری نشان می‌دهد. در معادله ارائه شده در رابطه 2، اثر

23
جدول ۳ معادلات نمایی پیشنهادی برای مقاومت در برابر جریان و ضریب خوی برخی برای آنها

<table>
<thead>
<tr>
<th>معادلات</th>
<th>(\sqrt{\frac{I}{f}})</th>
<th>(\sqrt{\frac{h}{d_{50}} \cdot \frac{\sqrt{w}}{F_r}})</th>
<th>(\frac{c}{d_{50}})</th>
<th>(\gamma_{0.2})</th>
<th>(\tau_{*})</th>
<th>(\tau_{\alpha})</th>
<th>(a)</th>
<th>(b)</th>
<th>(R^2)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲.۰۳۶۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۲.۸۶۴۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>۱.۹۹۲۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۲.۲۸۲۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۴</td>
</tr>
</tbody>
</table>

لگاریتمی مؤثر یگان. برای این اساس، معادله زیر برای جریان یکنواخت در رودخانه‌های شنی ارائه گردید:

\[
\sqrt{\frac{I}{f}} = 2.03 \log \frac{h}{d_{50}} + 2.96 F_r + 0.08 \tau_{*} - 0.79 \tau_{\alpha}
\]

\[R^2=0.54\] ۴

لاریج به بهایی‌اند است که مقاومت در برابر جریان را نمی‌توان اندازه‌گیری کرد، بلکه آن را می‌توان از طریق روابطی مانند معادله ۱ محاسبه نمود. باید توضیح داد که شیب و رابطه بین مقاومت در برابر جریان پیش‌بینی شده توسط معادله ۱ است. در حالی که شیب خط رگرسیون (۱/۹۹۱/۹) و عرض از مبدأ خط

جدول ۴ موارد توانایی پیشنهادی برای مقاومت در برابر جریان با در نظر گرفتن عده‌فند و ضریب خوی برخی برای آنها

<table>
<thead>
<tr>
<th>معادلات</th>
<th>(\sqrt{\frac{I}{f}})</th>
<th>(\sqrt{\frac{h}{d_{50}} \cdot \frac{\sqrt{w}}{F_r}})</th>
<th>(\frac{c}{d_{50}})</th>
<th>(\gamma_{0.2})</th>
<th>(\tau_{*})</th>
<th>(\tau_{\alpha})</th>
<th>(a)</th>
<th>(b)</th>
<th>(R^2)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲.۰۳۶۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۲.۸۶۴۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>۱.۹۹۲۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۲.۲۸۲۰</td>
<td>۲.۹۶۶۹۶</td>
<td>۰.۰۸۱۸</td>
<td>۰.۶۲۹</td>
<td>۰.۶۲۹</td>
<td>۰.۷۹۲۸</td>
<td>۰.۶۹۳</td>
<td>۰.۶۹۳</td>
<td>۰.۷۹۲۸</td>
<td>۴</td>
</tr>
</tbody>
</table>

بیشتر از فاکتوریک، ضریب تبدیل زیر و تعیین عرض از مبدا (ثابت تابع لگاریتمی) در پیش‌بینی مقاومت در برابر جریان بررسی می‌شود. همچنین متابعاتی نسبی در اینجا نیز چهار معادله با ملاحظه ضریب فون کارمن (4=0) (۴)، پارامتر شیب‌در و مقدار بحرانی آن (0.۰۳=τ) در نظر گرفته شده است. این مقدار بحرانی یک درصد چهار اینجمن مهندسان عمران آمریکا (ASCE) (۲) تأیید شده است.

با استفاده از معادله ۲ و کاربرد کلبه مقادیر اندازه‌گیری شده در ۱۴۰ رودخانه‌های و به کمک نرم‌افزار SAS مشخص گردید که عدد فرد و نسبت پارامتر شیب در مقدار بحرانی آن برابر

پیش‌بینی مقاومت در برابر جریان در هنگام کاربرد قانون نیمه

۲۴
مقایم در بردار جریان در رودخانهای با پشت شن

رگمون (1981) با استفاده از معادله 7 می‌باشد.

سپس تالش شد که اثر فاکتور شکل، که معمولاً به صورت یک ضریب برای \(h \) در معادله‌های نیمه لگاریتمی ارائه می‌گردد، ضریب بینی به دست آمده در این حالت هیچ تغییری نسبت به معادله 8 نشان نداد. همچنین، در نظر گرفتن هم‌زمان فاکتور شکل به صورت ضریب برای \(h \) و \(m \) به عنوان ضریب برای \(d \) در معادله 8 هیچ تغییری در معادل

ضریب بینی نشان نداد. بنابراین، می‌توان تجربه کرد که

فاکتور شکل و ضریب تغییر دیلی هیچ تأثیری در پیشین

مقایم در بردار جریان در معادله 7 نگارگری می‌شود.

از نظر فیزیکی، عدد فرود مقایم در بردار جریان از

طریق تونسات سطح آزاد تحت تأثیر ضریب قابل طراحی می‌باشد. یک

می‌تواند در رژیم زیر بحراً و فوق بحراً ملاحظه شود (5).

برای عدد فرود کمتر از یک در شرایط جریان پیکنوناخات

تغییرات مقایم در بردار جریان می‌توانند ناشی از دامنه تغییرات

بزرگ‌تر از مقادیر حاصل از کاربرد تابع جهانی تونسات قائم

سرعت است. مثلاً مکان‌گیری دقت برابر هر معادله 8 کا این

هک به طور چشم‌گیری نشان می‌دهد.

نت‌گیری و ناکامی (11) نشان دادند که اختلاف بسیاری بین ساختار

تلالزم دچار شده و سه دستگاه بزرگ و جهان دارد. به گونه‌ای که

برای شرایط بالا, نوسانات تلالزم در نزدیکی سطح آب

برگزاری از مقادیر حاصل از کاربرد تابع جهانی تونسات قائم

سرعت است. با ملاحظه معادله 8 و ضریب بینی آن (54/50) مشخص

می‌شود که این معادله فقط 54/50 از تغییرات مقایم در بردار

جریان را نشان می‌دهد. علت عدم پیش‌بینی بهتر از 54/50

مقایم در بردار جریان را می‌توان در عوامل زیر جستجو کرد:

1. در رودخانه‌های ش款项 لیبی از 10/2012. با

نجه‌ی به دامنه مورد استفاده، تمام عوامل مربوط به تلفات

انریز قابل شناسایی و بینی نیستند (10).

2. فرض یک‌نواختی جریان در رودخانه‌های با شپیت تند در

عده فرود بی‌پایه دلیل تغییرات ما در مقیاس زیر و

شرایط جریان می‌تواند دلایل پایبند نیست.

3. روش‌های موجود برای برآورد سرعت متوسط جریان در

یک نقطه قاچ رودخانه برای شرایط عمق کم و شپیت

زیاد، که از ویژگی‌های رودخانه‌های کوه‌نشین در داده

است، توسیع نیازمند است. بنابراین، کاربرد آنها به طور

چشمانه در خطاهای تصمیم‌گیری و پیش‌بینی مقایم در بردار

جریان مؤثر است.

\[
\frac{h}{k_S} = \frac{h}{k_S} \quad \text{با} \quad \frac{h}{k_S} < 0.25
\]

\[
\frac{h}{k_S} = \frac{h}{k_S} \quad \text{با} \quad \frac{h}{k_S} > 0.25
\]
با یک در رابطه، به طور همزمان در برآورده‌سیر سرعت بررسی بررسی گردد. نتایج (جدول 5) نشان داد که در نظر گرفتن همزمان فاکتور در شکل و ضریب تغییر در معادله 2 تأثیری در پیشینی مقاومت در بررسی جریان دارد. بنابراین، می‌توان نتیجه گرفت که تأثیر فاکتور در شکل و ضریب تغییر در بررسی جریان غیر یکنواخت. که در اساس نیبر در سرعت جریان بنا شده است، قبل کادفانت بوده، حذف آنها اثری در نتایج پیشینی مقاومت در برای جریان جنواهی داشت.

با به کارگیری فنش مشخصات لا زا مزرعه و روشه‌گاماسی پیشینی سرعت اندازه‌گیری شده در روشه‌گاماسی پیشین. اختلاف مقاومت در بررسی دو روش فوق در نمای موارد کمتر از (جدول 9) است (جدول 9).

سرعت در ناحیه داخلی لا زا مزرعه متغیر. با تغییر ضریب 2/50 به 1/40 تغییرات چشمه‌گیری در سرعت بررسی هزار حاصل از روشه‌گاماسی دیده می‌شود. از سوی دیگر، روشه مشخصات لا زا مزرعه برای محاسبه سرعت بررسی به مقدار جا به جای خطر بررسی در ناحیه حساب نیست و هر تغییر در ضریب فقط ذره، تغییر محوجسی در سرعت بررسی ایجاد نمی‌کند. به طور می‌رسد یک چندین تجربی موضعی از تنش بررسی بسته، در مقایسه با روشهای مشابه در کنترل هیدرولیک، به طور چشمه‌گیری در هیدرو پیشینی پیدا می‌شود.

مانند مقاومت در بررسی جریان و انتقال رسوب مفید واقع شود و هزینه اقتصادی پرورش را توجه نماید.

بر پایه نیبرها اندازه‌گیری شده سرعت در محور روشه‌گاماسی با استفاده از فرمول انتخاب مدل بهینه در نرم‌افزار SAS عدد فرود و نسبت $\frac{u}{C_0}$ (نسبت پارامتر شیلدز) 4. تخمین سرعت بررسی با استفاده از روش گردانی فشار

\[u = \sqrt{\frac{gS_h}{C_0}} \]

یک منبع برای خطا و انحراف مقادیر پیشینی شده مقاومت در بررسی جریان از مقدار محاسبه شده این توزیع معادله 1 است.

با حدود $\frac{\sigma}{\mu}$ نهایی عدد رشد برای تغییر

نیبر های افزایشی در favre نشانه مقدار سرعت در بررسی جریان کاهش می‌یابد. در تئوری، مناسبترین معادله لگاریتمی برای جریان پیک‌نکاول معادله 8 است. که کاربرد آن برای حدود $9/7 < \frac{\sigma}{\mu}$ قابل توصیه می‌باشد.

2. مقاومت جریان غیر یکنواخت در این بخش با استفاده از نیبرها سرعت اندازه‌گیری شده در روشه‌گاماسی، آخر فاکتور سوال، ضریب تغییر در زیربودی و روشه گاماسی سرعت بررسی براساس معادله 1 بررسی می‌گردد. نتایج حاصل از این بهبود برای پایه 17 نیبر در سرعت اندازه‌گیری شده در مقاطع مختلف روشه‌گاماسی استوا است. برای 17 نیبر در سرعت اندازه‌گیری شده در دبی، انتخاب بر پایه برازش لگاریتمی داده‌های سرعت در ناحیه داخلی لا زا مزرعه متغیر. با تغییر ضریب 0.87 به 0.62 تغییرات چشمه‌گیری در سرعت نشان داده می‌شود. از سوی دیگر، روشه مشخصات لا زا مزرعه برای محاسبه سرعت بررسی به مقدار جا به جای خطر بررسی در ناحیه حساب نیست و هر تغییر در ضریب فقط ذره، تغییر محوجسی در سرعت بررسی ایجاد نمی‌کند. به طور می‌رسد یک چندین تجربی موضعی از تنش بررسی بسته، در مقایسه با روشهای مشابه در کنترل هیدرولیک، به طور چشمه‌گیری در هیدرو پیشینی پیدا می‌شود.

مانند مقاومت در بررسی جریان و انتقال رسوب مفید واقع شود و هزینه اقتصادی پرورش را توجه نماید.

بر پایه نیبرها اندازه‌گیری شده سرعت در محور روشه‌گاماسی با استفاده از فرمول انتخاب مدل بهینه در نرم‌افزار SAS عدد فرود و نسبت $\frac{u}{C_0}$ (نسبت پارامتر شیلدز)
جدول 5 اثر ضریب تغییرات زیری بر سرعت پری (بررسی متر بیشتر) بدون در نظر گرفتن عامل شکل (نمره‌های 1 تا 12) و با در نظر گرفتن عامل شکل (نمره‌های 13 تا 24)

<table>
<thead>
<tr>
<th>d_{54}</th>
<th>$2d_{54}$</th>
<th>$3/d_{54}$</th>
<th>$3/2d_{54}$</th>
<th>$5/1d_{54}$</th>
<th>نمره‌ریخت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1</td>
</tr>
<tr>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>2</td>
</tr>
<tr>
<td>0.188</td>
<td>0.188</td>
<td>0.188</td>
<td>0.188</td>
<td>0.188</td>
<td>3</td>
</tr>
<tr>
<td>0.094</td>
<td>0.094</td>
<td>0.094</td>
<td>0.094</td>
<td>0.094</td>
<td>4</td>
</tr>
<tr>
<td>0.108</td>
<td>0.108</td>
<td>0.108</td>
<td>0.108</td>
<td>0.108</td>
<td>5</td>
</tr>
<tr>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>6</td>
</tr>
<tr>
<td>0.074</td>
<td>0.074</td>
<td>0.074</td>
<td>0.074</td>
<td>0.074</td>
<td>7</td>
</tr>
<tr>
<td>0.120</td>
<td>0.120</td>
<td>0.120</td>
<td>0.120</td>
<td>0.120</td>
<td>8</td>
</tr>
<tr>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>9</td>
</tr>
<tr>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>10</td>
</tr>
<tr>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>11</td>
</tr>
<tr>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>12</td>
</tr>
<tr>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>13</td>
</tr>
<tr>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
<td>14</td>
</tr>
<tr>
<td>0.116</td>
<td>0.116</td>
<td>0.116</td>
<td>0.116</td>
<td>0.116</td>
<td>15</td>
</tr>
<tr>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>16</td>
</tr>
<tr>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>17</td>
</tr>
<tr>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>18</td>
</tr>
<tr>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td>19</td>
</tr>
<tr>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>20</td>
</tr>
<tr>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>21</td>
</tr>
<tr>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>22</td>
</tr>
<tr>
<td>0.056</td>
<td>0.056</td>
<td>0.056</td>
<td>0.056</td>
<td>0.056</td>
<td>23</td>
</tr>
<tr>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>24</td>
</tr>
</tbody>
</table>
جدول ۶ ویژگی‌های پارامترهای هیدرولوژیکی اندازه‌گیری و محاسبه شده در رودخانه گاماسیاب

<table>
<thead>
<tr>
<th>شماره</th>
<th>نیروی وزن</th>
<th>Fr</th>
<th>(u_m) (m/s)</th>
<th>W (m)</th>
<th>A (m²)</th>
<th>Q (m³/s)</th>
<th>Fr</th>
<th>(\delta_{s})</th>
<th>(\theta)</th>
<th>(u_{*}) (m/s)</th>
<th>(u_{*}) (m/s)</th>
<th>(u_{*}) (m/s)</th>
<th>(S_{f})</th>
<th>(u_{\max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۸۵۶</td>
<td>۰/۵</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱۱</td>
<td>۰/۵</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۸۶۳</td>
<td>۰/۱</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱۱</td>
<td>۰/۱</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۷۱۱</td>
<td>۰/۳</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱۱</td>
<td>۰/۳</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۷۱۱</td>
<td>۰/۷</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱</td>
<td>۰/۷۱۱</td>
<td>۰/۷۱۱</td>
<td>۰/۷</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
<td>۰/۶۴۴</td>
</tr>
</tbody>
</table>

\[Fr = \frac{u_{\max}}{\sqrt{gh}} \]

در معادله ۱۱ سرعت حداکثر جریان واقع در سطح آب \(u_{\max}\) سرعت سرعت برخشی \(u\) و شتاب ناقل \(g\) می‌باشد. همچنین مقدار سرعت برخشی \(u\) و طرف چپ معادله فوق از طریق روش مشخصات لایه مرزی تعیین شده است. ویژگی اصل معادله ۹ استفاده از متغیرهای کلی در سمت راست، برای تعبیه پارامترهای موضوعی سمت چپ است. با استفاده از کاربرد معادله ۹ محدود به دامنه داده‌های اندازه‌گیری شده در جدول ۲ می‌باشد. بنابراین، برای استفاده از آن در خارج از این دامنه لازم است معادله ۹ توسط مجموعه داده‌های اندازه‌گیری شده دیگری و استنیج شود.

\[\sqrt{Fr} = \frac{1}{\kappa} \ln \frac{h}{d_{g4}} + 6.894Fr - 4.837 \left(\frac{\tau_{e}}{\tau_{c}} \right) + 2.248 \]

ضریب تیین این معادله \(R_{s}^{2} = ۰/۷۰\) است. لازم به یادآوری است برای جلوگیری از حشره هپیستگی ساختاری بین طرف چپ و راست معادله فوق، مقادیر \(\tau_{e}\) به ترتیب به صورت زیر تعیین شد:

\[\tau_{e} = \frac{hS_{f}}{\left(\frac{\rho_{s}}{\rho} - 1 \right) d_{g4}} \]
مقاومت در برابر جریان در رودخانه‌های با بافت سنگ

3.

مقاومت‌های نمایی توانایی لازم را برای پیش‌بینی مقاومت در برابر جریان ندارند و این ضعف نمی‌تواند با کاربرد فاکتور شکل و ضریب تبدیل زیر به‌وجود ببرد.

4.

بر اساس بررسی موضوعی توزیع سرعت جریان غیر یکنواخت با استفاده از توری‌های بالا می‌باشد. تأثیر فاکتور شکل و ضریب تبدیل زیری در محاسبه سرعت نشان می‌دهد. در نتیجه مقاومت در برابر جریان قابل توجهی بیشتر پیش‌بینی می‌شود.

5.

تغییر سرعت بررسی با استفاده از مشخصات لایه مزین بدل و به‌واسطه نداشتن به سطح مرجع، مناسب‌تر از روش

کلاسیکی است.

6.

پیش‌بینی نمایی متفاوت در برابر جریان توسط مقاومت‌های نمایی و نمای لگاریتمی در وضع موجود، توجه بیشتری به پرتوهای برای شاخات پارامترهای مؤثر در رودخانه‌های سنگی می‌طلبد.

نتیجه‌گیری

1.

مقاومت‌های پیشنهادی مقاومت در برابر جریان غیر یکنواخت (8) و غیریکنواخت (9) نشان می‌دهد که نیازی به تعیین عبارت داخل لگاریتمی مقدار توزیع جهانی سرعت توسط فاکتور شکل و یا ضریب تبدیل زیری نیست.

2.

عدت فرود و نسبت بارامتر شیلدز به مقدار بحرانی آن از پارامترهای مؤثر تغییر شتاب لگاریتمی توزیع سرعت، عامل 8 و معادله 9 می‌باشد.

متابع مورد استفاده

1.

فرشی، س. ح. 1380. بارورد مقاومت جریان غیر یکنواخت در رودخانه‌های سنگی حالت خاص: رودخانه‌های گاماسیاب.

2.

3.

4.

5.

6.

7.

8.

9.

10.