تأثیر روشهای فراوری بر تجزیه‌پذیری دانه‌های جو و سورگوم جارویی در شکمبه

اکبر نیکخواه، مسعود علیخانی، حمید امانلو و عبدالحسین سعی

چکیده

به منظور تعیین تجزیه‌پذیری ماده خشک و پوستین خام دانه‌های سورگوم جارویی و چربی شده با بخار و سورگوم جارویی آسیابی شده و چربی آسیابی شده در شکمبه، آزمایشی با استفاده از سه رأس میش فیستولی‌گذاری شده از ناحیه شکم به روش کیسه‌های ناپلئونی انجام گرفت. نمونه‌ها با استفاده از غیرال در میل‌متری آسیاب شد. کیسه‌های حاوی ۷۵ گرم نمونه در زمان‌های ۵، ۱۲، ۱۸ و ۴۸ ساعت در شکمبه قرار داده شد. کیسه‌ها پس از خروج ال شکم به جیران آب شیر شسته شد.

تجزیه‌پذیری مؤثر در سرعت‌های عبور ۶ و ۸ درصد در ساعت، برای سورگوم جارویی ورته شده با بخار به مدت میان‌داری پیشرفتی از سورگوم آسیابی شده بود (۹۳ و ۳۳ درصد). سورگوم جارویی ورته شده با بخار، ماده خشک محلول پیشرفتی نسبت به چربی و سورگوم آسیابی شده داشت (۹۳ در ۹۱ درصد). افزون بر این، پیشرفت ناحیه محلول ماده خشک در سورگوم جارویی ورته شده با بخار کمتر از جر و سورگوم آسیابی شده بود. فراوری سورگوم جارویی با بخار به طور مؤثری پیشرفت محلول دانه را کاهش داد.

ولی سرعت تجزیه‌پذیری پوستین تغییر نیافت. نتایج این پژوهش نشان داد که دانه‌های سرگرم جارویی جراید به شکم به سه‌گانه، نسبت به دانه‌های آسیاب شده، مقاوم بیشتری را در اختیار می‌کرد و پس از کشیده شکم به صورت کاهش قرار می‌گرفت. به سه‌گانه، استفاده از کارآمدترین شیوه‌های فراوری دانه‌های سورگوم جارویی در تهیه نخ‌خوارکنندگان ضروری است.

وازه‌های کلیدی: ورته کردن با بخار، سورگوم جارویی، جر، تجزیه‌پذیری مؤثر، شکمبه

1. دانشگاه سیاس کارشناسی ارشد علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
3. مریم علوم دامی، دانشگاه کشاورزی، دانشگاه زنجان

۱۶۹
مقدمه
سوزرگ (ذرت خوش‌خیابی) پس از گندم، برنج و جو، پنجمین غله زراعی مهم جهان است (4). به طور کلی سوزرگ گیاهی مخصوص مناطق گرم و خشک است، که به دلیل سازگاری‌های دمایی و رطوبتی امکان کشت آن در اقلیم‌های مختلف از نظر دما و رطوبت و ارتفاع وجود دارد (3 و 4). کشت این گیاه در بخش مناطق کشور نشانه‌های سازگاری آن با شرایط اقلیمی بیشتر مناطق کشور است. به طوری که در مناطق شمالی، شمال شرقی و شمال غربی به وفور از ارقات جارویی سوزرگ، استفاده می‌شود که در دارای تانزانیا (با نام بک درصد) ماده خشک دانه می‌باشد (5).

مواد و روش‌ها
دانه‌های سوزرگ (Sorghum bicolor) از نوع جارویی بودند، که پس از برداشت گذشته‌ای به زیر، پس از رنگ نوری به پس از برداشت گذشته‌ای از آن‌ها به استان آذربایجان شرقی می‌باشد. پس از آن نمونه‌ها با آسیاب چکشی با قطر مناسب در میله مت آسیاب شدند (13). دانه‌های جو نیز به همین روش آسیاب شدند.

فرآوری دانه سوزرگ جارویی با بخار
به منظور فراوری دانه‌ها و چربی کردن آنها می‌گذرد، به سیستم غلظت‌های مرطوب استفاده شد. بندین گونه که نخست دانه‌ها به مدت 5 دقیقه در داخل انالوگ‌هایی از جنس استیل در معرض بخار داغ (100 درجه سانتی‌گراد) قرار گرفتند. پس از آن که میزان رطوبت دانه به 20% رسید، از آن‌ها غلظت‌های ورقه‌کننده گردانده شدند. نتایجی که صورت پیدا کردند تا به داخل طول و قطر غلظت‌های فولوادی به ترتیب 90 و 40 سانتی‌متر بود. در مرحله پایانی، ورقه‌های تولید شده خشک شدند تا اینکه در آزمایش‌های تجزیه‌پذیری استفاده گردید. ترکیب مواد غذایی نمونه‌های جو آسیاب شده، سوزرگ آسیاب شده و سوزرگ ورقه شده با بخار در آزمایش‌های...

۱۷۰
تاثیر روش‌های فراوری بر تجزیه‌پذیری دانه‌های چو و سورگوم گازی در شکم‌های اندام‌گیری شد (جدول ۱). برای تعیین درصد ماده خشک، نمونه‌های آسیاب شده به قدری مورد کاهش ۱۲ ساعت در آب ۱۵۰ درجه سانتی‌گراد قرار گرفتند. پروتئین نامانه به روش کانالی‌های تجزیه و تحلیل شد. Dیواتور نهادین (Neutral detergent fiber) و Dیواتور نهادین (Acid detergent fiber) میانسورگوم به روش فلوئین نیز تعیین گردید (۷).

آزمایش‌های تجزیه‌پذیری شکمه‌ها

سک میش فیستولایگاتور شده نازدیک به وزن ۵۰-۵۰ گیلوگرم برای آزمایش انتخاب شد. جیره در سطح تغییری نیز به پایان رسید در ساعت‌های ۱۵ و ۲۰ و ۳۰ و ۴۰ به‌طور یک‌پلکنگ به دو دست آماده (۱۷).

d = a + b(1-e^{-kt})

که درصد b (Disappearance rate) که سرعت تکاملی شدن محصول D به ماده محولی است که سرعت a از شدت خشک می‌شود. گشته با اکثریت ماده از آنها تجزیه‌پذیری بالقوه که درند و b سرعت هضم خشک است. ماده‌های تجزیه‌پذیری مانند خشک و پروتئین خام با استفاده از شکم‌های غیر دانه به دقت ۱۵۰ درجه سانتی‌گراد قرار گرفتند (۱۷).

ED = a + [(b × c)/(c + k)]

که درصد سرعت تخمین عبور مواد از شکم‌های ED است. ماده‌های تجزیه‌پذیری عبورانه به‌طور همزمان داخل و خارج می‌شوند. ماده‌های تجزیه‌پذیری شکم‌های ED است. ماده‌های تجزیه‌پذیری ۵۰ به روزتهای به‌طور تقریبی ۵۰ میلی‌متر داشتند. ابعاد کیسه‌ها به‌طور تقریبی ۵۰ میلی‌متر و دیگری نبودند. دانه‌های آسیاب شده دانه‌ها گرفتند. این دانه‌ها به روش کانالی‌های تجزیه و تحلیل شد. Dیواتور نهادین (Neutral detergent fiber) و Dیواتور نهادین (Acid detergent fiber) میانسورگوم به روش فلوئین نیز تعیین گردید (۷).

نتایج و بحث

مواد مغذی دانه‌ها

میزان رطوبت نمونه‌ها، به ویژه در سورگوم‌های فراوری شده در حد یکسانی با توجه به این که دانه‌های سورگوم ورفت شده به‌طور خاص طی مرحله فراوری ضرورت دارد. وزن خود آب جذب کرده بودن، باعث میزان رطوبت نمونه‌ها نسبت به مقدار دانه‌ها در مورد طولانی موج و پنجره می‌شود. پنجره‌های جدید پیش‌بینی می‌شود (۷). مولکولی نقش‌های می‌گردیده و قابلیت

۱۷۱
جدول 1. ترکیب مواد مغذی دانه‌ها (بر اساس صد درصد ماده خشک)

<table>
<thead>
<tr>
<th>مواد مغذی</th>
<th>جو آسیاب شده</th>
<th>سورانوم آسیاب شده</th>
<th>سورانوم ورقه شده با بخار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک</td>
<td>88/0</td>
<td>88/0</td>
<td></td>
</tr>
<tr>
<td>پروتئین خام</td>
<td>17/7</td>
<td>17/7</td>
<td></td>
</tr>
<tr>
<td>الاف خام</td>
<td>5/0</td>
<td>5/0</td>
<td></td>
</tr>
<tr>
<td>عصاره اثری</td>
<td>2/5</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>دیویش سلولی</td>
<td>19/0</td>
<td>19/0</td>
<td></td>
</tr>
<tr>
<td>دیویش سلولی بدون هم سلولز</td>
<td>7/5</td>
<td>7/5</td>
<td></td>
</tr>
<tr>
<td>نان</td>
<td>1/15</td>
<td>1/15</td>
<td></td>
</tr>
</tbody>
</table>

دسترسی میکروگانه‌های شکمی به نشاسته زلاتینی شده کاهش می‌یابد. به همین دلیل باید دانه‌ها را در مدت کوتاهی پس از فراری با بخار استفاده نمود.

همان‌گونه که در جدول 1 دیده می‌شود، دانه‌های سورانوم جارویی نسبت به دانه‌های جوان مقدار دیویش سلولی به‌طوری‌که، نسبت به پروتئین دانه‌های سورانوم (برولاوین‌ها) با استفاده از نوسانات pH گرم‌نشانی گردیده. افزون بر آن پروتئین دانه‌های سورانوم به‌طوری‌که در کاهش تجزیه‌پذیری نشاسته، پروتئین و دیویش سلولی سورانوم در شکمی می‌بنید.

شورای ملی تحقیقات آمریکا (NRC) افزایش میزان انرژی دانه‌های سورانوم را پس از فراری با بخار 16-18 درصد تخمین می‌کند، که رمی‌گیره ملاحظه‌ای است (22). در واقع، علت اصلی افزایش انرژی خالص سورانوم در هم ورقه شده، تغییر در محل هضم نشاسته و پروتئین آن است (22 و 27).

تغییر قابلیت هضم با استفاده از کیسه‌های ناپلیونی ماده خشک و پروتئین محلول

ماده خشک محلول دانه‌های جو آسیابی شده، سورانوم آسیابی شده، سورانوم ورقه شده با بخار (آسیاب شده) و ورقه‌های کامل سورانوم به‌طوری‌که 24/2/23/16/14/23/16/23 درصد بود، از نظر انرژی نتایج بسیار معنی‌داری بین تیمارها وجود داشت (2010/00/00).
جدول ۲ اجزای معادله غیرخطی و تجزیه‌پذیری مؤثر ماده خشک دانه‌های فرابند شده به روش کیسه‌های نابلونی

<table>
<thead>
<tr>
<th>نوع دانه</th>
<th>EDDM (%)</th>
<th>RSD (%)</th>
<th>'c'</th>
<th>'b'</th>
<th>'a'</th>
</tr>
</thead>
<tbody>
<tr>
<td>گرو آسیاب شده</td>
<td>۹۱/۵۴ a</td>
<td>۱/۰۱</td>
<td>٥/۲۴</td>
<td>۴/۱۹</td>
<td>۱۴/۲۳ c</td>
</tr>
<tr>
<td>سوپرس آسیاب شده</td>
<td>۹۳/۸۳ a</td>
<td>۱/۰۰</td>
<td>٥/۰۴</td>
<td>۴/۸۳</td>
<td>۱۴/۳۴ c</td>
</tr>
<tr>
<td>سوپرس جارویی ورقه شده با بخار (آسیاب شده)</td>
<td>۹۵/۳۷ b</td>
<td>۱/۰۸</td>
<td>٣/۱۶</td>
<td>۲/۴۷</td>
<td>۱۳/۳۴ b</td>
</tr>
<tr>
<td>ورقه‌های کامل</td>
<td>۸۸/۳۶ b</td>
<td>۱/۰۷</td>
<td>۵/۸۶</td>
<td>۳/۷۶ b</td>
<td>۱۷/۳۶ b</td>
</tr>
</tbody>
</table>

خطای استاندارد (SE) = ۰/۰۷

1. مواضع محلولی است که در یک کیسه‌های نابلونی نامی‌شوند.
2. مواضع محلولی است که به طور مشابه تجزیه‌پذیری دارند.
3. سرعت تجزیه‌پذیری بخش b است که وارد آن درصد در ساعت است.
4. انحراف معیار
5. تجزیه‌پذیری مؤثر ماده خشک دانه‌ها در سرعت‌های عبور (K) در ۵ و ۸ درصد در ساعت.

احداثی که در هر ستون دارای حروف مشابه هستند، در مساحت (ب) تفاوت مقداری در ۵ درصد می‌باشد. (ب) تفاوت مقداری در ۰/۰۰۱ معنی‌دار است.

![نمودار ۱: تجزیه‌پذیری ماده خشک دانه‌های فرابند شده در زمان‌های مختلف انوکسیسیون](https://example.com/image.png)

شکل ۱: تجزیه‌پذیری ماده خشک دانه‌های فرابند شده در زمان‌های مختلف انوکسیسیون

با بخار، مقدار پروتئین محلول را کاهش داد (شکل ۲). پرستون (۱۸) در پژوهشی اعلام کرد که طی مراحل فراوری، بخار دانه‌های داروهفته و سوپرس، پروتئین محلول دانه‌ها را کاهش می‌دهد. همچنین، کاهش چگالی ورده‌ها و چپ بیشتری دسترسی اسید آمینات می‌گردد.

کمتر بودن مقدار پروتئین محلول نمونه‌ها در این آزمایش می‌تواند به دلیل بروز گریز بودن اندام ذرات (الک دو میلی‌متری مؤثر در حالاتی ماده خشک و پروتئین دانه‌های غلات محسوب می‌شود (۹ و ۱۹).

پروتئین محلول دانه‌های جوز آسیاب شده، سوپرس آسیاب شده و سوپرس ورقه شده با بخار (آسیاب شده) و ورقه‌های کامل به ترتیب ۱۷/۳۴، ۱۸/۳۷، ۲/۰۷۴ و ۲/۵۵ درصد بود (جدول ۳). که نشان داده می‌شود معنی‌دار می‌باشد که این آزمایش فراوری دانه سوپرس (۰/۰۰۱/۰/۰۰۱/۰/۰۰۱) می‌باشد. همچنین در این آزمایش فراوری دانه سوپرس (۰/۰۰۱/۰/۰۰۱/۰/۰۰۱) می‌باشد.
جدول ۳: اجزای معادله غیر خطی و تجزیه‌پذیری مؤثر پروتئین‌های فرآیند شده در روش کیسه‌های نایلونی

<table>
<thead>
<tr>
<th>نوع دانه</th>
<th>RSD</th>
<th>c</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>چو آمیز شده</td>
<td>۷۶/۸۸<sup>a</sup></td>
<td>۵/۴۳<sup>b</sup></td>
<td>۱۴/۱<sup>a</sup></td>
<td>۱/۷۸<sup>a</sup></td>
</tr>
<tr>
<td>سورگوم آمیز شده</td>
<td>۳۲/۳۶<sup>b</sup></td>
<td>۷۴/۰۵<sup>b</sup></td>
<td>۵/۱۱<sup>b</sup></td>
<td>۷۶/۸۴<sup>b</sup></td>
</tr>
<tr>
<td>سورگوم جارویی ورده شده با بخار (آمیز شده)</td>
<td>۲۴/۲۵<sup>c</sup></td>
<td>۴/۲۱<sup>c</sup></td>
<td>۴/۸۷<sup>c</sup></td>
<td>۲/۷۴<sup>c</sup></td>
</tr>
<tr>
<td>ورده‌های کامل</td>
<td>۲۳/۳۷<sup>c</sup></td>
<td>۳/۸۸<sup>c</sup></td>
<td>۱/۸۸<sup>c</sup></td>
<td>۷/۵۸<sup>c</sup></td>
</tr>
</tbody>
</table>

خطا استاندارد (SE):

۱. مواد محلولی است که سرعت تجزیه با محاسبه معادله (۵) و (۶) درصد در ساعت است. ۲. انحراف معیار.

شکل ۲: تجزیه‌پذیری پروتئین‌های فرآیند شده در زمان‌های مختلف انکوباسیون

سورگوم آمیز شده، سورگوم ورده شده با بخار (آمیز شده) و ورده‌های کامل به ترتیب برای با شده‌های تریپتیپ (از سایر که) یکی کمتر از حاصل دست آموز (جدول ۳) پروتئین نامحلول دانه‌های جو به طور معنی‌داری با دانه‌های فرآیند شده سورگوم نفوذ داشت (۱۰۰۰/۱۰). پروتئین دانه جو به میزان زیادتر و با سرعت بیشتری نسبت به پروتئین‌های سورگوم تجزیه شد (شکل ۲). دلیل آن می‌تواند مربوط به ایجاد فلایسی بی‌پوسته پروتئینی (اجسام کافی‌ساز) در دانه سورگوم باشد، که با کوتاهی این مقدار پروتئین نامحلول (۰) برای دانه‌های جو آمیز شده.
تأثیر روش‌های فراوری بر تجزیه‌پذیری دانه‌های جو و سورگوم جاروبی در شکم‌ها

بروتئین‌های کلسترولی می‌توانند ترکیب تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام میزان تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر در تجزیه‌پذیری ماده خشک و پروتئین خام می‌شود.

درصد تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو از آسیاب شده در سرعت‌های 10، 12 و 14 درصد در ساعت پیش‌تر از دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.

درصد تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو از آسیاب شده در سرعت‌های 10، 12 و 14 درصد در ساعت پیش‌تر از دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.

پروتئین‌های کلسترولی می‌توانند ترکیب تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام میزان تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.

پروتئین‌های کلسترولی می‌توانند ترکیب تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام میزان تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.

پروتئین‌های کلسترولی می‌توانند ترکیب تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام میزان تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.

پروتئین‌های کلسترولی می‌توانند ترکیب تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام میزان تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.

پروتئین‌های کلسترولی می‌توانند ترکیب تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام میزان تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.

پروتئین‌های کلسترولی می‌توانند ترکیب تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام میزان تجزیه‌پذیری مؤثر ماده خشک دانه‌های جو و پروتئین خام (EDDM) بی‌واسطه تعامل سه‌بعدی با هم و تعامل تارک‌های ماده‌های مختلف دانه‌های جو و پروتئین خام باعث تغییر و تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام می‌شود.
فرصت کامی‌پن که تنورد و روزگار به دیگر کارهای بخشی بر فراز قرار داشته استفاده کنند. در نتیجه، این کار به دستیابی به نتایجی که با کمک روش‌هایی ارائه داده شده است، کاهش می‌یابد (22). به رغم نتایج پیشرفت کمتر کریک رونیوز در دانه‌های سیاه‌پوشی استفاده نگردید. چون در کنار تعامل دانه‌های دورکن و روش شده، دانه‌های سیاه‌پوشی هر روز با یک دیگر ساخته شده می‌کرده می‌کرده با انتخاب میکروپارامترها قرار داده می‌شود. از سویی، اثر تولید ترکیب دانه دورکن و سیاه‌پوشی بیش از دانه دورکن و سیاه‌پوشی ورده شده با یک دیگر است. همچنین، توان حفظ دیواره سلولی، پروتئین و کل مواد آب در دانه‌های سیاه‌پوشی می‌شود و (23). هر چند دانه‌های سیاه‌پوشی خودرگاه که دسترسی به انتزاعی در شکم‌ها و کل دستگاه گوارش، اطلاعی از این امر را به دام نمی‌دهد. در نتیجه قابلیت هضم در دستگاه گوارش به ادامه می‌رسد و احتمالاً آنتی‌بایس دستگاه گوارش به دنبال درون ترکیب می‌یابد (14). به سختی بهتر، از فراوری

ساژگاری

بدین وسیله از منابعی گروه علم دانه و آزمایشگاه تغذیه داشته‌اند. می‌گردید.

منابع مورد استفاده

1. اسپیک. 1355، تعیین نتایج پیشرفت پروتئین واریته‌های دورکن دانه‌ای در شکم‌های دانه‌ای به دست استفاده کرده‌اند. لی بخشنده. کریک رونیوز با امکان جای‌گزین دورکن با دارته. پایان‌نامه کارشناسی ارشد، دانشگاه تبریز.

2. عابدی. م. ر. 1375. بررسی کمی و کیفی عضله سینه در نیمچه‌های گوسفند، روز ماه‌های در سنین مختلف دانشگاه کشاورزی.

3. کریکی. ع. 1373. آزمایش در منابع خشک. جهاد دانشگاهی، دانشگاه فردوسی مشهد.

