بررسی تغییرات غلظت آتروزین در یک خاک رس سیلیتی و واسنجی مدل 2

مسعود نوشادی، سیف‌الله امین و نوروز ملکی

چکیده

استفاده روزانه از علقم کشت‌هایی مانند آتروزین، نگران‌هایی را در خصوص آلودگی خاک و آب‌های زیرزمینی ایجاد کرده است. پژوهش حاضر در مزرعه آزمایشی دانشگاه کشاورزی دانشگاه شیراز روی خاک سرد دانشگاه صورت گرفت و تغییرات غلظت و حربک آتروزین را در عمق‌های مختلف خاک و در زمان‌های مختلف در طول دوره رشد بررسی نموده است. در چهارین تناول آلودگی خاک و آب‌های زیرزمینی در آتروزین بررسی، و مدل 2 برای شیپسازی غلظت آتروزین از یک میزان افزایش شد. آزمایش در یک مزرعه دشت با سه بلوط به ابعاد 11×19 متر (394 متر مربع) انجام شده و در هر پالت آتروزین به مقدار 7/5 kg a.i./ha به کار رفته است. برای اندازه‌گیری غلظت آتروزین در خاک در طول فصل رشد، نمونه‌های خاک از عمق‌های 0-100 سانتی‌متر در یک هفته زمان مختلف می‌گردد.

داشتهای به دست آمده نشان داد که غلظت آتروزین یا کاهش شدن در پرداخت خاک کاهش می‌پذیرد. یا طوری که حداکثر عمقی که آتروزین در آن رابطه گردید، می‌تواند به مقدار ماده شکم‌زدایی و CRM و EF، EMSE، ME نسبت خواهد یافت. پرسپشی شده توسط مدل 2، استفاده گردید. که برای کاهش داده‌ها در همه زمان‌های عمق‌های خاک به ترتیب PRZM-2، یا کاهش خاک به میزان 0/2 μg/kg-soil و مدل 2 PRZM-2 از مدل 2 برای شیپسازی حربک آتروزین در خاک و آلودگی آب‌های زیرزمینی استفاده کرد.

واژه‌های کلیدی: آتروزین، مدل 2، شیپسازی

1. به ترتیب استدیار و استاد آیاری دانشگاه کشاورزی، و استادیار شیمی دانشگاه علوم دانشگاه شیراز.
مواد شیمیایی مانند آفت‌کش‌ها که در کشاورزی به کار می‌روند یک منبع آلوگر خاك و آب‌های زیرزمینی می‌باشند (27). 1926 و 26 با توجه به مصرف روزافزون این مواد (به ویژه آفت‌کش‌هایی که به خاک افزوده می‌شوند) نگرانی‌های بسیاری در مورد آلودگی ناشی از کاربرد این مواد به وجود آمد. است. 2-chloro-4-ethylamino-6-isopropylaminos (syzygium) یک عفونی Анتمی است که معمولاً برای کنترل عفونی‌های هرز به درد در مزرعه در بکار می‌رود. (2). عفونی آنتی‌زاین از نظر پاندانی می‌تواند در حد متوسط است (26 و 25). بنابراین، می‌تواند باعث آلودگی محیط زیست گردد.

در تعیین حکم آفت‌کش‌ها در خاک، استاندارد خاک، نیش و شیار، مقدار آب خاک، ضریب تأخیر (Retardation factor) با RF تأثیر می‌گذارد. (28) (OM) pH سطح سطح خاک و رضایت از کالیسراتور، pH (5) تأثیر (EC) تعداد کاتیونی (27) به خاک (روش هیدرورمتری)، قدرت خاکی اشعه انتقال خاک (21) و هدایت الکتریکی (Kc) (روش گلف تعیین گردد. که

در نتیجه ارتباط بیشتر با نشان داد که آفت‌کش‌های آزمایش‌های لاپسیمتری یک (2) از آفت‌کش‌های در خاک لوپنی برای انتقال خاک شنی می‌تواند. این آفت‌کش‌ها در خاک لوم سیلیکاتی بیشتر از خاک شنی نفوذ می‌کند، چون در خاک لوپنی دیگرو فاقد، می‌تواند. برای آب‌شناسی، که آفت‌کش‌های خاکی در خاک را دارد. این آفت‌کش‌های لوپنی برای انتقال خاک به راحتی گردد. (28) (OM) pH سطح سطح خاک و رضایت از کالیسراتور، pH (5) تأثیر (EC) تعداد کاتیونی (27) به خاک (روش هیدرورمتری)، قدرت خاکی اشعه انتقال خاک (21) و هدایت الکتریکی (Kc) (روش گلف تعیین گردد. که

در نتیجه ارتباط بیشتر با نشان داد که آفت‌کش‌های آزمایش‌های لاپسیمتری یک (2) از آفت‌کش‌های در خاک لوپنی برای انتقال خاک شنی می‌تواند. این آفت‌کش‌ها در خاک لوم سیلیکاتی بیشتر از خاک شنی نفوذ می‌کند، چون در خاک لوپنی دیگرو فاقد، می‌تواند. برای آب‌شناسی، که آفت‌کش‌های خاکی در خاک را دارد. این آفت‌کش‌های لوپنی برای انتقال خاک به راحتی گردد. (28) (OM) pH سطح سطح خاک و رضایت از کالیسراتور، pH (5) تأثیر (EC) تعداد کاتیونی (27) به خاک (روش هیدرورمتری)، قدرت خاکی اشعه انتقال خاک (21) و هدایت الکتریکی (Kc) (روش گلف تعیین گردد. که

در نتیجه ارتباط بیشتر با نشان داد که آفت‌کش‌های آزمایش‌های لاپسیمتری یک (2) از آفت‌کش‌های در خاک لوپنی برای انتقال خاک شنی می‌تواند. این آفت‌کش‌ها در خاک لوم سیلیکاتی بیشتر از خاک شنی نفوذ می‌کند، چون در خاک لوپنی دیگرو فاقد، می‌تواند. برای آب‌شناسی، که آفت‌کش‌های خاکی در خاک را دارد. این آفت‌کش‌های لوپنی برای انتقال خاک به راحتی گردد. (28) (OM) pH سطح سطح خاک و رضایت از کالیسراتور، pH (5) تأثیر (EC) تعداد کاتیونی (27) به خاک (روش هیدرورمتری)، قدرت خاکی اشعه انتقال خاک (21) و هدایت الکتریکی (Kc) (روش گلف تعیین گردد. که

در نتیجه ارتباط بیشتر با نشان داد که آفت‌کش‌های آزمایش‌های لاپسیمتری یک (2) از آفت‌کش‌های در خاک لوپنی برای انتقال خاک شنی می‌تواند. این آفت‌کش‌ها در خاک لوم سیلیکاتی بیشتر از خاک شنی نفوذ می‌کند، چون در خاک لوپنی دیگرو فاقد، می‌تواند. برای آب‌شناسی، که آفت‌کش‌های خاکی در خاک را دارد. این آفت‌کش‌های لوپنی برای انتقال خاک به راحتی گردد. (28) (OM) pH سطح سطح خاک و رضایت از کالیسراتور، pH (5) تأثیر (EC) تعداد کاتیونی (27) به خاک (روش هیدرورمتری)، قدرت خاکی اشعه انتقال خاک (21) و هدایت الکتریکی (Kc) (روش گلف تعیین گردد. که

در نتیجه ارتباط بیشتر با نشان داد که آفت‌کش‌های آزمایش‌های لاپسیمتری یک (2) از آفت‌کش‌های در خاک لوپنی برای انتقال خاک شنی می‌تواند. این آفت‌کش‌ها در خاک لوم سیلیکاتی بیشتر از خاک شنی نفوذ می‌کند، چون در خاک لوپنی دیگرو فاقد، می‌تواند. برای آب‌شناسی، که آفت‌کش‌های خاکی در خاک را دارد. این آفت‌کش‌های لوپنی برای انتقال خاک به راحتی گردد. (28) (OM) pH سطح سطح خاک و رضایت از کالیسراتور، pH (5) تأثیر (EC) تعداد کاتیونی (27) به خاک (روش هیدرورمتری)، قدرت خاکی اشعه انتقال خاک (21) و هدایت الکتریکی (Kc) (روش گلف تعیین گردد. که

در نتیجه ارتباط بیشتر با نشان داد که آفت‌کش‌های آزمایش‌های لاپسیمتری یک (2) از آفت‌کش‌های در خاک لوپنی برای انتقال خاک شنی می‌تواند. این آفت‌کش‌ها در خاک لوم سیلیکاتی بیشتر از خاک شنی نفوذ می‌کند، چون در خاک لوپنی دیگرو فاقد، می‌تواند. برای آب‌شناسی، که آفت‌کش‌های خاکی در خاک را دارد. این آفت‌کش‌های لوپنی برای انتقال خاک به راحتی گردد. (28) (OM) pH سطح سطح خاک و رضایت از کالیسراتور، pH (5) تأثیر (EC) تعداد کاتیونی (27) به خاک (روش هیدرورمتری)، قدرت خاکی اشعه انتقال خاک (21) و هدایت الکتریکی (Kc) (روش گلف تعیین گردد. که

در نتیجه ارتباط بیشتر با نشان داد که آفت‌کش‌های آزمایش‌های لاپسیمتری یک (2) از آفت‌کش‌های در خاک لوپنی برای انتقال خاک شنی می‌تواند. این آفت‌کش‌ها در خاک لوم سیلیکاتی بیشتر از خاک شنی نفوذ می‌کند، چون در خاک لوپنی دیگرو فاقد، می‌تواند. برای آب‌شناسی، که آفت‌کش‌های خاکی در خاک را دارد. این آفت‌کش‌های لوپنی برای انتقال خاک به راحتی گردد. (28) (OM) pH S
جدول 1: مشخصات خاک در مزرعه مورد بررسی

<table>
<thead>
<tr>
<th>ρ (g/cm³)</th>
<th>Ks (cm/h) x 10⁻⁶</th>
<th>EC (dS/m)</th>
<th>CEC (cmol/kg)</th>
<th>pH</th>
<th>OM (g/kg)</th>
<th>PWP (%)</th>
<th>FC (%)</th>
<th>بنفت (%)</th>
<th>عمق (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/36</td>
<td>200</td>
<td>0/67</td>
<td>20/8</td>
<td>7/20</td>
<td>1/15</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>1/43</td>
<td>200</td>
<td>0/67</td>
<td>20/8</td>
<td>7/20</td>
<td>1/15</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>1/43</td>
<td>200</td>
<td>0/67</td>
<td>20/8</td>
<td>7/20</td>
<td>1/15</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>1/43</td>
<td>200</td>
<td>0/67</td>
<td>20/8</td>
<td>7/20</td>
<td>1/15</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>1/43</td>
<td>200</td>
<td>0/67</td>
<td>20/8</td>
<td>7/20</td>
<td>1/15</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>1/43</td>
<td>200</td>
<td>0/67</td>
<td>20/8</td>
<td>7/20</td>
<td>1/15</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>1/43</td>
<td>200</td>
<td>0/67</td>
<td>20/8</td>
<td>7/20</td>
<td>1/15</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>10</td>
</tr>
</tbody>
</table>

1. همه برآم‌های فوق مناسبیگی سه تکرار مستند است.
2. هدایت الکتریکی عصاره اشاع خاک.
3. FC= field capacity (gravitational); PWP = permanent wilting point (gravitational); OM = organic matter; Ks = saturated hydraulic conductivity; ρ = soil apparent density; SiCl = silty clay; SiCL = silty clay loam

استخراج آترازین از خاک
نمونه‌های خاک که قبل در دامای ۲۰-۲۵ درجه سانتی‌گراد گرفته بودند، در هوای طبیعی از حالت انجماد خارج و سپس از اینکه 1/12 میلی‌متری عبور داده شد و 50 گرم از خاک را برندگرداند که با 150 میلی‌لیتر مخلوط مرکزلوخلوش/۹۹٪ مخلوط و به مدت یک ساعت تکان داده شد (توضیحات در هنفند و برگنگی) این مخلوط به وسیله پمپ خلا صاف شد و سپس مخلوط آن در دستگاه تبخیر کننده (Rotary evaporator) سرناپم می‌کرد. فاز ارغامیکی باقی مانده با 10 میلی‌لیتر هگنار مرکزلوخلوش/۹۹٪ مخلوط که در کمپیوتر و یا در بهترین شرایط درجهٔ دقت اندازه‌گیری آترازین توسط دستگاه GC برای GC (Gas chromatography) به مقدار ۲۰۰/۱ بوده‌که دقت خوبی داشت.

(Pesticide Root Zone Model) PRZM-2
مدل 2

کرومتوگرافی گازی (Gas Chromatography)
برای تعیین مقداری آترازین در نمونه‌ها از دستگاه کرومتوگرافی گازی انتخاب شد. سپس GC مدل شباهت‌برداری این آزمایش و تست‌گر دهی‌شده. سیستم این GC از نوع ۱۷ با قطر در

49
در داخل و زیر منطقه ریخت شیب‌سازی می‌کنند (3). این مدل آلودگی بالقوه ناشی از مواد شیمیایی (ای player أفتکارها) را، که در خاک با روی برگ گیاهان پاشیده شده است، شیب‌سازی می‌کند. بنابراین، با استفاده از این مدل می‌توان غلظت مواد شیمیایی در روی و داخل خاک را در زمان‌های مختلف اندوزش‌گیری (Advection and Dispersion) مواد شیمیایی در فاصله جذب سطحی شده، مایع و گاز در خاک به وسیله محاسبه همزمان روابطی بین ادغام توزیع گیاه و روابط سطحی، نتیجه‌گیری، تخمین و استوای ریخت گیاه و پخش‌گذاری نمایش داده می‌شود. نتیجه‌گیری کلی نزدیک به سیلوس معادله‌ای مربوط به مواد مایع می‌باشد.

دیگر روش برای پیش‌بینی دقت داده‌های پارامتر (Model efficiency) EF شیب‌سازی شده به کار می‌رود. حداقل پیش‌بینی آن پیک است و همگامی این پیش‌بینی دست می‌آید که داده‌های شیب‌سازی شده و مشاهده شده با هم روابط باشد.

تنش (Relative root mean square error) RMSE پارامتر دهنده اختلاف داده‌های شیب‌سازی شده و مشاهده شده می‌باشد. حداقل پیش‌بینی RMSE صفر است، و همگامی رخ می‌دهد که بین هر زوج داده مشاهده شده و شیب‌سازی شده اختلاف وجود نداشته باشد. اگر بافت که می‌تواند کوچک‌تر باشد، شیب‌سازی دقت‌تر صورت گرفته است.

کوچک‌تر باشد، شیب‌سازی دقت‌تر صورت گرفته است.

پارامتر نشان دهنده خطأ در توزیع همه مقدار شیب‌سازی شده در برای همه مقادیر اندازه‌گیری شده (بدون در نظر گرفتن ترتیب اندازه‌گیری‌ها) است. مقدار صفر برای این پارامتر نشان داده می‌گردد که توزیع داده‌های شیب‌سازی شده نسبت به داده‌های اندازه‌گیری شده است.

پارامتر نشان دهنده خطای مقداری (Maximum error) ME بین داده‌های اندازه‌گیری شده و شیب‌سازی شده است. حداقل مقدار این پارامتر صفر است. همان‌طور که نشان داده می‌باشد، میزان زوج داده‌های مشاهده شده و شیب‌سازی شده می‌باشد.

نتایج و بحث

در همه تکرارها حداکثر عمقی که آتارزین رديسی شد، عمق
بررسی تغییرات غلظت آترانزین در یک خاک رس سیلیک و با استاند 2-3

(First order kinetics) معادله تغییرات مربوط به غلظت آترانزین در خاک به شکل

\[
C = C_0 e^{-kt}
\]

ضریب ثابتی که نشان می‌دهد سرعت تجزیه آترانزین است:

\[dC/dt = kC\]

و جاکتیار غلظت مشاهده شده در زمان t بعد از آن تجزیه گردیده است.

آترانزین در حدود 25 روز از کار بردن آن تا غلظت آترانزین در سطح خاک می‌نشود که با گرفتن دو روز پس از کاربرد آترانزین در خاک به‌دست می‌آید. با t = 20 روز مقدار فکسی کافی نشان داده می‌گردد.

ضریب معادله فوری برای این آزمایش‌ها بر اساس:

\[C_0 = 18.7 \text{ mg/kg}, k = 0.92 \text{ cm}^{-1} \text{ سال}^{-1} \]

تهجی تغییر نسبت به زمان، این تغییرات عمدتاً در غلظت‌های 100-1000 mg/kg در سایه‌های می‌باشند.

یک راه مفید برای بیان تجزیه آفترک‌ها و مقایسه پیامدی تجزیه آنها، تعیین نسبت عمق آفترک کست است. که می‌توان از رابطه زیر آن را محاسبه کرد:

\[t_{1/2} = \frac{2}{k} \text{ سال} \]

از معادله 9، با توجه به مقادیر k در معادلات 6-7، عمق آترانزین در غلظت‌های مختلف از آن در 100-500 سال می‌باشد.

بررسی آترانزین در غلظت‌های مختلف خاک در یک منطقه است. نتایج واقعی نشان داد که افزایش دما و سطح خاک باعث افزایش غلظت آترانزین کرده است. بنابراین، می‌توان گفت که افزایش دما و سطح خاک باعث افزایش غلظت آترانزین در خاک شده‌است.

بنیه حشرات جهت خاک در غلظت‌های مختلف دما و سطح خاک را تحقیق کرده است. نتایج نشان داد که افزایش دما و سطح خاک باعث افزایش غلظت آترانزین کرده است. بنابراین، می‌توان گفت که افزایش دما و سطح خاک باعث افزایش غلظت آترانزین در خاک شده‌است.

بررسی آترانزین در غلظت‌های مختلف خاک در یک منطقه است. نتایج واقعی نشان داد که افزایش دما و سطح خاک باعث افزایش غلظت آترانزین کرده است. بنابراین، می‌توان گفت که افزایش دما و سطح خاک باعث افزایش غلظت آترانزین در خاک شده‌است.

BRZN 2

51
شکل 1. غلظت‌های آترازین مشاهده شده و شیمی‌سازی شده به وسیله مدل 2 PRZM-2 در سال 1378 (الف) 27 تیر، (ب) 28 تیر، (ج) مرداد (د) 12 مرداد، (ه) 19 مرداد، (و) 26 مرداد و (ز) 13 شهریور.
زمان پس از کاربرد آتروازین (روز)

شکل 2. مقایسه غلظت‌های آتروازین در پروفیل چاه در تیمارهای مختلف با مقادیر شبیه‌سازی شده توسط مدل 2 cm (الف) عمک 0-10، ب) عمک 0-20، ج) عمک 0-40، د) عمک 0-60 و ه) عمک 0-80

\[
\frac{dC}{dt} = KC^n = C \left[-K t^{(1-n)} + C_0^{-1/n} \right]^{1/n} \quad [10]
\]

که:
- غلظت آتروازین در زمان (t) در چاه (mg/kg) می‌باشد.
- غلظت آتروازین در زمان صفر (t=0)در چاه (mg/kg) می‌باشد.
- زمان پس از کاربرد آتروازین (d)

معادله توانی

معادله توانی به شکل زیر است (10):
یکی از معادلات پیکرتون-گردن (Pickett-Grimes) به شکل زیر است:

\[C = a e^{bt} t^c \]

که:
\[C = \text{غلظت آتارزین در زمان} \ t \ (mg/kg) \] (خاک)
\[C_0 = \text{غلظت آتارزین در زمان} \ t = 0 \ (mg/kg) \]
\[n = \text{عدد ثابت} \]

ضرایب معادله فوق برای این آماده‌بپاری است از:
\[C_0 = 15.37, K_1 = 0.531, n = 0.273, r^2 = 0.99, 0 - 100 \text{ cm} \]

(11)

\[C_0 = 10.13, K_2 = 0.771, r^2 = 0.94, 100 - 200 \text{ cm} \]

(12)

\[C_0 = 2.50, K_3 = 0.345, n = 0.580, r^2 = 0.99, 200 - 300 \text{ cm} \]

(13)

معادله دو نمایی (Biexponential):
\[C = \frac{K_1 C_0}{(K_1 + K_2 C_0)e^{K_1 t} - K_2 C_0} \]

که:
\[C = \text{غلظت آتارزین در زمان} \ t \ (mg/kg) \] (خاک)
\[C_0 = \text{غلظت آتارزین در زمان} \ t = 0 \ (mg/kg) \]
\[n = \text{عدد ثابت} \]

ضرایب معادله فوق برای این آماده‌بپاری است از:
\[C_0 = 15.37, K_1 = 0.531, K_2 = -0.531, t = 0 \text{ سال} \]

(14)

برای عمق 0-20 سانتی‌متر، اعداد مربوط به غلظت آتارزین در خاک به گونه‌ای است که نماینده این معادله را با آنها برای براش داد. در نتیجه، در این پژوهش معادله فوق برای عمق 0-20 سانتی‌متر به کاربرد نمی‌رود. معادله 14 برای این عمق مناسب‌تر است.

نتایج هورل (Horel function):

(15)

\[C = \frac{K_1 C_0}{(K_1 + K_2 C_0)e^{K_1 t} - K_2 C_0} \]

که:
\[C = \text{غلظت آتارزین در زمان} \ t \ (mg/kg) \] (خاک)
\[C_0 = \text{غلظت آتارزین در زمان} \ t = 0 \ (mg/kg) \]
\[n = \text{عدد ثابت} \]

ضرایب معادله فوق برای این آماده‌بپاری است از:
\[C_0 = 15.37, K_1 = 0.531, K_2 = -0.531, t = 0 \text{ سال} \]

(16)

برای عمق 20-30 سانتی‌متر، اعداد مربوط به غلظت آتارزین در

(17)
بررسی تغییرات غلظت آترازین در یک خاک رس سیلیسی و باستنی‌ساز مدل 2

جدول 2 پارامترهای آماری معادلات تجربی آترازین در خاک

<table>
<thead>
<tr>
<th>CRM</th>
<th>EF</th>
<th>RMSE</th>
<th>ME</th>
<th>عمق خاک (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/6</td>
<td>0/95</td>
<td>20/84</td>
<td>0/7</td>
<td>نمایه‌مرتبه اول</td>
</tr>
<tr>
<td>0/7</td>
<td>0/97</td>
<td>17/71</td>
<td>0/1</td>
<td>نمایه‌مرتبه اول</td>
</tr>
<tr>
<td>0/96</td>
<td>0/96</td>
<td>18/74</td>
<td>0/3</td>
<td>دو نمایه</td>
</tr>
<tr>
<td>0/99</td>
<td>0/99</td>
<td>9/33</td>
<td>0/5</td>
<td>هورول</td>
</tr>
<tr>
<td>0/98</td>
<td>0/98</td>
<td>11/84</td>
<td>0/3</td>
<td>معادله</td>
</tr>
<tr>
<td>0/12</td>
<td>0/84</td>
<td>44/15</td>
<td>2/07</td>
<td>نمایه‌مرتبه اول</td>
</tr>
<tr>
<td>0/76</td>
<td>0/76</td>
<td>54/03</td>
<td>3/31</td>
<td>نمایه‌مرتبه اول</td>
</tr>
<tr>
<td>0/67</td>
<td>0/67</td>
<td>39/47</td>
<td>1/60</td>
<td>دو نمایه</td>
</tr>
<tr>
<td>0/08</td>
<td>0/08</td>
<td>13/75</td>
<td>0/74</td>
<td>هورول</td>
</tr>
<tr>
<td>0/01</td>
<td>0/01</td>
<td>13/04</td>
<td>0/70</td>
<td>معادله</td>
</tr>
<tr>
<td>0/04</td>
<td>0/04</td>
<td>36/55</td>
<td>1/11</td>
<td>نمایه‌مرتبه اول</td>
</tr>
<tr>
<td>0/27</td>
<td>0/27</td>
<td>58/54</td>
<td>1/3</td>
<td>نمایه‌مرتبه اول</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>دو نمایه</td>
</tr>
<tr>
<td>0/44</td>
<td>0/44</td>
<td>12/53</td>
<td>0/59</td>
<td>هورول</td>
</tr>
<tr>
<td>0/03</td>
<td>0/03</td>
<td>15/64</td>
<td>0/49</td>
<td>معادله</td>
</tr>
</tbody>
</table>

نباخت مرتبه به قانون هنتری (Kp)، نباخت تجربی ناشی‌از هیدرولیز، ضخامت لایه‌های محاسباتی خاک و ضخامت‌گذاری، مناسب بوده همان می‌شده است. بنابراین، این توجه به این که در ایران اطلاعات مورد نیاز در این زمینه موجود نیست، و نیز با استفاده نداشتن به داده‌های مرتبه به کارکرده انجام شده در خارج از کشور، در نتیجه تایید (Verification) مدل صورت گرفت. نتایج شبیه‌سازی این مدل در شکل‌های 1 و 2 نشان داده شده است. با مقایسه میانگین غلظت آترازین مشاهده شده و پیش‌بینی شده، مقدار متوسط (مدیر CRM و معادلات) 1/6 تا 4/2 برحسب برای 0/76 و 0/07 می‌باشد. بنابراین CRM و RMSE در حد نسبتاً بوده و ME نشان می‌دهد که پیش‌بینی مدل غلظت بوده است. CRM و پیش‌بینی دیگر مدل تربیزی و هم‌کاران (20) نیز مدل سانتی‌متری، معادلات هورول و 22 از نظر پارامترهای آماری بسیار به هم نزدیک می‌باشند. در عمیق 20-30 سانتی‌متری، بر اساس پارامترهای ME و RMSE، معادله هورول، و بر اساس پارامترهای CRM و EF، معادله 22 بهتر است. بنابراین، به طور کلی معادله هورول را می‌توان به‌پرسی مناسب‌ترین معادله از مجموعه معادلات تبیین شده دانست، و پس از آن معادلات 22 و 23 پرتره دارند. شکل 3 پیش‌بینی معادلات تشريح کننده تغییری آترازین را نشان می‌دهد.

واستنی مدل 2

مدل 2 با استفاده از داده‌های مشاهده شده برای شبیه‌سازی تغییرات زمین و مکانیک غلظت آترازین و استخراج (Kp) در نظر گرفته. برای و استنی‌مدل این مدل پارامترهای مانند ضریب توزیع و ریز (Kc) (افتکش‌کن چسب) نباخت مرتبه به سرعت تجربی آفت کش (Kp)، نباخت تجربی ناشی‌از هیدرولیز، ضخامت لایه‌های محاسباتی خاک و ضخامت‌گذاری، مناسب بوده همان می‌شده است. بنابراین، این توجه به این که در ایران اطلاعات مورد نیاز در این زمینه موجود نیست، و نیز با استفاده نداشتن به داده‌های مرتبه به کارکرده انجام شده در خارج از کشور، در نتیجه تایید (Verification) مدل صورت گرفت. نتایج شبیه‌سازی این مدل در شکل‌های 1 و 2 نشان داده شده است. با مقایسه میانگین غلظت آترازین مشاهده شده و پیش‌بینی شده، مقدار متوسط (مدیر CRM و معادلات) 1/6 تا 4/2 برحسب برای 0/76 و 0/07 می‌باشد. بنابراین CRM و RMSE در حد نسبتاً بوده و ME نشان می‌دهد که پیش‌بینی مدل غلظت بوده است. CRM و پیش‌بینی دیگر مدل تربیزی و هم‌کاران (20) نیز مدل سانتی‌متری، معادلات هورول و 22 از نظر پارامترهای آماری بسیار به هم نزدیک می‌باشند. در عمیق 20-30 سانتی‌متری، بر اساس پارامترهای ME و RMSE، معادله هورول، و بر اساس پارامترهای CRM و EF، معادله 22 بهتر است. بنابراین، به طور کلی معادله هورول را می‌توان به‌پرسی مناسب‌ترین معادله از مجموعه معادلات تبیین شده دانست، و پس از آن معادلات 22 و 23 پرتره دارند. شکل 3 پیش‌بینی معادلات تشريح کننده تغییری آترازین را نشان می‌دهد.
زمان پس از کاربرد آتروازین (روز)

شکل 3. مقایسه معادلات تشريح کننده تجزیه آتروازین در خاک: اف.آلفا عمق 10-20 cm ، عمق 10-0 cm ب) عمق 20-30 cm ج) عمق 0-10 cm و ج) عمق 20-30 cm

را برای شیب‌سازی اتوپروفوس (Ethophrophos) و بنتازون (Bentazon) در یک خاک شنی به کار برده شده و نظر کارایی مدل، نتایج به رابطه زیر قابل محاسبه است (31):

\[K_{oe} = \frac{K_d}{F_{oe}} \]

که:

\[K_{oe} = \text{ضریب توزیع آفتکش بین خاک و آب (بدون بعد)} \]

\[K_d = \text{ضریب توزیع آفتکش بین خاک و آب (بدون بعد)} \]

پاناسیل نشته آتروازین

کاس (8) پاناسیل نشته آفتکش‌ها را بر اساس تیمه عصر در خاک، حلالیت در آب، و ضریب جذب کربن آلی خاک (Kw) یا
جدول 3. خطر قابلیت نشت آفت‌کش‌ها در خاک (8)

<table>
<thead>
<tr>
<th>ضایعه</th>
<th>نیمه عمر یک (t1/2)</th>
<th>نیمه عمر دو (t2/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیاد</td>
<td>≥ 2/8</td>
<td>-</td>
</tr>
<tr>
<td>کم</td>
<td>< 1/8</td>
<td>-</td>
</tr>
<tr>
<td>خیلی کم</td>
<td>0 < و ≤ 1</td>
<td>1 و ≤ 11</td>
</tr>
<tr>
<td>متوسط</td>
<td>≥ 11 و ≤ 30</td>
<td>> 30 و ≤ 60</td>
</tr>
</tbody>
</table>

هر حالت دیگر نیمه عمر بر حسب روز و حالت دیگر بر حسب میلی‌گرم در لیتر خاک است.

سلامت آلوگدی ناشی از آتراسین و وجود خواهد داشت.

\[F_{100} = \text{مقدار کریم آلت خاک (اعتبار)} \]

مانند مورد استفاده