بررسی تغییرات غلظت آترازین در یک خاک رس سیلیتی و واسنجدی مدل 2-PRZM

مفهوم نوشادی، سیف الله امین و نوروز ملکی

چکیده

استفاده روزانه از علله‌کش‌هایی مانند آترازین، نگران‌هایی را در خصوص آلودگی خاک و آب‌های زیرزمینی ایجاد کرده است. پژوهش‌ها حاضر در مزرعه آزمایشی دانشکده کشاورزی دانشگاه شیراز روی خاک سری دانشکده صورت گرفت و تغییرات غلظت و حركت آترازین را در عمق‌های مختلف خاک و در زمان‌های مختلف در طول دوره رشد بررسی نموده است. طی پنجین، توانست آلودگی خاک و آب‌های زیرزمینی در اثر آترازین بررسی، و مدل 2-PRZM برای شیمی‌سازی غلظت آترازین ارزیابی شده است. آزمایش در یک مزرعه در سطح با سه پلاط به ابعاد 1140 سانتی‌متر در 204 متر مربع انجام شده و در هر پلاط آترازین به مقدار 3/5 kg a.i./ha به کار رفته است. برای انسداد‌گیری غلظت آترازین در خاک طول هشتم رشد، نمونه‌های خاک از عمق‌های 10000 سانتی‌متر از 3 سانتی‌متر در 10 سانتی‌متری، در هفت زمان مختلف جمع‌آوری گردید.

داده‌های به دست آمده نشان داد که غلظت آترازین با کاهش زمان در پروپتی خاک کاهش می‌یابد. به طوری که حداکثر عمق‌کی که آترازین در آن ردابی گردید، 50 سانتی‌متر بود. پارامترهای آماده شامل CRM و EF و EMSE و ME برا متقابلی داده‌های مشاهده شده و پیش‌بینی شده توسط مدل 2-PRZM با استفاده گردید. به روش کلمه داده‌ها در مه زمانها و غلظت‌های خاک به نسبت PRZM-2 از مدل 2-PRZM برای شیمی‌سازی حرفه آترازین در خاک و آلودگی آب‌های زیرزمینی استفاده کرد.

واژه‌های کلیدی: آترازین، مدل 2-PRZM، شیمی‌سازی

1. به ترتیب استادیار و استاد آپاری دانشکده کشاورزی، و استادیار شیمی دانشکده علوم دانشگاه شیراز
مواد و روش‌ها

این پژوهش در دانشکده کشاورزی دانشگاه شیراز واقع در 15 کیلومتری شمال شیراز با ارتفاع 1810 متر از سطح دریا و در یک مزرعه در وسط صورت گرفت. پیش از کاشت، ویژگی‌های خاک مانند اسیدیت، pH (OM)، مواد آلی، الکتریت، تعداد کاتیونی (CEC) و ویژگی‌های الکتریکی عصاره، اشباع خاک (EC) و هیدرولوژی اشباع خاک (Kc) (روش گلف) تعیین گردید. گردید. به ترتیب در اکثر نقاط داده‌های به ابعاد 19×12×120 متر مربع انجام گردید. این سه تکرار با 3 متغیر مشخص شده است. برای آبیاری نیاز از سیستم آبیاری بازی‌ای ثابت استفاده شد. آبیاری در تاریخ‌های 18 خرداد 2019 و 7 بسته شد. میزان عصاره‌گیری حاکی از گردید. مقدمه

مواد شیمیایی مانند آفت‌کش‌ها که در کشاورزی به کار می‌رودند یک منبع آلوگی خاک و آب‌های زیرزمینی می‌باشند. 25 و 26. با توجه به مصرف روزانه این مواد (یا ویژه آفت‌کش‌های که به خاک انگرند) می‌شوند نهایی بسیاری در مورد آلوگی ناشی از کاربرد آنها اجداد گردیده است. 2-chloro-4-ethylamino-6-isopropylamino-3-triazine (s-triazine) یک عفون‌کش انتخابی است که معمولاً برای کنترل عفون‌های هرز پهن برگ در مزارع ذرت به کار می‌رود. 24 عفون‌کش آتارزین از نظر بی‌پایداری در محیط خاک در حد متوسط است (24). بنابراین، می‌توانیم با آلوگی محیط زیست گرد. در تعیین حركت آفت‌کش‌ها در خاک، عوامل مانند بافت خاک، استحکام خاک، ظرفیت زراعی، مقدار آب خاک، ضریب تأخیر (Retardation factor) یا RF تأثیر می‌گذارد. این بافت به خاک، هدایت هیدرولوژیکی و ماده آلی خاک مؤثر است و به این معناست که این بیشتر نسبت به آنها باید تحت‌اقدا ماده آلی خاک مهم‌ترین آنها می‌باشد (16). آزمایش‌های لاپسیمتری بومی (1) نشان داد که آتزراین در خاک لوم سیلیکا بیشتر از خاک شنی نفوذ می‌کند. چون در خاک لوم سیلیکا ظرفیت تکه‌داری آب بیشتر بوده و سرعت نفوذ نیز کمتر می‌باشد. بنابراین، آتزراین زمان بیشتری برای اب در تبادل است. در نتیجه می‌توانیم وارد فاز ملایم خاک شده و در دراز مدت ابعاد حاکی حکمران کند. در یک گروه‌بندی برای قابلیت حکمران عفون‌کش‌ها در خاک‌های مختلف، عفون‌کش‌ها به پنج گروه تقسیم شدند. گروه 1: گروه کمترین و گروه بیشترین قابلیت حکمران صورت گرفت. به طور میانگین 50% می‌بایست 11 همچنین، پژوهش پیر و ویر (19) نشان داد که آتزراین در یک خاک شنی RF 48
<table>
<thead>
<tr>
<th>ρ (g/cm³)</th>
<th>Kₜ (cm/h) × 10⁶</th>
<th>'EC (ds/m)</th>
<th>CEC (cmol/kg)</th>
<th>pH</th>
<th>OM (g/kg)</th>
<th>PWP (%)</th>
<th>FC (%)</th>
<th>سیلیت رس (%)</th>
<th>شیشه</th>
<th>بات</th>
<th>عمق (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/46</td>
<td>0.4</td>
<td>0.8</td>
<td>0.3</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/43</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>45</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/42</td>
<td>0.4</td>
<td>0.8</td>
<td>0.5</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/41</td>
<td>0.4</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/40</td>
<td>0.4</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/43</td>
<td>0.4</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/42</td>
<td>0.4</td>
<td>0.8</td>
<td>0.9</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/41</td>
<td>0.4</td>
<td>0.8</td>
<td>0.10</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/40</td>
<td>0.4</td>
<td>0.8</td>
<td>0.11</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/43</td>
<td>0.4</td>
<td>0.8</td>
<td>0.12</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/42</td>
<td>0.4</td>
<td>0.8</td>
<td>0.13</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/41</td>
<td>0.4</td>
<td>0.8</td>
<td>0.14</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>1/40</td>
<td>0.4</td>
<td>0.8</td>
<td>0.15</td>
<td>0.6</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
<td>SiC</td>
<td>100-200</td>
<td></td>
</tr>
</tbody>
</table>

1. هم‌پایان‌های فوک مایکلیک‌ها نتایج سنجش‌های ID
2. هدایت الکتریکی عصاره ایجاد خاک

- قاچاق گریه Tree 49

استخراج آترازین از خاک

نمونه‌های خاک که قبلی در دمای 120-200 درجه سانتی‌گراد شده بود، در هواي طبیعی از حالته انجماد خارج و سپس از الک و میله‌های بور در خاک رد شده و 50 گرم از خاک رد شده از الک با 150 میلی‌لیتر منوی مارک مخلوط با خلوص 99/8/مخلوط، و به مدت 2 ساعت ناکام داده شد (توده‌سازک) را به آتش برد. پس از رساندید، برای 25 دقیقه در این درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت 40°C/دقيقة درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت 80°C/دقيقة درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت 300°C/دقيقة درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت 100°C/دقيقة درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت 50°C/دقيقة درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت 10°C/دقيقة درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت 0°C/دقيقة درجه حرارت نگهداری گردید. پس از این مدت، دماستون به سرعت -10°C/دقيقة درجه حرارت نگهداری گردید.

- آزمایش‌گریه GAZI

کرومتوگرافی گازی (Gas chromatography) یا GC برای تجزیه مقداری آترازین در نمونه‌ها از دسته‌بندی کرومتوگرافی گازی استفاده می‌شود. استفاده GC می‌تواند برای این آزمایش و استاندارد گردد. سیستم GC از نوع 17-10 و پلی استاتیک یک مخلوط می‌باشد.
در داخل و زیر منطقه ریزش شیب‌سازی می‌کند (3). این عمل آندوم‌گی باقی نهایی از مواد شیمیایی (به ویژه آفت‌کش‌ها) را، که در خاک با روی بزرگ‌گیاه پاشیده شده است، شیب‌سازی می‌کند. این امر با استفاده از این روش می‌توان گل‌فست مواد شیمیایی در پلو فلک خاک را در زمان‌های مختلف اکتشاف‌گیری (Advection and dispersion) برای تعیین فقیر دلتا داده‌های (Model efficiency) EF بر اساس مقادیر آن یک است. و هنگامی این مقادیر به دست آید که داده‌های شیب‌سازی شده و مشاهده شده با هم برای باشد. هدف اصلی برای پرداخته‌های شیب‌سازی شده و مشاهده شده (Relative root mean square error) RMSE صفر است. و هنگامی رخ می‌دهد که بین مقدار داده مشاهده شده و شیب‌سازی شده اختلاف وجود نداشته باشد. اشکال است که هرچه کوچک‌تر باشد، شیب‌سازی دقت‌تر صورت می‌گیرد.

CRM پارامتر (Coefficient of residual mass) CRM بین داده‌های دهندگی خطا در توزیع همه مقداری شیب‌سازی شده در بر پای همه مقادیر اندام‌گیری شده (بدون در نظر گرفتن ترتیب اندام‌گیری‌ها) است. مقادیر مقدار برای این پارامتر تنشان نبوده چگونگی در توزیع داده‌های شیب‌سازی شده نسبت به داده‌های اندام‌گیری شده است.

پارامتر (Maximum error) ME نشان دهنده خطای حداکثر خطای بین داده‌های اندام‌گیری شده و شیب‌سازی شده است. حداکثر مقدار این پارامتر صفر است. که نشان دهنده اختلاف میان زوج داده‌های مشاهده شده و شیب‌سازی شده می‌باشد.

نتایج و بحث

در همه تکرارها حداکثر عمقی که آتشفش دیده‌ای شد، عمق
بررسی تغییرات غلظت آترازین در یک خاک رس سیلس و واسطه مدل ۲

ماده تغییرات مربوط اول

تجربه آب یافته در خاک به طور کلی از معادله‌ای به شکل زیر پیروی می‌کند (۱۸):

\[C = C_0 e^{-kt} \]

که:

\[C = \text{غلظت آترازین در زمان} \ t \ (\text{mg/kg}) \]
\[C_0 = \text{غلظت آترازین در زمان صفر} \ (\text{mg/kg}) \]
\[k = \text{ضریب تابیه که نشان دهنده سرعت تجزیه آترازین است} \]

(۱)

ضرایب معادله فوق برای این آزمایش عبارت است از:

\[C_0 = 15.27 \ \text{کم} = 0.05 \ \text{cm} \quad \text{در} \ t = 0 \]
\[C_0 = 15.13 \ \text{کم} = 0.05 \ \text{cm} \quad \text{در} \ t = 0 \]
\[C_0 = 8.50 \ \text{کم} = 0.05 \ \text{cm} \quad \text{در} \ t = 0 \]

یک راه مقیاس برای این تجزیه آب‌آفتک‌ها و مقایسه یانسن، تجزیه آن‌ها، تعیین نیمه عمر آب‌آفتک است. که می‌توان از رابطه زیر آن را محاسبه کرد (۱۶):

\[t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k} \]

از معادله ۹ با توجه به مقادیر در معادلات ۶ و ۷، عمر آترازین در عمده‌های ۱۰۰-۱۰۰۰، ۱۰۰۰-۲۰۰۰ و ۲۰۰۰-۳۰۰۰ سانتی‌متری به ترتیب برابر با ۱/۵ و ۷/۵ و ۲/۵ زیر دست می‌آید. به طور کلی تجزیه آب‌آفتک‌ها با افزایش دما و زیادت می‌شود (۱۳ و ۱۴). در واقع افزایش دما در معادله نمایی بر ک در معادله ۵ اثر می‌گذارد. با توجه اینکه (۳۰) نشان‌داد که افزایش دما می‌تواند نیمه عمر آب‌آفتک‌ها را از ۱۲۴ به ۱۶ روز بررسی‌انداز. بنابراین افزایش دما می‌تواند نیمه عمر آب‌آفتک‌ها را با حدود ۲/۵ روز کم کند. در این ازمایش، بنا بر رابطه کاربرد آترازین در خاک تغییرات به طور کلی و در نهایت به تهیه غلظت آب‌آفتک‌ها و در اثر زمان در یک خاک به حالت مناسب می‌رسد. بنابراین می‌توان به تجزیه کلی آب‌آفتک‌ها با مدت زمان در خاک به کار رود. این معدال‌ها با استفاده از روش‌های معرفی شده در روش‌نامه برای یک تجزیه غلظت آترازین با زمان در خاک می‌باشد.
شکل 1: غلظت‌های آتروزین مشاهده شده و شباهت‌های شده به وسیله مدل 2PRZM-2 در سال 1378 (الف) 22 تیر، (ب) 28 تیر، (ج) مرا داده (د) 12 مرا داده، (ه) 19 مرا داده، و (ز) 26 مرا داده و (ز) 13 شهریور.
prüz-تسیابیت‌های آنترازین در پرورش خاک در تیمارهای مختلف با مقدار صیفکه‌سازی شده، توسط مدل 2
الف) (الف) عمق 0-10، ب) عمق 10-20، ج) عمق 20-30، د) عمق 30-40، د) عمق 40-50 cm

\[
\frac{dC}{dt} = k C^n \Rightarrow C = \left(-K (1-n) + C_0 \right)^{\frac{1}{1-n}} \quad [10]
\]

که:
- غلظت آنترازین در زمان t (خاک mg/kg) = C
- غلظت آنترازین در زمان صفر (خاک mg/kg) = C_0
- زمان پس از کاربرد آنترازین (d)

\[t = 1 \]

شکل 2. مقایسه غلظت‌های آنترازین در پرورش خاک در تیمارهای مختلف با مقدار صیفکه‌سازی شده، توسط مدل 2

معادله توانی

\[\text{معادله توانی به شکل زیر است (10):} \]
معادلات دیگر
همان گونه که پیشتر گفته شد، معادلات ۱۴، ۱۰ و ۱۷ معادلات استاندارد هستند که معمولاً برای تشخیص تغییرات غلظت آتارزین در زمان به کار می‌روند. برای غلظت آتارزین در زمان صفر،

$$C = C_0$$

که: $$C$$ غلظت آتارزین در زمان صفر (mg/kg) است.

ارزش‌های به‌هم‌پیوسته از زیر باید برای معادله‌های مورد نظر بررسی شوند، برای این منظور معادله فوق برای این آزمایشات با استفاده از تابع هورل (Horel function) تهیه واقع شده است:

$$C = \frac{K C_0}{(K_1 + K_2 C_0)e^{K_1 t} - K_2 C_0}$$

که: $$C$$ غلظت آتارزین در زمان (mg/kg) است.

برای تعیین پیچیدگی معادله تجزیه آتارزین با استفاده از معادلات ۱۰، ۱۴ و ۱۷، پارامترهای آماری به شرح جدول ۲ محاسبه گردید. برای بررسی این جدول، از معادلات تنبیه شده برای تجزیه آتارزین در عمک ۱۰۰–۲۰۰ میلی‌متر می‌باشد هر چهار پارامتر آماری معادله هورل به‌هم‌پیوسته از بوده و بعد از آن معادله ۲۱ در مربع دوم قرار می‌گیرد. در عمل ۲۰۰–۱۰۰ عمک مناسب نمی‌باشد.
<table>
<thead>
<tr>
<th>CRM</th>
<th>EF</th>
<th>RMSE</th>
<th>ME</th>
<th>عمق خاک (cm)</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/06</td>
<td>0/95</td>
<td>20/34</td>
<td>1/57</td>
<td>نمایی متربه اول</td>
<td>0-100</td>
</tr>
<tr>
<td>0/07</td>
<td>0/97</td>
<td>17/71</td>
<td>1/01</td>
<td>نمایی</td>
<td>1/200</td>
</tr>
<tr>
<td>0/02</td>
<td>0/96</td>
<td>18/74</td>
<td>1/03</td>
<td>دو نمایی</td>
<td>1/200</td>
</tr>
<tr>
<td>0/08</td>
<td>0/99</td>
<td>9/33</td>
<td>0/59</td>
<td>هورل</td>
<td>0-100</td>
</tr>
<tr>
<td>0/07</td>
<td>0/98</td>
<td>11/84</td>
<td></td>
<td>معادله 22</td>
<td>0-100</td>
</tr>
</tbody>
</table>

نمایی متربه اول	0/01	1/11	0/50	36/85	1/200
0/06	0/76	58/32	1/31	نمایی	200-300
0/01	0/074	13/75	0/74	هورل	0-100
0/01	0/099	13/04		معادله 22	0-100
0/01	0/097	44/75		توانای	200-300

نام مربوط به قانون هنری (K_B) نمایی تجزیه ناشی از نسبت میانگین مقدار CRM و EF، RMSE، ME، و عمیق خاک در 0-100 و 200-300 میلی‌متری، معادلات هورل و 23 از نظر پارامترهای آماری بسیار به هم تندیک می‌باشند. در عمیق 0-200 میلی‌متری، بر اساس پارامترهای ممایلی، و بر اساس RMSE و ME، معادله هورل، و بر اساس پارامترهای CRM و EF، معادله 23 بیشتر است. نتایج در مقاله از مجموعه از معادلات بین برای شده دانست، و 23 از این معادلات 22 و 23 برتری دارند. نتایج 3-8 بهترین معادلات تشکیل کننده تجزیه آتزه‌سنگ را نشان می‌دهد.

واستجوی مدل PRZM-2

با استفاده از داده‌های مشاهده شده برای پارامترهای زمانی و مکانی غلظت آتزه‌سنگ و استنتاج گردید. برای و استنتاج این مدل پارامترهای 23 و 24 ضریب توزیع آفت کش (K_B) نام مربوط به سرعت تجزیه آفت کش (K_B).
زمان پس از کاربرد آترازین (روز)

شکل 3: مقایسه معادلات تشریح کنتنه تجزیه آترازین در خاک: الف (Equation 21) عمق 0-10 cm، ب) عمق 10-20 cm و ج) عمق 20-30 cm. رابطه این معادلات با رابطه این معادلات در تحقیق قبلی (2019) مشابه است (جدول 3).

$$ K_{oc} = \frac{K_d}{F_{oc}} $$

که: K_d ضریب توزیع آفتکش بین خاک و آب (بدون بعد) و K_{oc} مقدار قابل محسوب است.

را برای شخصیت‌های اوربروفوس (Ephrathos) و پریژون (Bentazon) در یک خاک شنی به کار برده، و از نظر کارایی مدل، نتایج حاصل مشابه این پژوهش به دست آوردهند.

پاناسیل نشت آترازین

گروه (8) پاناسیل نشت آفتکش‌ها را بر اساس تیم معم در خاک، حلولی در آب، و ضریب جذب کردن آلی خاک K_{oc} (ج) یا K_d (ب) است
جدول 3. خطر قالبی نشتن افتخال کش‌ها در خاک (8)

<table>
<thead>
<tr>
<th>ضابطه</th>
<th>نیمه عمر ۱ ((t_{1/2}))</th>
<th>حالاتی (1/2 \log K_{oc})</th>
<th>نیمه عمر ۱ ((t_{1/2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیاد</td>
<td>۰/۸</td>
<td>۲/۸</td>
<td>متوسط</td>
</tr>
<tr>
<td>کم</td>
<td>۰/۸</td>
<td>۱/۸</td>
<td>متوسط</td>
</tr>
<tr>
<td>خیلی کم</td>
<td>۰/۸</td>
<td>۰/۸</td>
<td>متوسط</td>
</tr>
</tbody>
</table>

به حالات دیگر نیمه عمر بر حسب روز و حالاتی بر حسب میلی‌گرم در لیتر می‌باشد.

\[t_{1/2} = \frac{F_{oc}}{\text{مقدار کربن آلت خاک}} \]

\[F_{oc} = \text{میانگین مقدار ماده آلت و کربن آلی خاک مورد بررسی} \]

\[\log K_{oc} = \text{مقدار در اروپا/L بیان گردیده} \]

\[K_{oc} = \text{میانگین با رتبیت ۹۵/۵/۱۲ روز و می‌باشد} \]

\[\text{ماتی نیمه عمر در گروه تئاسیسی کم‌تر از می‌باشد.} \]

\[\text{اگر کلار خاک نشتن شده در ابعاد ۴۰۰-۴۰۰-۴۰۰ سانتی‌متر در خاک به ترتیب ۷۷/۶۴ و ۷۷/۶۴ میلی‌گرم در گیل کیلومتر خاک بوده و آلاتی با اتصال به خاک نیز پس از ۵۰ روز از کاربرد آن ۷۳ میلی‌گرم در کیلومتر خاک است.} \]