تغییرات برخی ویژگی‌های فیزیکی و مکانیکی خاکی با ساختن ناباید

پس از آب‌پذیری غرفت

محمدضا مصدقه، عباس همت و محمدعلی حاج عباسی

چکیده

حالات فیزیکی خاک تنش مهمی در سیر شدن باز رشد و توسعه رشته‌گیاه و تولید محصول دارد. از عوامل تغییردهنده ویژگی‌های فیزیکی خاک، تغییرات داخلی حاصل از مکان‌سنجی است. در این بررسی، تأثیر این تغییرات در افزایش شکستگی و تغییرات محل این سطحی بر خاک لورس سپرده و با ساختن ناباید (مری خمینی شهر فارابی‌نوری، مکان‌سنجی تغییرات آبیاری در این پژوهش، تغییرات سطح خاک با زمان، چگالی ظاهری، شاخص منظم و مقاومت کشفی در رطوبت‌های مختلف پس از افزایش رطوبت غرفتی آب‌برداری افزایش گرفت.

تاثیب نشان داد که پس از 200 ساعت لیتر با آراپیست سست (با چگالی ظاهری 1/2 مگاگرم بر متر مکعب) حدود 5/5 سانتی‌متر نشست کرد. با توجه به این که هفته گونه بار خارجی، پس از نشست آب‌برداری، بر خاک وارد شده، پس از نشست خاک لورس سپرده و با نزدیکی شد. چگالی ظاهری، شاخص منظم و مقاومت کشفی نسبت به افزایش سیاست گرفت. تغییرات مقاومت کشفی (شاخص منظم و مقاومت کشفی) با رطوبت نشست بود. ارتباط شاخص منظم و مقاومت کشفی با تنش مؤثر نشان داد که احتمالاً کنکاره اصلی مقاومت در حال تنش مؤثر است.

واژه‌های کلیدی: نش تنگ، مقاومت، نیروهای مویی/تنش، چگالی ظاهری، شاخص منظم و مقاومت کشفی

1. به ترتیب دانشجوی دکتری خاکشناسی، دانشیار ماسون‌های کشاورزی و دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

91
مقدمه
حالت فیزیکی خاک (Soil tilth) نقطه مهمی در سیستم شریف برای تخمین قابلیت خاک کشاورزی‌ی بودن. رشد و توسعه رشد گیاه و تولید محصولات دارد. آثار مثبت یک محیط فیزیکی مناسب برای نسل‌های جدید گیاهی دارد. در حالی که، یک محیط فیزیکی ضعیف یا مناسب نبوده، رشد گیاهی نمی‌تواند بهره‌برداری رشد گیاهی کافی باشد و در نهایت، محصولات نمی‌تواند به‌کار گرفته شود.

در مناطق خاک و بهبود شکل ایران مسائل کم آب، تبخیر و نیت بهبود شکل خاک موجود است. بهبودی حاوی استخوان نیاز است که این بهبود از طرفخاک‌های نظامی و ساختار خاک و همچنین بهبود استخوان خاکی (Soil structure) حاصل می‌شود. هنگامی که این مسئله بطور درک گردد بهتر، تأثیر قرار می‌دهد. این موضوع نیاز ایجاد در انتخاب محصولات و همچنین بهبود استخوان خاک و بهبود نیاز استخوان خاک (No-tillage) که به مدتها سال تنوان استخوان خاک را به طور منعی دریابه بهبود بریده و بهبود عمرلک و محصول گندم و روش مکانیکی به طور منعی دردسر کاهش پایین است. این تأثیر بهبود و گرفتنه خاک مورد، و نرم کردن سالانه به روش مرسوم برای جلوگیری موقتی از سفته شدن خاک و کاهش محصول از این صحبت شده است، بسیاری از محققان (25) روی یک خاک در افزایش سبکی محاسبه و تراکمیدبرای خاک موجود نظر، با رطوبت شدید است. جراح عباسی و همکاران (26) با توانایی خاک در این خاک گوگردتر از 0.5 mm است. همچنین، سخت شدن خاک در روش بر خاکوزی سبک که در باردل شد. اندامی‌گیری شاخ‌هایی مخرب و محوریت (Cone index, CI) در پیک خاک یا باردل در منطقه اسفهان، بیش از معمول خاکوزی و در پیک فصل رشد گیاه کم آب در شرایط رطوبتی پایین، نشان داد که در طول پیک فصل زراعت مقاومت خاک به حالت اولیه، می‌گردد. (27) بررسی‌های جهان عباسی و همکاران (18) نشان داد که درصد خاک‌های کوچکتر از 0.05 mm و در این خاک به چهار سال تحت سیستم‌های خاک ورودی مرسوم و
تغییرات برخی ویژگی‌های فیزیکی و مکانیکی خاکی با ساختارنام‌دار پس از آب‌ریزی غرفه‌ای

که در اینجا. تنش کل (Total stress) و تنش مؤثر (Effective stress) و فشار آب منفی (Pore water pressure) است. در شرایط زیرکش نشان داده می‌شود. این مقدار از شرایط که در یک نقطه دارای تنش مثبت یا صفر است. سپس دور کردن ذرات خاک از یک‌دیگر می‌شود (۳۲).

میانی نظری تنش مؤثر ترزاقی (معدل میانی) در خاک غیر اشباع، به دلیل اینکه جزء هوای نیز به سیستم افزوده می‌شود، به صورت زیر کشیده می‌باشد:
\[
\sigma' = (\sigma - u_w) + \chi (u_w - u_m)
\]
که در معادله فوق، \(u_w\) فشار آب منفی و \(\chi\) مقدار سطح مقطع خاک است که با آب آشغال می‌شود، و ثابت از درجه بوده (در رطوبت‌های Saturation percentage، S) اشباع خاک (saturation). از قبیل می‌کند در مدت معادله ۱ حالت خاصی از معادله ۲ است که \?= ۱ و \(u_m\) و دارودورد (۲ و ۲۴). با فرض اینکه هوای خاک در این وضعیت با هوای خارج، است. می‌توان از \(u_m\) در معادله ۲ صرف اندازه کردن. آن گاه خواص داشت:
\[
\sigma' = \sigma - \chi u_m
\]
و که عبارت می‌باشد، اگر سیستم با خارج \((\sigma)\) و وجود نداشته باشد و خاک نازدیک به سطح باشد. می‌توان نوشته:
\[
\sigma' = \sigma - \chi u_m
\]

با خشک کردن شدن خاک، قدر مطلق \(u_m\) و زیاد شده و \(\chi\) کاهش می‌یابد. بنابراین، تا رطوبت مشخصی، با کاهش رطوبت، نش می‌شود. ترزاقی (Terzaghi’s effective stress) است. چون خاک اشباع مجموعه‌ای از خاک و آب است، برای این توره، هر تنش وارده به خاک، بسته به شرایط زمین، بین جزء جامد و مایع خاک تقسیم می‌شود؛ به ساختار غرفه‌ای پس از آب‌ریزی غرفه‌ای

\[
\sigma = \sigma' + u_w \quad \sigma' = \sigma - u_w
\]
اما و روش‌ها

بررسی حاضر روی یک خاک با ساختمان تایپارد (خاک مزرعه‌ی پژوهشی دانشکده کشاورزی، دانشگاه صنعتی اصفهان) واقع در نجف‌آباد متعلق به سری خاک هالای وردندی Fine-loamy, mixed, thermic Typic Haplargids این خاک است. برخی از ویژگی‌های فیزیکی و مکانیکی خاک سطحی مفید در شرایط اشباع و غیر اشباع بر مقاومت خاک در شکل 6 نشان داده شده است (37).

همچنین، بافضل خاطر نشان کرد که نشان مؤثر در خاک علائم حاصل جمع آوری بالانس ماتریک (معادله 5) و کشش سطحی آب است و تر در رطوبت‌های زیاد (4.0 mm) می‌توان از اثر کشش سطحی تشکیل پوششی کرد. از سوی دیگر، در رطوبت‌های کم (3.0 SMC) اثر کشش سطحی غالب می‌شود (37-39 و مکانی‌شناسی بر پرورش ار. دکتری).

بانریان، رابطه خطی مقاومت خاک (Soil strength) با نشان مؤثر در شرایط نیروی خارجی را می‌توان به صورت زیر نوشته (38-40 و 34):

\[\tau = c + b \cdot (\psi_m) \]

و c و b ضرایب تجربی مطابق به بیان کننده پویستگی کننده و سرعت خاک در اثر خشک شدن نشان داده‌شده است. مقادیر مقاومت نشان‌داده‌شده باشند (یعنی تناها عامل کنترل کننده جهایی همانند حاصل از مکانیک بالای‌برد). بنابراین اگر نشان مقاومت خاک از این روند پیروی کند، آن خاک دارای ساختمان نیپایدار بوده و مقادیر آن در اثر خشک شدن به شدت افزایش می‌یابد. مطالعه 6 برای شرایط مبارز صربو بو و با خشک شدن خاک از روند خطر خارجی روش‌ها، در خاک‌های با ساختمان پایدار، نشان مؤثر رابطه فوق را دارد و تقریباً ثابت است. زیرا مقاومت خاکداهنی و بین خاک‌های مویه از آن است که نشان مؤثر قادر به نزدیک کردن و تراکم آنها باشد (6 و 38).

(20-20 سانتی‌متر) مورد بررسی در جدول 1 ارائه شده است. بافت خاک به روش پیش‌آمده‌گیری شده حدود بیان‌داده شده Liquid limit، (Soil consistency limits) حداکثری (LL) و حد انتخاب (Plastic limit، PL) از این داده‌گیری BS (Shrinkage limit، SL) می‌باشد. این اشتیاق و PL به عنوان گذشته باعث اشکال شاخه‌ای (index، PI) محاسبه‌گردی، در رصد آهنگ، مواد آلی و چگالی حفظی (Particle density، PD) شد. نشان‌دهنده باعث اشتعال‌گردی اندازه‌گیری شده. منحنی مشخصه رطوبت خاک (characteristic curve، SMCC) به روش تصویف شرایط مویه

\[\mu_m = \frac{1}{2} \rho_m \cdot \frac{1}{g} \cdot \frac{1}{V} \cdot \frac{1}{S} \]

در در فشار‌های

\[\tau = c + b \cdot (\psi_m) \]

و c و b ضرایب تجربی مطابق به بیان کننده پویستگی کننده و سرعت خاک در اثر خشک شدن نشان داده‌شده است. مقادیر مقاومت نشان‌داده‌شده باشند (یعنی تناها عامل کنترل کننده جهایی همانند حاصل از مکانیک بالای‌برد). بنابراین اگر نشان مقاومت خاک از این روند پیروی کند، آن خاک دارای ساختمان نیپایدار بوده و مقادیر آن در اثر خشک شدن به شدت افزایش می‌یابد. مطالعه 6 برای شرایط مبارز صربو بو و با خشک شدن خاک از روند خطر خارجی روش‌ها، در خاک‌های با ساختمان پایدار، نشان مؤثر رابطه فوق را دارد و تقریباً ثابت است. زیرا مقاومت خاکداهنی و بین خاک‌های مویه از آن است که نشان مؤثر قادر به نزدیک کردن و تراکم آنها باشد (6 و 38).
تغییرات بیشگری‌های شیمیایی و مکانیکی خاک با ساختار ناپایدار یک از آیاپایی‌های غربالی

جدول 1. بخش خواص شیمیایی و مکانیکی خاک

<table>
<thead>
<tr>
<th>PD</th>
<th>OM</th>
<th>CaCO₃</th>
<th>FI</th>
<th>SL</th>
<th>PI</th>
<th>PWP</th>
<th>PL</th>
<th>FC</th>
<th>LL</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg.m³</td>
<td></td>
</tr>
<tr>
<td>0/1</td>
</tr>
</tbody>
</table>

۷. درصد وزنی رطوبت بر اساس خاک خشک

شکل 1. اثر فشار آب منفی بر مقاومت خاک در شرایط اشباع و غیر اشباع (برگرفته از منبع ۳۷)

آب‌ای شدید، و سعی شد از یک گوشه گلدان‌ها آب‌دهی صورت گیرد که شیوه‌سازی آب‌یاری سطحی باشد و با توجه به درصد اشباع خاک (SP)، خاک به نزدیک اشباع بررسی می‌شود. بلاتریل پس از آب‌یاری، ناشست، رطوبت وزنی (MC)، چگالی خاک (BD)، شاخص مکروخوشه (CI) و مقاومت گششی خاک با گذشت زمان (Indirect tensile strength, ITS) اندادگیری شد. سعی شد فواصل اندازه‌گیری طی این تغییرات دامنه نمونه‌برداری مناسبی از رطوبت خاک را شامل گردید و از سوی دیگر امکان نمونه‌برداری و جمع‌آوری واسطه‌ای در رطوبت‌های خشک و خیلی کم امکان برداشت نمونه دست نخورده برای ITS و BD بسیار ضعیف بود.
نتایج و بحث

در موقع ابزارهای گلدن‌ها، ابزار ایجاد شد، که نشان دهنده پاسخ‌گویی خاک‌خاکنده‌ها و اثر آزاد شدن هوا محصول خاک است. به منظور ناساز آب با سطح خاک، خاک‌خاکنده‌ها و کلرک‌های سطحی از هم باشند، شدند و سطحی تقریباً صاف با کیفی حاصل از تخریب آنها به جای ماند. بررسی‌های مولفه و همکاران (27) نیز مؤثر این مشاهدات است. بررسی‌های کمرب و همکاران (23) و قوامی (15) نیز نشان داد که مرکوری خاک‌خاکنده‌ها صورتحاصل از خاک‌ورژ و همکاران (12) در تخمین‌های هر متریک و خشک‌شدگی تحقیق می‌باشد. مکانیک

شدن سبب مسند خاک‌خاکنده‌ها شد و اجازه می‌دهد که

تهیه‌های بی‌اختیار خاک و کش‌سازی آب آنها را به صورت یک‌دیگر

پوشش شدند و خشک‌شدگی نسبت این آب‌یاری می‌شود. به اتاق سطحی و ار (16) در تخمین‌های مرطوب شدن یک خاک

است، به دلیل آن که تمام خاک‌خاکنده‌ها به صورت تغییر قابل

نتش حاضری و اثر اثر بسیار زیاد

است. پیوستن تغییرات خاکی صورتحاصل می‌گرد. در

دوره‌های بین مرطوب و خشک شدند، سطح ناساز خاک‌خاکنده‌ها زیادتر شده و اصطلاحاً به هم جوش می‌خورند.

و نشش مؤثر کمتر می‌شود. بازی و خشک پس

از ابزار اثر داشت که چنان حدود پنج سانتی‌متری، خاک‌خاکنده‌ها و کلرک‌های تخریب شده (به دلیل خشک خوردن گسیل) و از این عمق به پایین بی با می‌تواند به هم جوش خورند. به

سس می‌باشد، در خاک مرطوب‌شده به هم پیوستگی (Coalescence)

یا وجود آرام که ذرات بین خاک‌خاکنده‌ها به صورت پل قرار

گرفته و آنها را به یک‌دیگر تغییر نمی‌دهند. ولی در عین حال هنوز

(سیب شدن‌بدر) (10) و (11)، با استفاده از سیستم‌نموده‌برداری

مذکور، نمودن‌برداری از عمق ۱۰۰ سانتی‌متر (سیستم‌متر) و مورد

برای بررسی تغییرات مقاومت خاک سطحی و عمیق، استوانه

خاک به دو بخش (0–18)، 18–36 سانتی‌متر می‌باشد. به

ITS (Indirect tension test) روی غیر مستقیم

تموده‌های مذکور افزایش یافته شد. در این روش، استوانه خاک به صورت طولی بین دو صفحه بارگذاری قرار گرفته و نیرو و جریان بروم به طور همزمان با لحظه بروز نرخ طول و

شکست نموده‌ی مسیر شد. سرعت بارگذاری در ITS

میلی‌متر در دقیقه تنظیم شد. سپس با استفاده از روش (Flattening)

محاسبه گردید:

\[ITS = 2 \cdot F(x)/(\pi d) \]

که در فرمول فوق F نیروی شکست در نقطه کسیختگی و \(a \) به ترتیب قطر و طول نموده و \(g(x) \) ضریب صاف‌شدنگی

بوده که از رابطه زیر محاسبه می‌شود (Flattening coefficient):

\[g(x) = (-d/2a) \cdot (2x - \sin 2x - (2y/d) \cdot \ln(\pi/4 + x/2)) \]

در این رابطه، a عرض بخش صاف شده استوانه خاک در تماس

با صفحه بارگذاری در نقطه کسیختگی، \(x \) قافل‌بین دو بخش

ساختهای در نقطه کسیختگی /\(y x/a \) نسبت صاف‌شدنگی

کول (Flattening ratio):}

پتانسیل مترایک (\(\mu \)) نمادی از تانسومتر در گلدن‌ها و در پتانسیل‌های کم‌تر به طور غیر مستقیم است. با استفاده از SMCC سنجش کلرک‌های تانسومتر در عمق‌های 5 و 12 سانتی‌متر تغییر شد، که به ترتیب این کنندگان پتانسیل مترایک لاگه‌ای 80–800 و 16–800 سانتی‌متر بود. این یک کم که

\[\chi \cdot S = \chi_{\text{s}} \cdot \mu \]

\(\chi_{\text{s}} \) مقدار معیار از رطوبت‌های مختلف محاسبه شد و مقدار 1 بر

داده‌ها و CI مقایسه نیروی مورد بررسی برای رابطه مقاومت

و ITS و نشش مؤثر از بخش مرطوب‌شده منحنی رطوبتی انتخاب

1382 علم و فنون کشاورزی و منابع طبیعی / سال هفتم / شماره اول / بهار
گاهی اوقات، تراکم و سپس افت ابعاد خاک است. این مقادیر
نیازمند، سپس افزایش
لایه ۲۰۰-۲۰۰۰ سنی متری از مقدار اولیه
۰/۲ بوده و به مقدار ۱۳۰ مگاوولت افزایش
یافته است. برای حفظ استحکام خاک، می‌تواند
در نتیجه تغییرات تدریجی آن حاصل از افت ابعاد
است.

(۱۹) چگالی ظاهری

تغییرات میانگین
BD نمایانگر
یافته است. این
در آمار برای
نمونه شدن
با تغییرات رطوبیت
و سبب افت ابعاد
در شکل ۳ آورده
شد. این شکل نشان می‌دهد که بسیار نسبت به تغییرات در
لایه ۵۰-۲۰۰۰ سنی متری شدید (دبایر و همکاران ۳۸) در این
خاک افزایش داده شد. این نشان داد که بسیار
می‌تواند سبب تغییرات
و ساختار خاک را به تنها
مدفوع بودن توده خاک توسط گلدان در بررسی حاضر
نسبت به بیش از
پیش از بخش خاک دانه‌ها و
بدون تولد خاک دانه‌ها و
یافته است. این نشان داد که بسیار

فناوری‌های فیزیکی و مکانیکی خاک بر
های فوزهی و اوزن (۱۶) نیز این تاثیر دیده می‌شود.

(۲۰) افت ابعاد

گرایش ظاهری

تغییرات برخی و

شکل 2. نشست خاک با گذشته زمان پس از آبیاری (از آغاز تا پایان آزمایش)

شکل 3. تغییرات چگالی ظاهری (BD) (میانگین عمق صفر تا 20 سانتی‌متری) با رطوبت وزنی (MC) خاک با گذشته زمان پس از آبیاری

BD در این پژوهش برای بیان تغییرات حدود 0.3 Mg.m⁻³ بود. البته اولیه خاک‌ها در بررسی ویچ و همکاران (36) و مولینز و همکاران (27 و 28) نشان داد که تغییرات در فراواند خشک شدن، روند خاص و معنی‌داری ندارد. در صورتی...
پیش‌تر از BD اولیه خاک در پژوهش حاضر است.

ویژگی‌های مکانیکی

شاخه مخربوطی

(1) در عمق 2000 سنتمتر بس از آبیاری با رطوبت (منحی مشخصه مقاومت خاک با نشان دهنده تغییرات شدید در (strength characteristic curve محدوده رطوبت مورد بررسی است. با استفاده از این منحنی تخمین مقاومت به کمک رطوبت خاک امکان‌پذیر است. اگرچه مقاومت خاک در رطوبت حد پرمردگان دائمی (permanent wilting point, PWP) بی‌ одежد، مقاومت خاک بیش از PWP رشد متوالی در آب‌بستگی خاک است. این قطعه‌گیری از سوی دیگر، بررسی‌های ویژه و همکاران (36) نشان داد که رشد گیاهی در مقدار 1000 kPa آغاز به کاهش این بود در مد 2000 kPa می‌تواند در این خاک پس از تخمین ابزار در رطوبت حدود 1200 درصد (بیشتر از (به وجود آمد (شکل 4). در این خاک بیش از این حد، سپر و همکاران (32) نشان داد، پس از آب‌بستگی این خاک، سپر شدن باید چندی‌گردان میزان 35 کاهش، مقاومت‌بندی kPa خاک در حالت اریز و هاوای‌خشک پیش از آب‌بستگی (حدود 4000، نشان دادشده است) با مقادیر آن در همین رطوبت پس از آب‌بستگی یا این 2000 kPa، نشان داد که مقاومت خاک در اثر تست و انقباض ناشی از آب‌بستگی بیش از شش برابر شده است. بررسی شکل 4 نشان میدهد که مقاومت خاک در رطوبت‌های پیش‌تر از LL کمتر از 1000 kPa، و در رطوبت‌های کمتر از SL کمتر از 2000 kPa، بی‌ одежد، مقاومت به رطوبت خاک را می‌توان دیلی نمایش داد. این خاک دانست (27 و 28).

(2) مقاومت کشن ویژه از نظر بررسی رابطه مقاومت و نشان معنادار رابطه‌های دامنه‌ای مربوط به نشان‌های مؤثر 5000-کیلوپاسکال در مورد CI و 6000 کیلوپاسکال در مورد IT کیلوپاسکال در مورد IT است. استفاده شد (دامنه رطوبت زیاد). منحنی مشخصه رطوبتی در نشان مؤثر در شکل 8 نشان داده شده است. مدل ارائه شده در شکل 7 مدل گادر و همکاران (14) است. شتاب‌های روند تغییرات شکل 8 با شکل‌های 4 و 5 نشان دهنده تاثیر نشان مؤثر بر مقاومت خاک بیشتر (32).

در سطح‌های 9 و 10 به ترتیب رابطه مؤثر ارث داده است. با بررسی عامل معنادار خصوصی بر داده‌ها، به ترتیب 27 و 48 درصد تغییرات به نشان مؤثر قابل می‌باشد.
شکل 4. تغییرات شاخص مخروع‌کننده (CI) (میانگین عمق صفر تا 20 سانتی‌متری) با رطوبت وزني (MC) خاک با گذشت زمان پس از آب‌اری

شکل 5. تغییرات مقاومت کششی (ITS) (داده‌های ادغام شده، لیاهای 1-18 و 8-16 سانتی‌متری) با رطوبت وزني (MC) خاک با گذشت زمان پس از آب‌اری
تغییرات برخی ویژگی‌های فیزیکی و مکانیکی خاکی با ساختار ناپایدار پس از آبیاری غرفه

در خاک‌های مناطق خشک و نیمه‌خشک به رواانی پایت می‌شوند. به همراه هلال آب پری‌پر از خاک در پی فراپید خشک شدن، به تعقیب نمایندگان ذرات با خاک، دانه‌ها حرکت کرده و با رسوپ در این محل‌ها به مقاومت خاک می‌افزایند. بنابراین، رسوپ مؤثر و موقعیت کاتی‌ها و کربنات‌ها نیز بستگی تأمین به عمل هلال آب و نش ریوت دارد.

توجه است. بنابراین، احتمالاً کنترل کننده اصلی مقاومت در حال تر در این خاک، نش مرکزی می‌باشد. به نظر می‌رسد، رسوپ برخی کاتی‌ها (سیلیس محلول) و واکنش‌های آهک زیاد این خاک با ذرات طی فراپید خشک شدن، توجیهی برای بقای تغییرات مقاومت باشد. مدل ترسیمی هورن و دکستر (۲۱) نشان می‌دهد که ذرات رسوپی مانند سیلیس محلول و کربنات‌ها (که

\[\text{ITS} = 0.011CI \quad R^2 = 0.86 \]

\[\text{MS} = 5E+07MC^{-4.459} \quad R^2 = 0.97 \]
شکل 8: تغییرات نتش مؤثر با رطوبت وزنی (MC) خاک.

\[ES = 1E+06MC^{-3.459} \]
\[R^2 = 0.94 \]

شکل 9: رابطه شاخص مخربی (CI) و نتش مؤثر خاک.

\[CI = 3.9164ES + 69.707 \]
\[R^2 = 0.72 \]

شکل 10: رابطه مقاومت کششی (ITS) و نتش مؤثر خاک.

\[ITS = 0.64 + 0.095ES \]
\[R^2 = 0.48 \]
نتیجه‌گیری و توصیه
پژوهش حاضر نشان داد که در سری خاک‌های دوری تررسی، که در اسفهان فراوانی یافته می‌شود، و یک خاک تنها در مناطق خشک مرکزی است، کتلت کندنی اصلی مقاومت در حالت ترنش متوفر است. زیرا پس از تنها آب‌داری به وقوع می‌پردازد. خاک با حالت فیبریک‌پیش از خاک‌های متغیر بیشتر از خاک‌های زردی‌شکافی شد. در شرایط ایران مرکزی، چون زون و سایر نقلیه کشاورزی زیاد نیست، و از سوی دیگر در مسیرهای محور محدود کندنی‌های ITS و CI به طبق معادله مقاومت خاک (معادله 6) در (برای 16)، 1 برای (عمر از مبدأ 16 12 kPa و 70 kPa (عمر از مبدأ این کندنی معلوم در رژیم‌های مختلف که در آن شرایط مطلوب شبکه از جنس بررسی دیگری دارای پیشرفت و افزایش ناگزیر که نشان این افته مشاهده و افزایش سختی سخت‌داری می‌باشد. جدی کردن سخت‌داری طبیعی و

سخت‌داری زمانی (Age-hardenning) (11 و 35 در این

شایان این افته است. جنون به یک دیق آرایش و بررسی میکروسکوپی پیوندها و اتصالات در این افته مشاهده و افزایش سختی سخت‌داری می‌باشد. جدی کردن سخت‌داری طبیعی و

مکانیک‌شناسی یک دکتر سی. ا. مولینیز. گریت و همکاران

(17) معقیدند که افزایش خنثی مقاومت در برایر BD به دلیل سخت‌داری طبیعی، و افزایش غیرخطی مقاومت در برایر BD در اثر هر دو فاکتور است. زیرا گذشته از اثر BD بر مقاومت سخت‌داری طبیعی)، افزایش قدرت پیوندها و اتصالات

(سخت‌داری طبیعی)، افزایش ترنش پیوندها و اتصالات MB تابی (سخت‌داری زمانی) نسب افزایش مقاومت موجود در

خاک می‌شود (11).
در اختیار کشاورزان قرار گیرد.

سیاسگزاری

این پژوهش به‌خیال از رساله دکتری نویسنده اول است. کلیه
مقدمه و اتمیکینه بنده این طرح را پژوهشگر اصلی ایجاد
و اتمیکینه که به‌جای ویژه‌سازی ماده نکته و قدردانی می‌شود.
همچنین از آقای مهندس محمدعلی مطیعی و آقای محمدحسین
مراجع مورد استفاده

1. اشرفی زاده، س. 1388، بررسی تأثیر زیرساخت بر بعضی خصوصیات فیزیک–مکانیکی خاک و عملکرد کندم. گزارش پژوهشی
موسسه تحقیقات فنی مهندسی کشاورزی، کرج.

2. افیونی، م. و. رصدی. 1388. اثر روش‌های خاک‌ورزی بر ویژگی‌های فیزیکی خاک و حرقه‌برمید. علوم و فنون
کشاورزی و منابع طبیعی (57): 323-329.

3. حاجی‌عسایی، م. و. رصدی. 1388. اثر شیوه‌های خاک‌ورزی بر بعضی از ویژگی‌های فیزیکی خاک و عملکرد ذرت در مزرعه تحقیقات لورک، علوم و فنون کشاورزی و منابع طبیعی (3): 123-132.

4. مصداقی، م. و. رصدی. 1388. مورزی بر پدیده سخت‌سوزیگری طبیعی خاک و مشکلات آن در خاک‌های ایران. مجموعه
مقالات قومی هنرمندان کشاورز. علوم خاک ایران. دانشگاه شهید چمران.

5. میرلیزی، آ. و. رصدی. 1388. رصدی. 1388. بررسی و اکتش فنی از ویژگی‌های مختلف ذرت به سیستم شکم
منداژ و بدون شکم در ایجاد. علوم و فنون کشاورزی و منابع طبیعی (57): 117-126.

6. همتی، ع. و. 1381. مورزی بر نتایج تحقیقات در مدیریت خاک‌ورزی برای تولید محصولات زراعی آلی در ایران. مجموعه خلاصه
مقالات دومین کنگره ملی مهندسی ماشین‌های کشاورزی و ماکانیاسیون. 1. و. 9. آینان کرج.

Res. 55: 117-126.

9. Aluko, O. B. and A. J. Koolen. 2001. Dynamics and characteristics of pore space changes during the crumbling on

Plant and Soil 180: 67-73.
