اثر تغذیه از برگ توت غنی شده با ترکیبات نیتروژن، فسفر و پتاسیم در برخی صفات بیولوژیک

Bombyx mori L. (Lep., Bombycidae) [1]

کیوان اعتباری و محمد فضیلی

چکیده

به منظور بررسی تأثیر ترکیبات معدنی به عنوان مکمل‌های غذایی کرم ابریشم (Bombyx mori) آزمایشی در چارچوب یک طرح کم‌درجه (Bombyx mori) تصادفی با سه نیم‌گذار شامل غلظت‌های 0.5 و 1 درصد، ترکیب مواد میترا (شامل نیتروژن، فسفر و پتاسیم) و یک تیمار شاهد عادی، که در آن از میخ‌های غنی با ترکیبات نیتروژن، فسفر، و پتاسیم استفاده می‌شود، به کار رفته از جنگل‌های کویر چوسن. تا سی‌چهارم، از بذرگ تتوت تهیه استفاده شده‌اند. نتایج نشان می‌دهد آن‌ها از گیاهی فیت شده استفاده می‌شود. غذای‌زایی برق‌ها به وسیله افشاندن محلول‌ها، روي آنها انجام می‌گردد. مقدار پروتئین کل و اسید اوریک موجود در هموگلبین لاروهای روز شش میلی‌گرم که افزایش اندازه‌گیری گردید.

مقدار پروتئین کل در کلیه تیمار‌ها افزایش چشمگیری را در مقایسه با شاهد نشان داد، و این در حالت است که وزن لری‌ها از روز سوم سی‌چهارم تا جلای جزئی بیش از شاهد، پیدا نمود، ولی وزن غذای ابریشم‌زای تغییر چندانی نشان نداد. مقدار اسید اوریک اندازه‌گیری شده در خون حشره با وجود تغییرات جزئی، در احاطه آماری اختلاف معناداری با حشرات شاهد نداشت. با وجود این، وزن بیش از پنجم 80 درصد از افزایش شاهد در حشرات میترا این مقدار بیش از حشرات شاهد تر بود. با توجه به افزایش شمار تخم در پروتئین‌ها، در مقایسه با شاهد، از لحاظ آماری نیز در تیمار 10% اختلاف معنادار وجود داشت. ترکیبات مزبور باعث کاهش درصد تغذیه تخم شد. وزن تخم‌ها نیز در کلیه تیمارها در یک سطح آماری قرار گرفت.

واژه‌های کلیدی: کرم ابریشم، مواد میترا، برق توت، صفات بیولوژیک، صفات بیوشیمیایی، پروتئین کل، اسید اوریک

1. به ترتیب دانشجوی سابق کارشناسی ارشد حشره‌شناسی و استادیار بیوشیمی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

223
مقدمه

کرم ابریشم اهلی [Bombus mori L. (Lep., Bombyceidae)] در یورون و اساسی توزیع‌داری مطرح است. رشد مطلوب این حشره و براورد نیازهای تغذیه‌ای آن به طور کامل به گیاه میزان و همچنین است. این گونه که کارهای از بود تغذیه می‌کند، به میزان معیار قند، وینا، اسیدهای آمینه و مواد معدنی برای رشد و تولید ابریشم نیازمند است. (5 و 25)

مواد معدنی ترکیباتی هستند که وجود آنها برای ادامه زندگی کرم ابریشم الزامی است (12 و 15). به طور میانگین ۷۰٪ وزن خشک برک توت را ترکیبات معدنی تشکیل می‌دهند. این درصد از ارژن و واریتی‌های مختلف توت، متفاوت گزارش شده است. (15).

۵ (چهار) عصر پنجم، سفیر، نمی‌زیم و روز را برای رشد و نمو لاروها ضروری معرفی می‌کند، و این در حالی است که تمامی ایننا عناصر در حد مناسب در برج توجه دارند. ولی استفاده از مکمل‌های تغذیه‌ای به منظور غنی‌سازی چربه غذایی بسیاری از جانداران از جمله نیاز مناسبی نیز از دیپارت مرسوم می‌یابد. بسیاری از نیزکه‌های پیلوپلوزیک و صفات اقتصادی کرم ابریشم با استفاده از برج توت غنی شده به وسیله مکمل‌های غذایی مختلف بهبود می‌یابد و ارزش تغذیه‌ای برج توت با استفاده از ترکیبات بسیار مهم‌تر گلورک، کلسین، شمار زیادی از آن‌ها و ترکیبات معدنی افزایش خواهد یافت. (۱۸، ۲۲ و ۳۳).

استفاده از مواد معدنی به منظور افزایش عملکرد پرورش کرم ابریشم را پژوهشگران بسیاری بررسی کرده‌اند. (۱، ۲ و ۳). کاربرد چنین ترکیباتی به صورت محلولی‌پاشی روی درختان توت داخل توستان نیز افزون بر این که سبب افزایش تولید برج می‌شود، در افراش و ریزگنگی پیلوپلوزیک و اقتصادی کرم ابریشم بسیار مهم‌تر است. (۷ و ۲۱). بسیاری از ترکیبات معدنی نیز به عنوان مکمل غذایی برای کرم ابریشم استفاده می‌شوند. به‌دید پنجم‌کننده‌پتاسیم و سولفات مس
تغذیه گیاه، فرمالونه شده، اتفاق گردن داشت آن در ویژگی‌های بیولوژیکی و اقتصادی کرم ایریشکرمی ارزیابی شود. آگاهی از وضعیت بیوشیمی‌های فرمالون، آناژ آن که نقش مهمی در فرمولاسیون و توانای مواد مغذی برای جهش غذایی حشرات دارد (از می‌آیند)؛ اطلاعات جامعی از بررسی تکریکات غذایی ارائه نماید. از آن روند، ویژگی‌های بیوشیمی‌های فرمالون، وارونه نیز بررسی گردید.

مواد و روش‌ها
تخم کرم ایریشکرم یکی از شرکت بهترین در تولید گرمی پره در ایران می‌باشد (8). در این تحقیق، با توجه به تغذیه گیاه‌های فرمولاسیون، یکی از شرکت‌های بزرگ‌تر حشرات، در این دستگاه‌های بهره‌مندی تکریکات غذایی ارائه نماید. از آن روند، ویژگی‌های بیوشیمی‌های فرمولاسیون، وارونه نیز بررسی گردید.

پژوهش کرم ایریشکرم یکی از شرکت بهترین در تولید گرمی پره در ایران می‌باشد (8). در این تحقیق، با توجه به تغذیه گیاه‌های فرمولاسیون، یکی از شرکت‌های بزرگ‌تر حشرات، در این دستگاه‌های بهره‌مندی تکریکات غذایی ارائه نماید. از آن روند، ویژگی‌های بیوشیمی‌های فرمولاسیون، وارونه نیز بررسی گردید.
بررسی تأثیر محیطی بر کارگیری گروه‌های مختلف در گزارش و استفاده با آنها، حاوی اطلاعاتی است که به کمک آن می‌توان به کاهش تأثیر گروه‌های مختلف در محیط زیست کمک کرد.

جزوه‌ی بررسی تأثیر محیطی بر کارگیری گروه‌های مختلف در گزارش و استفاده با آنها

مقدمه

بررسی تأثیر محیطی بر کارگیری گروه‌های مختلف در گزارش و استفاده با آنها، حاوی اطلاعاتی است که به کمک آن می‌توان به کاهش تأثیر گروه‌های مختلف در محیط زیست کمک کرد.

مطالعه و بحث

تأثیر محیطی بر کارگیری گروه‌های مختلف در گزارش و استفاده با آنها

چنان‌که جدول ۱ نشان می‌دهد، در روز اول سین پنج اختلاف معنی‌داری بین وزن لاروهای دیده‌شده در صورتی که در روز سوم در تیمار ۶/۶ درصد افزایش وزن لاروهای دیده می‌شود، با این اتفاق، وزن لاروها در روز پنج تیمار فوق به ۱/۷ درصد رسیده که به لحاظ آماری اختلاف معنی‌داری با شاهد دارد و در غلظت‌های مختلف تفاوت چشم‌گیری مشاهده نشده. در روز هفتم نیز اختلاف معنی‌داری بین تیمارها و افزایش وزن در مقایسه با شاهد دیده می‌شود، ولی در میان غلظت‌ها این اختلاف از لحاظ آماری محسوس نیست. نتایج مشابه نیز از نظر معنی‌داری برگ تون به استفاده از تکنیک‌های مصنوعی و منابعی در پژوهش‌های مورد استفاده به دست آمده است.

جدول ۱: اختلافات معنی‌داری در وزن لاروها در سه تیمار مختلف

<table>
<thead>
<tr>
<th>جدول ۱</th>
<th>اختلافات معنی‌داری در وزن لاروها در سه تیمار مختلف</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۷</td>
<td>۶/۶</td>
</tr>
<tr>
<td>۱/۷</td>
<td>۶/۶</td>
</tr>
<tr>
<td>۱/۷</td>
<td>۶/۶</td>
</tr>
</tbody>
</table>

مراجع

۱- زمان و همکاران (۳۳) دریافت‌کننده آزمایش ۲/۲ درصدی به چهارهای کرم ابریشم می‌تواند سبب افزایش وزن لاروها گردد، ولی کارو و میزان (۱۷) نشان دادند که رشد نسبی. ۱۳۸۲

کلیه نتایج با نرم افزار Excel (نسخه ۹۷)

کلیه نتایج با نرم افزار IRRISTAT

چارچوب طرح کامل‌تر اسکات در تجربه آماری گردید.
جدول 1. تأثیر غلظت سازه‌بندی بر تکریک مولیون میترال بر ویژگی‌های لازوری کرم ابریشمی (B. mori)

<table>
<thead>
<tr>
<th>غلظت</th>
<th>تراکم</th>
<th>روز 1</th>
<th>روز 2</th>
<th>روز 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>ئی۷/۵۳</td>
<td>۱/۶۲</td>
<td>۴/۵۳ ᵃ</td>
<td>۳/۹۴ ᵃ</td>
</tr>
<tr>
<td>آب مقطور</td>
<td>ئی۷/۵۳</td>
<td>۱/۶۲</td>
<td>۴/۵۳ ᵃ</td>
<td>۳/۹۴ ᵃ</td>
</tr>
</tbody>
</table>

*درصد تغییرات در مقایسه به شاهد

برای انرژی‌های مختلف از سرخه‌بندی با شاهد که دارای هر اینکه هستند از لحاظ آماری تفاوت معناداری ندارند.

اربیشمی در کلیه تیمارها اختلاف جهش گیری می‌نماید. نتایج برای انرژی‌بندی دو نوع دارد، این نتایج با توجه به آبیاری نیافتن و زن‌های ابریشم‌ساز در روز ششم یک پیش‌بینی می‌شود. نتایج که در اینجا گزارش می‌شود به‌طور کلی غلظت زیاد (100) بر ویژگی‌های پیش‌بینی و زن‌های ابریشم‌ساز در حشرات مادر در غلظت 10/0/گرم در غلظت 1/بوده، که ۴/۵/رشد می‌تواند به شاهد ناشان داده. در عضویت و زن‌های مادر در حشرات مادر ۴/۳۰/رشد در تیمار ۱ درصد مشاهده می‌شود که اختلاف معناداری داریا دیگر نورها دارد، ولی در حشرات نور همین مقادیر اختلاف در تیمار ۱۰/اوج‌ساز می‌گردد. وزن نر

۲۷۷
جدول ۲: تأثیر غلیقدهای برگ‌توت با ترکیب مولکولی میترال‌بر و یزگی‌های پیشی‌رسی در سه شکل خاص (B. mori)

<table>
<thead>
<tr>
<th>ترکیب سم</th>
<th>ترکیب سم</th>
<th>ترکیب سم</th>
<th>ترکیب سم</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد قشر</td>
<td>وزن شفاه</td>
<td>وزن پیله</td>
<td>وزن پیله</td>
</tr>
<tr>
<td>ترکیب سم</td>
<td>درصد قشر</td>
<td>وزن شفاه</td>
<td>وزن پیله</td>
</tr>
<tr>
<td>ایریشی (g)</td>
<td>ایریشی (g)</td>
<td>ایریشی (g)</td>
<td>ایریشی (g)</td>
</tr>
<tr>
<td>20/50</td>
<td>0/498 a</td>
<td>0/495 a</td>
<td>0/490 a</td>
</tr>
<tr>
<td>(98/5)</td>
<td>(99/3)</td>
<td>(99/4)</td>
<td></td>
</tr>
<tr>
<td>20/55</td>
<td>0/510 a</td>
<td>0/500 a</td>
<td>0/495 a</td>
</tr>
<tr>
<td>(99/1)</td>
<td>(99/7)</td>
<td>(100/2)</td>
<td></td>
</tr>
<tr>
<td>20/54</td>
<td>0/502 a</td>
<td>0/500 a</td>
<td>0/495 a</td>
</tr>
<tr>
<td>(99/7)</td>
<td>(99/8)</td>
<td>(99/9)</td>
<td></td>
</tr>
<tr>
<td>20/53</td>
<td>0/503 a</td>
<td>0/500 a</td>
<td>0/495 a</td>
</tr>
<tr>
<td>(100/2)</td>
<td>(100/3)</td>
<td>(100/4)</td>
<td></td>
</tr>
<tr>
<td>شاهد</td>
<td>0/519 a</td>
<td>0/512 a</td>
<td>0/505 a</td>
</tr>
<tr>
<td>(100/2)</td>
<td>(100/3)</td>
<td>(100/4)</td>
<td></td>
</tr>
</tbody>
</table>

* درصد تغییرات در مقایسه با شاهد

در هر ستون اعدادی که دارای حداکثر یک حرف مشابه هستند، از لحاظ آماری نتایج معنی‌داری ندارند.

** بوده است نیروی و کالیوال (۲۲) هنگامی که اسید فولیک را به عنوان مکمل غذایی استفاده کنند، باید که در صورت تغییر
تحمیل شدن، گرچه وزن ناخالی در کلیه تمرکز افزایش نسبت
به شاهد داشته است، ولی اختلاف آماری معنی‌داری دیده
نمی‌شود (جدول ۲). نکته ای که از مقایسه جدول ۲ و ۳ به نظر
می‌رسد تأثیر منفی (اثر کاهش) وزن (غفلت دوم) بر وزن پیله و
شفاه در حشرات ماده در بر این وجود دارد، نمی‌تواند تحریکی در
همین حشرات است. تصور می‌شود که در این غفلت انرژی
حالی از تغذیه به‌یک‌طرف تولید می‌شود تا تغییراتی
نمی‌توانند در سطح مزمن داشته باشند، که در نتیجه آن باید افزایش تحریکی
در حشرات در حشرات ماده و نیز لوره می‌باشد. زیرا در غیر این صورت
هر دو جنس بر ماده و لوره می‌باشد تحت تأثیر
قرار می‌گرفتند.

** یزگی‌های پیشی‌رسی

تغییرات مقدار پروپتیون و اسید اوریک همولفون لوره‌های مورد
بررسی در نمودارهای ۱ و ۲ نشان داده شده است.

جنس نر و ماده به مقدار غذایی مختلف نسبت داد. برودوسک و
همکاران (۳) نشان داده که مقدار تیروزن موجود در شیره
نیتروگله تأثیر مستقیم در آهنگ رشد، وزن‌بستگی و میزان
پروتئین از زنجرگاه‌ها دارد. این تأثیر کاملاً به جنسیت حشرات
واسته است. زیرا حشرات سفید در فرآیند تولید می‌تواند غذایی
پیشی را به پروتئین داده.

** یزگی‌های تخم

شمار تخم در کلیه تمرکز از این زیر شاهد بوده است یا عملی
در غفلت (۱۰٪) از احتمال ممکن با یک‌طرف
وجود داشت (جدول ۳). اضافه و همکاران (۴) نشان داده که
نمک‌های سازی برگ‌توت با محلول تیروزن (۱٪) در
تیرگاه از تخم پرورش‌ها را افزایش دهد. در
حالی که تغذیه غذایی با محلول‌های شامل غفلتهای مختلف
تیروزن و فسفر می‌تواند در بهترین حالت تا ۴۳٪ این تغییر را
افزایش دهد (۱).

نکته شاید توجه در پژوهش حاضر کاهش درصد تغییر

۲۳۸
جدول 3. تأثیر غلظت برگ توت غنی شده با ترکیبات تیتروژن، فسفر و پتاسیم در برخی صفات

(B. mori)

<table>
<thead>
<tr>
<th>غلظت ترکیبات (mg/کیلوگرم)</th>
<th>وزن ۵۰ تخم</th>
<th>شمار تخم ظاهر شده</th>
<th>درصد تخم</th>
<th>شمار تخم نهایی</th>
<th>معدنی ۲۴ ساعت</th>
<th>معدنی ۴۸ ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۴/۹±۰/۲ b</td>
<td>۶۵/۸±۶/۳</td>
<td>۹۷/۲۲±۰/۲۹ b</td>
<td>۷۲/۲±۰/۵ b</td>
<td>۷۶/۸±۰/۵ b</td>
<td>۷۳/۵±۰/۵ b</td>
<td>۷۹/۸±۰/۵ b</td>
</tr>
<tr>
<td>۳۴/۹±۰/۲ b</td>
<td>۳۷/۰±۲۸</td>
<td>۹۷/۲۳±۰/۲۹ c</td>
<td>۸۰/۴±۰/۵ a</td>
<td>۸۶/۳±۰/۵ b</td>
<td>۸۴/۰±۰/۵ b</td>
<td>۸۷/۳±۰/۵ b</td>
</tr>
<tr>
<td>۳۴/۹±۰/۲ b</td>
<td>۷۰/۸±۰/۵ b</td>
<td>۹۸/۳۲±۰/۱۰ b</td>
<td>۷۴/۰±۰/۵ b</td>
<td>۷۹/۸±۰/۵ b</td>
<td>۸۴/۰±۰/۵ b</td>
<td>۸۷/۳±۰/۵ b</td>
</tr>
<tr>
<td>۳۴/۹±۰/۲ b</td>
<td>۷۵/۷±۱/۸ a</td>
<td>۹۸/۳۱±۰/۲۶ a</td>
<td>۸۸/۸±۰/۵ a</td>
<td>۸۶/۳±۰/۵ b</td>
<td>۸۴/۰±۰/۵ b</td>
<td>۸۷/۳±۰/۵ b</td>
</tr>
<tr>
<td>۳۴/۹±۰/۲ b</td>
<td>۷۵/۷±۱/۸ a</td>
<td>۹۸/۳۱±۰/۲۶ a</td>
<td>۸۸/۸±۰/۵ a</td>
<td>۸۶/۳±۰/۵ b</td>
<td>۸۴/۰±۰/۵ b</td>
<td>۸۷/۳±۰/۵ b</td>
</tr>
</tbody>
</table>

در هر ستون اعدادی که دارای حداکثر یک حرف مشابه هستند، از لحاظ آماری تفاوت معناداری ندارند.

نمودار ۱. تأثیر ترکیبات میترال بر تغییرات مقدار پروتئین موجود در همولف ناروهای روز ششم در ۱۰ نیمه گیاه صورت می‌گیرد.

نمودار ۲. تأثیر ترکیبات میترال بر تغییرات مقدار اسید اوریک موجود در همولف ناروهای روز ششم در ۱۰ نیمه گیاه صورت می‌گیرد.
همواره با افزایش مقدار نیتروژن در جریه غذایی حشرات، تولید اسید اوریک و کاسطینتیکه از ریشه مصرف می‌گردد. نادر که تمامی این نیتروژن مصرفی وارد منابع طبیعی می‌گردد. همچنین، هیچ‌گاه افزایش کمی نیتروژن یا پروتئین‌های جریه غذایی حشرات نمی‌تواند بی‌شک موثر باشد. بلکه کیفیت نیتروژن مصرفی نیز بسیار حساس به استفاده است.

گزارش شده هنگامی که لاروها کرم ایریشم از زینت تغذیه می‌نمایند، تولید اسید اوریک در آن نسبت به هنگامی که از کاسطینتیکه تغذیه می‌کنند کننده در می‌شود (14). ویلی در لاروها سر عکس این مسئله صدق است (17). بنابراین، نوع پروتئین مصرفی و نیازهای تغذیه‌ای در نتیجه مصرف‌کننده متابولیک در شرایط مختلف بسیاری از نظر هسته‌ای است. همچنین، کارو و مارتین (17) نشان دادند که در دو گروه از لاروها مزبور که تغذیه مقدار پروتئین جذب شده آنها بیش از 10 برابر است، تولید اسید اوریک اختلاف معنی‌داری با هم نداشتند. زیرا هدایت‌های لاوزی و ایزوع نیز به شده بودند. در این باره گزارش شده این است که دفع آمیوئوم و/یا تولید سولولهای آرواره در بافت سوسیس‌های آمریکایی کاملاً به صورت نیتروژن مورد تغذیه و استفاده است، هرچند عواملی چون مقدار کافی تحسین‌ناپذیر و آب قابل دسترسی نیز در نسبت این مکانیزم مؤثر هستند (20). بنابراین، افزایش ترکیباتی مانند پتاسیم در جریه غذایی و سرشار افزایش شکل کاپتنیوش آن در اندازه جریه بسیار کمتر می‌گردد. این نتیجه تولید می‌شود که سوسیس‌های آمریکایی شده است (20). زاکرویس و همکاران (16) گزارش کرده‌اند که میزان افزایش پتاسیم و مقدار اسید اوریک، از نظر ایدئالی پیشنهاد می‌کند. نتایج بود. از جمله که با افزایش مقدار پروتئین در هموفیل افزایش می‌تواند اثرات در افزایش اسید اوریک به عنوان یکی از مهم‌ترین ترکیباتی مصرف‌کننده می‌باشد. افزایش مقدار اوریک در هموفیل افزایشی منبع مایعی برای متابولیسم نیتروژن، در بیشتر حشرات می‌باشد (20). هرچند که نمی‌توان انتظار داشت
مهمترین ترکیبات اولیه ایجاد شده در متابولیسم نیتروزون در کرم ابرشیم اوره و آموئونیوم است (5 و 6). تغییرات ظهور اوره در همولوف لارو کرم ابرشیم به عوامل زیادی از جمله مرحله نیتروزون و جهش غذایی وابسته است (21). این تغییرات در ارتباط مستقیم با متابولیزم نیتروزون و اسیدهای آمینه می‌باشد (5 و 6). آژیرنیاز آزمایشی مهم برای تولید اوره در همولوف کرم ابرشیم است که در بسیاری از گونه‌ها فعالیت می‌کند. این فعالیت در دست پنج لاروی به اوج خود می‌رسد. سپس آزمایش آورشیم که از کرم نیتروزون داخل بدن حشره شده است وارد عمل می‌شود و سبب تشكل آمونیوم می‌گردد (10، 11 و 12).

و این شاید از آغاز تبدیل تارهای ابرشیم (گوراً) به روز هفتم سینیمی. به بعد باشد. یکی بر از جنبه‌های جالب توجه در متابولیسم نیتروزون در کرم ابرشیم با افزایش آمونیوم تشكل شده، برای تولید پروتئین از متریال خاص متابولیک است (20). بنابراین، با توجه به نتایج اخیر، تصویر می‌شود که این گونه یکی از اسیدهای اربیک در همولوف کرم ابرشیم بدلیل غلطی نیتروزون در این حشره باشد.

مباحث مورد استفاده

