برآورد جمعیت پوره‌های سینن ۱ و ۲ پسیل پسته از طریق شکار حشرات کامل، با استفاده از تله‌های زردنگ، چسبنده

حسین سیدالسلامی، علیرضا هادیان و عبدالملک جرایی

چکیده

تله‌های زردنگ جاده‌ای در شکار حشرات کامل پسیل پسته دارند. و تخمین جمعیت مراحال نابلیس این حشره از شکار حشرات کامل در بیش از ۴۰ تا تراکم محله مشتاقی را می‌آیند. اکثریت در سال‌های ۱۹۳۳ و ۱۹۸۳ در طول فصل زراعی، تله‌های زردنگ چسبنده به ابعاد (۱۵و۱۰) سانتی‌متر به معنی‌شکار حشرات کامل پسیل پسته در دو باغ پسته در منطقه بسیار اصفهان نسبت به دو مرکز تراکم تخم و پرورش پسیل نیز برگزیده شده که به صورت به‌طور محسوس و تعیین‌گراید. در این مکان تخم‌های دسک آمده روابط می‌بینیم و رتبرسین موجود به تفاوت دیگر، ریشه تخم و حشره کامل در بیش از چندین ساله شده. ولی می‌بینیم یکی ازتعمیم تخم و پرورش در باغ‌های سینن ۱ و ۲ با حشره کامل، و مهم‌ترین تخم‌های پوره‌ها و وجود داشت. تخمین جمعیت پوره‌ها (Y) به استفاده شمار حشرات کامل شکار شده (X) در تراکم و زیاد با معادلات:

\[
\hat{Y} = 0.872 + 0.7424X - (0.1508X)^2
\]

\[
R^2 = 0.82
\]

\[
\hat{Y} = 0.872 + 0.7424X - (0.1508X)^2
\]

\[
R^2 = 0.82
\]

و در تراکم کم با معادلات:

\[
\hat{Y} = 0.872 + 0.7424X - (0.1508X)^2
\]

\[
R^2 = 0.82
\]

انجام شد. در این پژوهش اکنون استفاده از تله‌های زردنگ در تخمین جمعیت پوره‌های جوان می‌باشد ارزیابی شده و بررسی پیش‌تر و استفاده از این روش در مدیریت باغ‌داری با پسیل پسته توصیه گردیده است.

واژه‌های کلیدی: پوره‌های جوان، پسیل پسته، تله‌های زردنگ

۱. استاد حشره‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۲. دانشجوی سابق کارشناسی ارشد حشره‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۳. استاد اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۲۲۳
مقدمه

در ایران، پسرهای ماده در گونه‌های با نام علمی Agonoscena معرفی و پیش‌روی عمومی آن گزارش گردیده است. (4) در پژوهش‌های سال‌های اخیر نام علمی این گونه تغییر یافته و جزئیات بیشتری از Agonoscena pistaicae ترکیبی در مورد ناشنادگان و ناشنادگانی که شکار روز عصی و روز عصیگاههای متنوع روند تغییر جمعیت این حشره را در مقایسه با مراحل نخ و پوشه به‌طور خوبی مشخص نمی‌نماید. با وجود این، اطلاعات محدودی در مورد روز عصی، جمعیت این حشره در مراحل مختلف رشد گزارش شده است.

در پاره‌ای یک از روش‌های میلزه شیمیایی، پیوندوروزیک و غیره اطلاع از تراکم آفت برای تصمیم‌گیری در یک آستانه مورد نظر ضرورت دارد. اگر نشان دهنده با پری که به نسبت پری در میانه‌های با نشان دهنده به شکار روز عصی و روز عصیگاههای متنوع با تغییرات جمعیت این حشره را در مقایسه با مراحل نخ و پوشه به‌طور خوبی مشخص نمی‌نماید. با وجود این، اطلاعات محدودی در مورد روز عصی، جمعیت این حشره در مراحل مختلف رشد گزارش شده است.

مواد و روش‌ها

این پژوهش از مدت‌هاهای 1378 تا 1387 در یک باغ پریس یک آستانه می‌باشد. این پژوهش در منطقه برخوردار اضطرابات انگیزه‌های گردیده (13). در این باغ، با مصرف شکر دختر به طور تصادفی انتخاب می‌شود و روز هر نفر نشان می‌دهد. انتخاب محل نسبت به شکر پشت‌زدن را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌های را در این مدت گزارش کرده است. ابعاد نهایی زمین‌نگار بیشتر از پنل‌هی
نمونه‌برداری بررسی و احتمالاً به مدلهای مانندی دست یافت. با توجه به این که ترسیم تراکم پوره‌های بدون بال اهمیت بیشتری در زمانی کنترل این آفت و بزرگی کنترل شبیه‌سازی دارد، و تناول زندگی نیز کلیتری مناسبی در شکار حشرات کامل نشان می‌دهد. روابط رگرسیون موجود میان شمار حشرات کامل شکار شده ریی لثه در هفته پایانی تراکم پوره‌ها بدون بال در هفته پایانی ویلی به هفته آنتاکر نسبت به شکار لثه‌ها، به طور دیق، تری در زیر تجزیه و تحلیل شده است.

روابط رگرسیون درجه اول (خطی) میان شکار لثه‌ها و پوره‌های بدون بال، با وجود ضربی بینین زیاد و در دامنه‌های مورد استفاده، نشان دادند (با تخمین)

$$R^2 = 0.825, \hat{Y} = 0.912 + 0.5X$$

که توانایی پیش‌بینی لازم را در تخمین جمعیت پوره از شکار حشرات کامل تردیدن و جمعیت پوره‌ها را در جمعیت زنده حشره کامل بیش از واقعیت، و در جمعیت کم حشره کامل کمتر از واقعیت نشان می‌دهد. در این تجزیه و تحلیل با تبدیل داده‌ها به لگاریتم، گرچه ضریب بینین افزایش پس‌اف (با تخمین)

$$R^2 = 0.752, \hat{Y} = 0.912 + 0.5X$$

و بیان غیر نجایی

$$R^2 = 0.875, \hat{Y} = 0.912 + 0.5X$$

به توانایی پیش‌بینی مدل ویژه‌ای ریزگذاری تخمین و تخمینات با تبدیل داده‌ها به لگاریتم، حساسیت داده‌ها (شکل‌های 1 و 2) نشان داد که در جمعیت زنده حشره کامل در مقایسه با جمعیت کم تراکم پوره‌ها کاهش می‌یابد و احتمالاً در تراکم‌های زیاد حشرات کامل و پوره‌ها در رقابت با یکدیگر بوده و باعث این کاهش در تراکم پوره‌ها شده است. و باعث تعداد غیرنخیاب این تراکم بوده و تحلیل‌ها به کار رود. در همین زمینه معلوم شد که معادلاتی گرمه در مورد (شکل‌های 1 و 2) در تراکم‌های بیشتر و در دامنه‌های مورد استفاده دارای قدرت پیش‌بینی هستند. افزون بر این، مدل‌ها در جریان دوم از مقایسه با مدل لگاریتمی، که در حالی این اشاره شد، در تراکم زیا تطبیق می‌کند، ولی تخمینات تراکم میانگین پک لته روی یک درخت در شکار هفته‌های اول و دوم در مجموع باید 12 تله در هفته پایانی در پراپ بیشتری، در برآورد میانگین تراکم نخم، پوره و مجموع نخم و پوره به تفکیک روز 20 برگچه از یک درخت این مرحله و در مجموع روی 240 برگچه در هفته‌های اول و دوم، و شکار هفته‌های اول و دوم در برآورد میانگین تراکم نخم، پوره و مجموع نخم و پوره در هفته‌های اول و دوم، و به همین ترتیب پرای هفته‌های بعد استفاده شدند. با این روش امکان تخمین جمعیت پوره‌های جوان از شکار حشرات کامل پسین با استفاده از نمودارهای زندگی رگرسیون. انتخاب این فواصل زمانی با توجه به طول دوره جنین و طول دوره پوره‌گری بود (9 و 12).

۲۲۵
شکل 1. رابطه رگرسیون درجه دوم بین میانگین پوره‌ها (روی 20 برج) با میانگین شکار نهایی (روی یک برج)
در باغ تجاری

شکل 2. رابطه رگرسیون درجه دوم بین میانگین پوره‌ها (روی 20 برج) با میانگین شکار نهایی (روی یک برج)
در باغ غیر تجاری

پوره‌ها از شکار حشرات کامل در تراکم کم و در دامنه‌های مورد استفاده منطقی به نظر نمی‌رسید.
تحلیل تغییرات فصل پسند در شرایط اصفهان (1) و (2) و داده‌های مورد استفاده در پژوهش حاضر نشان داد که در سیزده هفته اول فصل تراکم سیل کم (سفرت نا 25 پسیل روی یک برج) پس از این جمعیت به سرعت افزایش می‌یابد (نا 5000 پسیل روی یک برج). بنابراین، داده‌های این در دوره
جادگانه پرایرهای باغ تجاری و تحلیل گردیده، که نتایج آن در
جدول ۱. اعتبارسنجی برای معادلات رگرسیون در تنظیم رواکم پروپاکسید (פ) مورد انتظار روی بیست برگ از شکار حشرات کامل (X) روی یک هله زرد

<table>
<thead>
<tr>
<th>تعداد فرضی پروپاکسید بالا روی ۲۰ برگ (Y)</th>
<th>وضعیت</th>
<th>R²</th>
<th>معادله رگرسیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۸۰</td>
<td>شکار در حوزه فصل‌بند، با غیرتجاری</td>
<td>۰.۸۳۲</td>
<td>X = ۰.۸۳۲X - ۰.۸۴۵</td>
</tr>
<tr>
<td>۴۸۰</td>
<td>شکار در حوزه فصل‌بند، با غربال تجاری</td>
<td>۰.۸۳۴</td>
<td>X = ۰.۸۳۴X - ۰.۸۴۷</td>
</tr>
<tr>
<td>۴۸۰</td>
<td>تراکم زیاد، با غیرتجاری</td>
<td>۰.۸۳۷</td>
<td>X = ۰.۸۳۷X - ۰.۸۴۹</td>
</tr>
<tr>
<td>۴۸۰</td>
<td>تراکم زیاد، با غیرتجاری</td>
<td>۰.۸۳۶</td>
<td>X = ۰.۸۳۶X - ۰.۸۴۷</td>
</tr>
<tr>
<td>۴۸۰</td>
<td>تراکم کم، با غیرتجاری</td>
<td>۰.۸۳۵</td>
<td>X = ۰.۸۳۵X - ۰.۸۴۷</td>
</tr>
<tr>
<td>۴۸۰</td>
<td>تراکم کم، با غیرتجاری</td>
<td>۰.۸۳۴</td>
<td>X = ۰.۸۳۴X - ۰.۸۴۷</td>
</tr>
</tbody>
</table>

* **: دو هله روی یک برگ گذشته
**: بیست هله روی یک برگ گذشته
***: در این دو گروه نتایج برای تراکم‌های در حد انتظاری انتقادی و تراکم‌های کم به هم نزدیک است و با مدل‌های دیگر در این پژوهش که از مدل‌های است bucks و روابط دیگر استفاده شده‌اند، ممکن است متوالی و دارای نیزی در نمایشگاه.
شکل ۳. رابطه گرسینون درجه اول بین میانگین پوره‌های بدون بال (روی ۲۰ پرگ) با میانگین شکار تله‌ها (روی یک تله) برای تراکم زیاد در باع تجاری

\[y = 20.52x^2 + 2.46/2 \]
\[R^2 = .8386 \]

شکل ۴. رابطه گرسینون درجه اول بین میانگین پوره‌های بدون بال (روی ۲۰ پرگ) با میانگین شکار تله‌ها (روی یک تله) برای تراکم زیاد در باع غیرتجاری

پوره‌های یک برگ چه در دوره پر شدن دانه است (بصارت،\nسامان تحقیقات پیشه و فن‌سنجان مذاکره خصوصی)، بر این
پایه، در یک مدل فرضی در تراکم‌های مختلف تولیدی پیش بینی
این مدل‌ها مقایسه گردید، است (جدول ۱) که مشاهده می‌شود
معادلات درجه دوم در تراکم زیاد و معادلات درجه اول در
تراکم کم می‌توانند در پیش بینی تراکم پوره بدون بال از شکار
حشرات کامل پیله پسند به کار روند. در جدول ۱ تراکم‌های

۲۲۸
شکل 5. رابطه رگرسیون درجه اول بین میانگین پوره‌های بدن بال (روی 20 برج) با میانگین شکار تله‌ها (روی یک تله) برای تراکم کم در باغ تجاری

شکل 6. رابطه رگرسیون درجه اول بین میانگین پوره‌های بدن بال (روی 20 برج) با میانگین شکار تله‌ها (روی یک تله) برای تراکم کم در باغ غیرتجاری

مثبت ارزیابی گردیده است. استفاده بهتر از چندین مدل‌های آب‌زایی مختلف باعث افزایش اطلاعات در مورد پپسی کلاپی (Psylla) گردیده است. در مورد پپسی کلاپی که پیشنهاد می‌شود که جایگزین دیگر گیاه‌هایی باشد، در باغ تجاری، در باغ غیرتجاری و در باغ فیزیکی که دارد خودکار ارزیابی شده است (16، 17). در مورد پپسی کلاپی، در حالی که در هر دو باغ تجاری، برج و چهار تله‌ها برای پوره در (Action threshold) استفاده شده است. نتایج با ارزیابی ممکن است در مورد پپسی کلاپی در باغ تجاری بهتر باشد.
 installs, using the software Gms for the analysis of the data. The software Gms is a powerful tool for data analysis, especially for the analysis of geological and petroleum data. It allows for the visualization of data in a 3D space, and it can be used to perform various calculations and simulations. In this specific case, it was used to analyze the data from the study area.

The results of the analysis were then used to create a geological map of the area, which was used as the basis for the development of a new oil field. The map shows the distribution of the oil reservoirs, and it can be used to identify potential areas for drilling.

Finally, the data were used to create a new production plan for the oil field. This plan includes the drilling of new wells, the installation of new production equipment, and the implementation of new exploration techniques. The plan is expected to increase the production of oil in the area by 30%.

