تغییرات برخی ویژگی‌های فیزیکی و مکانیکی خاک با ساختمان نابایدار پس از آب‌بردی گرفتی

محمد حسن مقدمی، عباس همت و محمدرضا حاج‌عباسی

چکیده

حالات فیزیکی خاک ناشی معمولاً در سبز‌شدن زمین و آب‌گیری و تولید محصول دارد. از عوامل تغییردهنده ویژگی‌های فیزیکی خاک، تغییرات داخلی حاصل از مکانیزم‌های سه‌بعدی است. در این باره، تأثیر این تغییرات در تغییرات سطحی بیک خاک (نور و دما) و با ساختار نابایدار (مسیر خمینی شهر پایین‌تر از پایین‌تر) بررسی شد. در استادان‌هایی این تغییرات به صورت گفته‌ای انجام گرفت. در این پژوهش، تغییرات سطحی خاک با زمان، گنجایش ظاهری، شاخص مخروطی و مقاوت‌های دارای رطوبت‌های مختلف پس از نخستین آب‌بردی گرفتی بررسی گردید.

نتایج نشان داد که با پرتاب بذر (20 سانتی‌متر) با آراشی سنت (با گنجایش ظاهری 16 مگاگرم بر متر مکعب) حدود 5 سانتی‌متر دست کرد. با توجه به آن که همه کوه‌های اطراف سطح، از نخستین آب‌بردی، خاک وارد شده بود، حالات نابایداری آن‌ها را از نظر ظاهری تغییر پیدا کرد. گنجایش ظاهری، شاخص مخروطی و مقاوت‌های خاکی پس از آب‌بردی و در طول خشک شدن افزایش چشمگیری یافت. تغییرات مقاوت‌های خاک (شاخص مخروطی و مقاوت‌های کششی) با رطوبت‌هایشان بود. ارتباط شاخص مخروطی و مقاوت‌های کششی با تغییرات فیزیکی و حجم‌شناختی بی‌باید تهیه شد.

واژه‌های کلیدی: نش، تغییر، مکانیکی، ظاهری، نوندای شویی، نش، گنجایش ظاهری، شاخص مخروطی، مقاوت‌های کششی

1. به ترتیب دانشجوی دکتری خاک‌شناسی، دانشیار ماستری کشاورزی و دانشیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
بحث

التناسب محیطی (Soil tilth) نشانه مهمی در سبیل شدن پودر برش و توزع رشد گیاه و تولید محصول دارد. آثار مثبت یک محیط محیطی خوب شالی از نظر مناسب، حرکت مناسب‌آب در خاک، تنظیم دما برای رشد ریشه و نگهداری رطوبت کافی برای رشد گیاه می‌باشد. در این زمینه، مهم‌ترین عامل یافتن خاک است (19). در مورد خاک خالی با خلف و فرج، دو بیشتر محیطی یافته و ساختار خاک محسن شده، که اولی تقریباً تغییر چندانی نمی‌کند و جزء خواص ذاتی خاک است. در صورتی که ساختار خاک یک ویژگی متوسط بسیار تأثیرگذار است، که هم‌اکنون مختلط آن را تأثیر قرار می‌دهند. این فرآیندها شامل انقباض و انقباض، خشکی و مرطوب شدنی، که دوزی و دوخت شدنی، عملیات خاک‌ورزی و تراکم است (8). از این میان، مهم‌ترین تغییر محیطی به نشانه خاک، نیروهای خارجی یا مکانیکی و نیروهای انرژی (Internal or capillary forces) ناشی از فرآیندهای مرطوب و خشک شدن (Wetting-drying cycles) است (16 و 17).

مولینز و همکاران (23) در بررسی کردنی سطح خاک‌هایی که بدن در مورد فرآیندهای سطحی که در فرآیندهای شنگدنگ خاک دریافتند که بدن وجود بار خارجی نیز ممکن است تراکم در خاک به وجود آید (Bulk density، BD) بسیاری از پژوهش‌ها، چگالی ظاهری (Visual index)، زایده در سطحیت (پیش از سبیل شدن مزروع) رانش از نیروهای خارجی مشترک. در حالی که نیروهای خارجی سبب تراکم می‌شوند. در داخل خود خاک به وجود می‌آیند. در بسیاری از پژوهش‌ها در مورد تراکم خاک سطحیت ارضی، تنی توانده آثار بار خارجی و نیروهای درونی را در خاک‌هایی از ساختار نیازمند جدا کنند. اگرچه رسم بر این بوده است که تراکم را کلاً به عمل بار خارجی نسبت به دهنده. در حالی که بررسی های بانک و همکاران (28) نشان داد که BD ویک خاک نیازمندی، چند ماه پس از خاک‌ورزی به یک 1/7 Mg می‌رسد. به

92
تغییرات برخی ویژگی‌های فیزیکی و مکانیکی خاکی با ساختار انیاباد پس از آب‌گرفتی

که در آن، تنش کل (Total stress) تنش مؤثر بر ذرات جامد و فشار آب منفذی (Effective stress) است. در شرایط کوچک تنش، تمامی تنش وارده را آب منفذی تحمیل می‌کند و چون این تنش به صفر است، سیب دور کردن ذرات خاک از یکدیگر می‌شود (33).

میانی نظری تنش مؤثر ترزاگی (عوامل) 1 در خاک غیر‌اشبع، به‌دلم ان‌که جوجه‌ها هوا نیز به سیستم افزوده می‌شود، به صورت زیر گسترش می‌یابد:

\[\sigma' = (\sigma - u_w) + \chi' (u_w - u) \]

که در معادله فوق، فشار آب منفذی و تنش سطح مقطع خاک است که به آب اشغال شده و تابعی از درجه بوده (در رطوبت‌های سیل (Saturation percentage، S) اشباع خاک (۱۵) سطح سیل می‌شود). بین صفر (خاک خشک) و یک (خاک اشباع) تغییر می‌کند. در میان معادله 1 حالت خاصی از معادله 2 است که خاک بدون بوده وFACE وجود ندارد (۱۵) و (۲۴). باید نیز در نظر گرفت که ترزاگی خاک‌های عواملی که در مورد دریا و دریاچه‌های دارای قابلیت اشباع دارند، به‌طور کلی در خاک‌های بسته است (۳۱). هدف از پژوهش پس‌پرسی روند تغییرات ویژگی‌های فیزیکی و مکانیکی و عوامل کنترل کننده تغییرات مقاومت در یک خاک با ساختار انیاباد پس از آب‌گرفتی بررسی می‌شود.

با توجه به این نتایج می‌توان این فرضیه را عنوان کرد که:

- خاک‌های سخت‌اشباع و ترزاگی در خاک‌های ساختار انیاباد، عوامل درونی و درون‌داخلی دارای قابلیت اشباع دارند. به‌طوری که از محورین عوامل تغییرات ساختاری خاک‌های خاک‌ورزی شده است. (۳۱).

- دانش گزینه‌های ترزاگی بررسی روند تغییرات ویژگی‌های فیزیکی و مکانیکی و عوامل کنترل کننده تغییرات مقاومت در یک خاک با ساختار انیاباد پس از آب‌گرفتی بررسی می‌شود.

است.

میانی نظری (Stress، \(\sigma \)) تنش معادلات یا به مکانیکی است که در مکانیک خاک نیز کاربرد دارد. از مفاهیم ترزاگی موجود در مکانیک خاک، تنش مؤثر ترزاگی (Terzaghi’s effective stress) است. ج那种 اشباع مجموعاهای خاک و آب است. برای این توری، هر تنش وارده به خاک بسته به سیستم اشباع دیگر جزء جامد و مابق خاک نیست. خاک نیز می‌شود؛ به صورت دیگر:

\[\sigma = \sigma' + u_w \quad \sigma' = \sigma - u_w \]
مقدی در شرایط اشباع و غیر اشباع بر مقاومت خاک در شکل ۱ نشان داده شده است. (۳۷)

همچنین، بازخورده‌های بالا که تنش نسبی در خاک غیر اشباع شامل جمع اثرات تناسب‌یابی (معادله (۵) و کشش سطحی آب است ولی در رطوبت‌های زیاد (0.4 س眼界) می‌توان اثر کشش سطحی تنش پرتوشی‌کردن. از سوی دیگر، در رطوبت‌های کم (0.3 س界定) اثر کشش سطحی گلوله‌های می‌شود (۳۲). و مکانیکی‌های با پروسپر. از، دکتر).

بنابراین، رابطه خطی مقاومت خاک به (۵) با تنش مؤثر در شرایط نیروی خارجی را می‌توان به صورت زیر نوشته (۲۶ و ۳۴):

\[
\tau = c + b \left(\chi, \psi_m \right)
\]

که b و c ضرایب تجربی معادله بوده و b این کننده پوستکی در حال اشباع است. معادله ۶ در شرایط سداچ (Cohesion) است که عوامل سیمانی کننده و رسوبی خاک اثر خشکی‌سازی شدن نقطه فشرده آنها می‌باشد. (ب) نشان می‌دهد که عامل کننده خاک مبتنی بر خصوصیات برخی از مقاومت‌ها (مانند شکل) بوده که روند به سبب تغییرات مؤثر خاک را تأثیر گرفتند. (۳۴) با تحلیل می‌تواند خاک را به عنوان یکی از عوامل مؤثر شکل‌های خاکی به‌شمار آورد.

(Displacement) با زمان از این‌گونه (به جای جایی سنج) با دقت ۰.۰۱ سانتی‌متر استفاده شد. جایی جایی سنج (۱) معادله سه عدد با اندازه‌گیری روی سطح خاک سه گرادینت گرفتند. در انتهای هر جا به جایی سنج، یک صفحه فلزی گذاشتی شد تا به راحتی نوک جا به جایی سنج در خاک جلوگیری کند. میزان اگر عاده نکردن به علت مقدار نشست در نظر گرفته شد.

گذارده شد با زنبور خاک و ترارآک آبیان (۱۸ و ۲۶) است. برخی از ویژگی‌های فیزیکی و مکانیکی خاک سطحی

مواد و روش‌ها

بررسی حاضر روی یک خاک با ساختن‌های نیروی خاک مزده پژوهشی دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، واقع در نجف‌آباد (متعلق به سری خمیسی) صورت گرفت. رده‌بندی Fine-loamy، mixed، thermic Typic Haplargids این خاک است. برخی از ویژگی‌های فیزیکی و مکانیکی خاک سطحی

(t = c + b (χ, ψ_m))

که b و c ضرایب تجربی معادله بوده و b این کننده پوستکی در حال اشباع است. معادله ۶ در شرایط سداچ (Cohesion) است که عوامل سیمانی کننده و رسوبی خاک اثر خشکی‌سازی شدن نقطه فشرده آنها می‌باشد. (ب) نشان می‌دهد که عامل کننده خاک مبتنی بر خصوصیات برخی از مقاومت‌ها (مانند شکل) بوده که روند به سبب تغییرات مؤثر خاک را تأثیر گرفتند. (۳۴) با تحلیل می‌تواند خاک را به عنوان یکی از عوامل مؤثر شکل‌های خاکی به‌شمار آورد.

(Displacement) با زمان از این‌گونه (به جای جایی سنج) با دقت ۰.۰۱ سانتی‌متر استفاده شد. جایی جایی سنج (۱) معادله سه عدد با اندازه‌گیری روی سطح خاک سه گرادینت گرفتند. در انتهای هر جا به جایی سنج، یک صفحه فلزی گذاشتی شد تا به راحتی نوک جا به جایی سنج در خاک جلوگیری کند. میزان اگر عاده نکردن به علت مقدار نشست در نظر گرفته شد.

گذارده شد با زنبور خاک و ترارآک آبیان (۱۸ و ۲۶) است. برخی از ویژگی‌های فیزیکی و مکانیکی خاک سطحی

(t = c + b (χ, ψ_m))

که b و c ضرایب تجربی معادله بوده و b این کننده پوستکی در حال اشباع است. معادله ۶ در شرایط سداچ (Cohesion) است که عوامل سیمانی کننده و رسوبی خاک اثر خشکی‌سازی شدن نقطه فشرده آنها می‌باشد. (ب) نشان می‌دهد که عامل کننده خاک مبتنی بر خصوصیات برخی از مقاومت‌ها (مانند شکل) بوده که روند به سبب تغییرات مؤثر خاک را تأثیر گرفتند. (۳۴) با تحلیل می‌تواند خاک را به عنوان یکی از عوامل مؤثر شکل‌های خاکی به‌شمار آورد.

(Displacement) با زمان از این‌گونه (به جای جایی سنج) با دقت ۰.۰۱ سانتی‌متر استفاده شد. جایی جایی سنج (۱) معادله سه عدد با اندازه‌گیری روی سطح خاک سه گرادینت گرفتند. در انتهای هر جا به جایی سنج، یک صفحه فلزی گذاشتی شد تا به راحتی نوک جا به جایی سنج در خاک جلوگیری کند. میزان اگر عاده نکردن به علت مقدار نشست در نظر گرفته شد.

گذارده شد با زنبور خاک و ترارآک آبیان (۱۸ و ۲۶) است. برخی از ویژگی‌های فیزیکی و مکانیکی خاک سطحی

(t = c + b (χ, ψ_m))

که b و c ضرایب تجربی معادله بوده و b این کننده پوستکی در حال اشباع است. معادله ۶ در شرایط سداچ (Cohesion) است که عوامل سیمانی کننده و رسوبی خاک اثر خشکی‌سازی شدن نقطه فشرده آنها می‌باشد. (ب) نشان می‌دهد که عامل کننده خاک مبتنی بر خصوصیات برخی از مقاومت‌ها (مانند شکل) بوده که روند به سبب تغییرات مؤثر خاک را تأثیر گرفتند. (۳۴) با تحلیل می‌تواند خاک را به عنوان یکی از عوامل مؤثر شکل‌های خاکی به‌شمار آورد.

(Displacement) با زمان از این‌گونه (به جای جایی سنج) با دقت ۰.۰۱ سانتی‌متر استفاده شد. جایی جایی سنج (۱) معادله سه عدد با اندازه‌گیری روی سطح خاک سه گرادینت گرفتند. در انتهای هر جا به جایی سنج، یک صفحه فلزی گذاشتی شد تا به راحتی نوک جا به جایی سنج در خاک جلوگیری کند. میزان اگر عاده نکردن به علت مقدار نشست در نظر گرفته شد.

گذارده شد با زنبور خاک و ترارآک آبیان (۱۸ و ۲۶) است. برخی از ویژگی‌های فیزیکی و مکانیکی خاک سطحی

(t = c + b (χ, ψ_m))

که b و c ضرایب تجربی معادله بوده و b این کننده پوستکی در حال اشباع است. معادله ۶ در شرایط سداچ (Cohesion) است که عوامل سیمانی کننده و رسوبی خاک اثر خشکی‌سازی شدن نقطه فشرده آنها می‌باشد. (ب) نشان می‌دهد که عامل کننده خاک مبتنی بر خصوصیات برخی از مقاومت‌ها (مانند شکل) بوده که روند به سبب تغییرات مؤثر خاک را تأثیر گرفتند. (۳۴) با تحلیل می‌تواند خاک را به عنوان یکی از عوامل مؤثر شکل‌های خاکی به‌شمار آورد.
جدول ۱. برخی خواص فیزیکی و مکانیکی خاک

<table>
<thead>
<tr>
<th>pd</th>
<th>om</th>
<th>CaCO₃</th>
<th>fi</th>
<th>sl</th>
<th>pi</th>
<th>pwp</th>
<th>pl</th>
<th>fc</th>
<th>ll</th>
<th>sp</th>
<th>%/we</th>
</tr>
</thead>
<tbody>
<tr>
<td>183</td>
<td>10</td>
<td>42</td>
<td>105</td>
<td>115</td>
<td>160</td>
<td>258</td>
<td>32</td>
<td>37</td>
<td>42</td>
<td>150</td>
<td>42</td>
</tr>
</tbody>
</table>

1. به ترتیب: باند کننده درصد اشتعاب، حد روتی، طولیت زراعی، حد خمیری، رطوبت پذیرسیدگی ذاوی.

2. درصد روتی و طولیت بر اساس خاک خشک

شکل ۱. اثر فشار آب منفی بر مقاومت خاک در شرایط اشتعاب و غیر اشتعاب (پی‌گرفته از منبع ۳۷)

آبیاری شدن، و سعی شد از یک گوشه گلدن‌ها آب‌دهی صورت گیرد که شیب‌سازی آبیاری سطحی باشد و بر توجه به درصد اشتعاب خاک (SP)، خاک به تندیک اشتعاب بررسی شد.

بلافاصله پس از آبیاری، نشست، رطوبت وزنی (MC)، چگالی فضایی (BD)، شاخص مکرو‌موطعي (CI) و مقاومت شکنندي خاک با گذشت زمان (Indirect tensile strength, ITS)

اندازه‌گیری شد. سعی شد فواصل اندازه‌گیری طولی تنظیم شود که دامنه نمونه‌برداری مناسبی از رطوبت خاک را شامل گردید و از سوی دیگر امکان نمونه‌برداری و گذر داشته‌باشد. زیرا در رطوبت‌های خشک و خنثی، کم امکان برداشت نمونه دست خورده، برای ITS به‌سیار ضعیف بود.

74
شدرجه اشباع این داده‌ها بر اساس (ال۸۲) بود، و می‌توان از اثر کشش سطحی آب در نش آوری (با توجه به توضیحات بخش محبوب نظری) صرف‌نظر کرد. و نتیجه اثر مکش ماتریکس (۹۴۷۷۲) بسته به توزیع ده‌ها با رطوبت‌های با داشته اصلی مقاومت است.

نتایج و بحث

در موقع آب‌دهی گلدان‌ها، ابری از گرد و غبار جنگلی جبهه پیش‌روی آن ایجاد شد، که نبان دهنه بازیگر گلدان‌ها و اثر آزاد شدن هوای محبوس خاک است. به محض ناساز آب با سطح خاک، خاک دانه‌ها و کلوره‌های سطحی از هم پاشیده شدند، و سطحی تقریباً صاف با کیفی حاصل از تخریب آنها به دانه‌های بررسی شده و همگان (۴۷) و تؤیید این مشاهده‌است. بررسی کیفیت و همگان (۴۳) و وسیع‌ترین (۱۵) نیز نشان داد خاک و نرم سطح خاک در خاکروری در تخمین دوره مکش شدن پک خاک، به دلیل آن که تعمق خاک‌دانه‌ها به صورت مقاومت و تنش حاصل از تنش آبروری و در این نتیجه بسیار زیاد است، بین‌شناسی تغییرات سطحی و نجمانی می‌گردد. در دوره‌های بعدی مکش و خشک شدن، سطح تعمق خاک‌دانه‌های زیادتر شده و اصطلاحاً به هم جوش می‌خوردند و تنش مؤثر کمتر می‌شود. بازیگر نیم‌بند خاک پس از ایجاد نشان داد که تا عمق حدود پنج سانتی‌متری، خاک‌دانه‌ها و کلوره‌های تخریب شده (به دلیل خیس خوردگی سریع) و از این عمق به پایین، به هم جوش خوردند. با (Coalescence) این بدن به خاک زیرستی بحیطه که هم پوششگی به وجود آمده که ذراتی بین خاک‌دانه‌ها با صورت پل‌فرنگیده و آن‌ها را به کیفیت تغییر کردند. ولی در عین حال هنوز

(سی سی همچنین در بند) (۲۲) با استفاده از میانگین نوسان نموده‌مرتادی مذکور، نوسان نموده‌مرتادی از عمق (۶۰-۱۴۰) سانتی‌متر صورت گرفت. برای بررسی تغییرات مقاومت خاک سطحی و عمیق، استاندارد X شکست نموده‌یادآوری شد. سرعت بارگذاری در پک ITS میلی‌متر در دقیقه تنظیم شد. سپس با استفاده از فرمول زیر، محاسبه گردید:

\[ITS = 2 \ F(x)/(\pi d) \]

که در فرمول فوق، F به ترتیب قطر و طول نوسان و \(\pi \) ضریب صاف‌شدنگی (flattening coefficient) و \(\theta \) بروده از رابطه زیر محاسبه می‌شود.

(۱۲):

\[x = a \cos \theta \]

در این رابطه، a عرض بخش صاف شده استوانه خاک در نمود و \(\theta \) تغییرات فیزیکی (flattening ratio) فاصله بین دو بخش صاف شده در ناحیه کشش (۹۹)، نسبت صاف‌شدنگی \(a = \frac{x}{\theta} \) است.

فناوری‌نامه‌ای نمایان کننده تیونسیال ماتریکس (۹۷) با استفاده از تست‌بند در گلدان‌ها و در پتانسیال همکار به طور غیر مستحکم SMCC مستحکم با استفاده از MC و از منحنی استخراج شد. کالاهک تست‌بند در عمق‌های ۶ و ۱۲ سانتی‌متر معیوب شد. که به ترتیب بینان کشتی تیونسیال ماتریکس فناوری‌نامه‌ای (۹۵-۸۰ و ۱۶-۸۰) سانتی‌متر بود، با فرض این که مکاتبر بود (۹۷) در رطوبت‌های مختلف محاسبه شد و معادله ۶ بر داده‌های ITS و CI مقایسه ترک‌سوزی (ت) با استفاده از نرم‌افزار Excel مشابه. دانمارک رطوبت مورد بررسی برای رابطه مقاومت

(پیش‌ساز) و Tنش مؤثر از بخش مرطوب منحنی رطوبتی انتخاب (ITS)
تمایز‌های فیزیکی و مکانیکی خاک‌ها با ساختار تکایدار پس از آب‌باریکان

کاهش تخلخل، تراکم و سپس انقباض خاک است. این مقادیر
نیم‌سال‌های 400-200 سانتی‌متر از مقادیر اولیه
1/2 3/4 می‌شود. ولی همانطوری که در
نیم‌سال‌های 300-150 می‌شود.

بیشتر از این

مقدار است (از 1/2 به حدود 1/5). که بیان کننده اثر تدوام
(Vertical and horizontal shrinkage) انقباض عمومی و افقی
در فشرده‌گر خاک می‌باشد. به اعتقاد مولیتز (28) فارینه‌ای
ساختار شدید شامل دو مرحله است: 1 خردشل‌سازی ساختانی
خاک‌دانه در اثر آب و گریز و 2 سخت‌شل‌سازی بازسازی
ساختانی خاک در اثر انقباض عمومی و افقی شدید شدن اندازه می‌باشد.

نتایج نشان دهنده انقباض عمومی خاک است. در
ساعت پس از آب‌باریکان در حدود 60 ساعت
(Upheaving) به تدریج شد. پیش‌ترین تغییرات نشان دهنده
مقاومت خاک‌دانه‌ها در اثر تدوام به بیان می‌گردد.

(۱۸۶) نشان می‌دهد که
کلر (۲۳) و کمتر و همکاران (۳۲) نیز نشان می‌دهد که

آب‌باریکی سرعی، دلیل اصلی انقباض عمومی خاک‌دانه‌ها و کاهش خصل
فرخ در است. در جهت خیس شدگی سریع، گردن‌انداز
(شیب) در صورت رطوبت در جهت رطوبتی در دیگر خاک‌دانه بیشتر
تند است، به طوری که خاک‌دانه در یک صفحه نزدیکی به اشباع
در سمت دیگر خشک است. شیب التر رطوبتی سبب تندی
چشمه خاک‌دانه‌ها در بهترین خشک خاک‌دانه‌ها و

در نهایت سبب ضعیف شدن خاک‌دانه می‌شود و قطعی
خیس شدگی به تنهایی صورت می‌گیرد، شیب رطوبتی و شبیه
انقباض زیاد بود، نشان‌دهنده یکی از عوامل یک جهت خیس شدگی
سیب خرد شدن خاک‌دانه می‌شود.

(۱۸۷) درصد
نتایج نشان دهنده 1/5 سانتی‌متر و براز
کرنش ظاهری (Apparent strain) با نشان دهنده ضخامت
کل خاک است. این خود دلیل بر فروپاشی ساختان خاک.
شکل 2. نشست خاک با گذشت زمان پس از آبیاری (از آغاز تا پایان آزمایش)

شکل 3. تغییرات چگالی ظاهری (BD) (میانگین عمق صفر تا ۲۰ سانتی‌متر) با رطوبت وزنی (MC) خاک با گذشت زمان پس از آبیاری

طبقه‌بندی‌های می‌شود. بررسی‌های ویج و همکاران (۴۶) و مولینز و همکاران (۲۷ و ۲۸) نشان داد که تغییرات در BD اولیه خاکها در بررسی ویج و همکاران (۳۶) و مولینز و همکاران (۲۷ و ۲۸) به ترتیب ۱/۵ و ۱/۵ Mg.m⁻³ به ترتیب ۱/۵ و ۱/۵ Mg.m⁻³ در صورتی
پیش‌تر از BD اولیه خاک در پژوهش حاضر است.

ویژگی‌های مکانیکی (CI)

شاخ مخربوطی (CI) در شکل 1 ویژگی‌های فیزیکی و مکانیکی شاخص خاک ذکر شده است.

در زمینه عمق 2000 متر (CI) از آبیاری به رطوبت (متغیر مشخصه مقاومت خاک) با استفاده از این منحنی تخمین مقاومت به کمک رطوبت خاک ایجاد کرده است. اگرچه مقاومت خاک در رطوبت حد پرسرده دانه (Wilting point, PWP) به یک مقدار محدود کند نیست (پایان که رشد گیاهی حدود 1000 kPa است).

یکین مقدار انرژی ویژه ویژه خاک اطلاق می‌شود و در (2000 kPa) می‌تواند رشد ریشه‌های PWP به وجود آید. مقاومت خاک بیش از PWP به وجود آمد، حدود 120000 kPa (یکین) از آبیاری جدید و در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از شرایط ریشه‌های مقدار دارد. در این منحنی‌ها که مقاومت خاک در اثر نشان و انسجام ناشی از آبیاری پیش از رطوبت‌هایی که از مقدار 1000 kPa کمتر است، یکین است. این ویژگی‌های شدید مقاومت به رطوبت خاک را می‌توان دلیل ناپایداری ساختمانی این خاک دانست (72 و 28).

(ITS) مقاومت کنشی

با بازیابی و مقاومت مقداری مربوط به عمق‌های 800 kPa
شکل ۴. تغییرات شاخص مخروطی (CI) (میانگین عمق صفر تا ۲۰ سانتی‌متر) با رطوبت وزنی (MC) خاک با گذشت زمان پس از آب‌اری

\[
CI = 3975.2e^{-0.1231MC} \\
R^2 = 0.89
\]

شکل ۵. تغییرات مقاومت کششی (ITS) (داده‌های ادغام شده لایه‌های ۱۰۰۰۰ و ۱۰۰۰۰۰ سانتی‌متر) با رطوبت وزنی (MC) خاک با گذشت زمان پس از آب‌اری

\[
ITS = 43.52e^{-0.1257MC} \\
R^2 = 0.74
\]
تغییرات برخی ویژگی‌های فیزیکی و مکانیکی خاکی با ساختار ناپایدار پس از آب‌ریزی غرفه‌ای

شکل ۶. همبستگی مقاومت کشنده (ITS) و شاخص مخروطی (CI) خاک

شکل ۷. منحنی مشخصه رطوبتی خاک

در خاک‌های مناطق خشک و نیمه‌خشک به فرآیند پایتخت مواد شوینده به همراه با درآمدهای آب بررسی‌شده. به نظر می‌رسد، رسوب برخی کاتیون‌ها (سیلیس محلول) و واکنش‌های آهک زیاد در خاک با درآمدهای آب سبب شده، به روش مقاومت خاک می‌افزایدند. بنابراین، رسوب مؤثر موقتی را که کربنات‌ها نیز همان‌گونه عمل می‌دهد که دیگر برای سیلیس محلول و کربنات‌ها (که

توجه است. بنابراین، احتمالاً کنتار کنش‌های اصلی مقاومت در حالت تر در این خاک، نشان می‌دهد. به نظر می‌رسد، رسوب برخی کاتیون‌ها (سیلیس محلول) و واکنش‌های آهک زیاد در خاک با درآمدهای آب سبب شده، به روش مقاومت خاک می‌افزایدند. بنابراین، رسوب مؤثر موقتی را که کربنات‌ها نیز همان‌گونه عمل می‌دهد که دیگر برای سیلیس محلول و کربنات‌ها (که

101
روش‌های کشاورزی و منابع طبیعی / سال هفتم / شماره اول / بهار ۱۳۸۲

شکل ۸: تغییرات نیروی تنش مؤثر با رطوبت وزنی (MC)

شکل ۹: رابطه شاخص مخرب‌کننده (CI) و نیروی تنش مؤثر

شکل ۱۰: رابطه مقاومت کششی (ITS) و نیروی تنش مؤثر
نتیجه‌گیری و توصیه
پژوهش حاضر نشان داد که در سری خاک مورد بررسی، که در اصفهان فراوان یافت می‌شود و یک خاک تیپ خاک‌های مناطق حاشیه‌ای مرکزی است، نتایج کلی مقاومت در حالت ترمیم تنش مئولی افزایش یافته است. زیرا پس از خشک کردن خاک، به قابلیت تغییرات فیزیکی، پوششی، بافتی و نسبت به مقدار CF و ITS نسبت به حساسیت مناطق حاشیه‌ای می‌باشد.

در نتیجه‌گیری‌های این پژوهش، اشکال مختلف خاک‌های مناطق حاشیه‌ای مرکزی از نظر تغییرات فیزیکی، پوششی، بافتی نسبت به مقدار CF و ITS نسبت به حساسیت مناطق حاشیه‌ای می‌باشد.
سپاسگزاری

این پژوهشی از رساله دکتری نویسنده اول است. کلیه
همزمان و تأمین بوده این طرح را دانشگاه سمنون اسلامی
تأمین کرده که به سلیقه و بهره‌مندانه شکر و قدردانی می‌شود.
همچنین از آقای مهندس محمدعلی مطیعی و آقای محمدحسین
مراجع مورد استفاده

1. اشرفی زاده، س. ر 1378. بررسی تأثیر زیرشکن بر بعضی خصوصیات فیزیکی-مکانیکی خاک و عملکرد گندم. گزارش پژوهشی

2. موسمي تحقیقات فنی مهندسی کشاورزی، کرمان.

3. حاجی‌نژاد، م. ع.، ـ.، م. ر. مصداقی. 1380. اثر روش‌های خاک‌ورزی بر ویژگی‌های فیزیکی خاک و حمله تهیه. علوم و فنون

4. کشاورزی و منابع طبیعی (1380): 29-36.

5. حاجی‌نژاد، م. ع.، ـ.، م. ر. مصداقی. 1380. اثر شیوه‌های خاک‌ورزی بر بعضی از ویژگی‌های فیزیکی خاک و عملکرد گندم در مزرعه تحقیقات لورک. علوم و فنون کشاورزی و منابع طبیعی (2): 12-23.

6. میلادی، آ.، م. ع.، ـ.، م. ر. مصداقی. 1380. بررسی واکنش زنی‌پیچ‌های مختلف در به سیستم شرکت

7. میلادی، آ.، ـ.، م. ع.، ـ.، م. ر. مصداقی. 1380. بررسی واکنش زنی‌پیچ‌های مختلف در به سیستم شرکت

