تخمین دبی سیل با تناوب مختلف در حوضه آبخیز زایندندوود
طبق روش منطقه‌ای هیبرید

ستار چاوشی برگنجی و سید سعید اسلامیان

چکیده

مطالعه تناوب سیلاب در مناطق خشک به دلیل تعداد کم ایستگاه‌های هیدромتری، کمبود آمار و وجود داده‌های پراکنده ناشی از وضعیت جریان‌های نادر و بسیار مشکب‌مانده‌ی می‌باشد. تحلیل منطقه‌ای سیلاب یکی از روش‌های مناسب جهت گله بر چهار منطقه‌ای می‌باشد. در این تحقیق یکی از روش‌های تحلیل منطقه‌ای سیلاب به نام روش هیبرید مورد بررسی قرار گرفته است. منطقه‌های مورد مطالعه شامل ۱۷ حوضه همگون واقع در استان‌های اصفهان و چهار محال و بختیاری می‌باشد.

نتایج با استفاده از رگرسیون چندگانه بین دیگر سیلاب با تناوبهای مختلف بازگشت، به عنوان عامل وابسته و خصوصیات فیزیکی و اقلیمی حوضه، به عنوان عوامل مستقل، مهم‌ترین عوامل فیزیکی و اقلیمی مرتبط با سیلاب چهار داده از سطح و ارتفاع منطقه جریان‌های نادر، مقایسه مقداری نسبی خصائص مدل‌های هیبرید و رگرسیون نشان می‌دهد که در دوره‌های بازگشت کوتاه، دقت مدل هیبرید بیشتر از روش رگرسیون بوده ولی در دوره‌های بازگشت بالا، دقت مدل رگرسیون بیشتر از روش هیبرید می‌باشد.

واژه‌های کلیدی - تحلیل منطقه‌ای سیلاب، آزمون ممکن حوضه‌های آبخیز، روش‌های پراورود دبی اوج سیلاب

مقدمه

روش‌های پراورود میزان آب قابل استحصال، راهکاری مناسب جهت پیش‌بینی بهینه از منابع آب در این مناطق ارائه گردید. روشهای متعددی جهت کنترل سیلاب ارائه شده است که از جمله می‌توان به پهپاد سیلاب و انحراف جریان و هدایت آن به محازن تکنیک‌های اشراف نمود. یکی از پرآمره‌های مورد نیاز جهت بهترین استفاده از منابع آب است، در این راستا، تحقیقات متعددی در زمینه‌های مختلف انجام گرفته تا ضمن ارائه

- به ترتیب کارشناس ارشد پیمان‌داهنده مرکز تحقیقات منابع طبیعی و امور دام اصفهان و استادیار گروه نیروی اکنون، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
طوریه سازدهایjuredدبی اوج لحظه‌ای سیلاب‌سازی بعد و روشنایی مانند جهت تأثیر بی‌ارگه اوج لحظه‌ای سیلاب ارائه شده است که به عنوان مثال می‌توان به تحلیل منطقه‌ای سیلاب اشاره نمود. تحلیل منطقه‌ای سیلاب شامل دو بخش می‌باشد. نخست حضورهای آبخزی که از لحاظ هیدرولوژیکی همگی باشد را نسبت به سیستم مدل‌سازی نتایج سیل بر هر منطقه می‌گویند. به دست می‌آید (۳). در روش تحلیل منطقه‌ای سیلاب را در ایالات متحده آمریکا مورد بررسی قرار داده و به سیستم مهندسی پردازش محاسباتی داده سپس به این سیستم رسید. تحلیل سیلاب است. سپس به همراه شیب آبی، سیلاب اصلی و منطقه پردازشی سیالاب‌ها حوضه از اهمیت بیشتری نسبت به این موضوع می‌گیرد. تحقیقی دیگر مدل‌های منطقه‌ای سیلاب را در دردسرهای بارندگی در سالهای ۲۵ و ۵۰ ساله برای حضورهای استرخ‌وزش آمریکا ارائه نموده که توسط آنها اوج سیلاب از روی سطح حوضه و منطقه پردازشی سیالاب‌ها حوضه پردازش ۱۰۰۰ اصلی و همسایه سیلاب‌های اختیاری خراسان، بیروت، ترکیه و سایر مناطق نیز مطرح می‌شود. در یک سیستم معادل پردازش میدان‌های سیلابی با دوره‌های مختلف پردازش را برابر به رودخانه‌های ایالت جورجیا امریکا به کار بردن و چنین نتایج‌های که سطح حوضه معنای دارترین می‌باشد با دیبه سیلاب می‌باشد. در تحقیق منطقه مورد مطالعه از لحاظ سطح به جهت نسبتاً همگی طبقاتی و روابط نتایج سیل برای هر منطقه تعیین گردید. مور (۱۲) در تحقیق خود از ترکیب تحلیل منطقه‌ای سیلاب و روش‌های نموداربرنگی بهره‌مندی از شامل این سیالاب در حضورهای آبخزی، پیش‌بینی زمان می‌توان با ترکیب این دو روش، مدل معادلات سیالاب‌های تعیین عامل مدل‌سازی نتایج سیل بر خوردوی جغرافیایی ارائه کنند. به روش‌های مختلف از جمله مدل‌سازی نتایج سیلاب ارائه می‌باشد. این روش برای تحلیل منطقه‌ای سیلاب در منطقه خشک ایالات نیود، برای قاره‌‌های غربی،
جدول 1 - مشخصات استگاه‌های هیپرولوژی و زیرخوشه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>استگاه هیپرولوژی</th>
<th>موضع جغرافیایی</th>
<th>رودخانه</th>
<th>طول (متر)</th>
<th>ارتفاع (متر)</th>
<th>مساحت (کیلومتر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پلشجان</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۱۵۴۲</td>
<td>۱۷۰۰</td>
<td>۲۱۰۰</td>
</tr>
<tr>
<td>قلعه شاهرخ</td>
<td>۵۰.۷۷</td>
<td>۳۹.۱۷</td>
<td>۱۴۷۱</td>
<td>۱۸۰۰</td>
<td>۲۱۰۰</td>
</tr>
<tr>
<td>سردران</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۹۷۲</td>
<td>۱۲۸۰</td>
<td>۱۵۵۰</td>
</tr>
<tr>
<td>سمندگان</td>
<td>۵۰.۶۷</td>
<td>۳۹.۱۷</td>
<td>۳۶۷</td>
<td>۱۱۱۵</td>
<td>۲۱۰۰</td>
</tr>
<tr>
<td>مدرن رودخانه</td>
<td>۵۰.۷۷</td>
<td>۳۹.۱۷</td>
<td>۲۷۲</td>
<td>۱۷۸۵</td>
<td>۲۰۵۰</td>
</tr>
<tr>
<td>زرتشتی</td>
<td>۵۱.۱۳</td>
<td>۳۹.۱۷</td>
<td>۲۷۵۸</td>
<td>۲۸۰۰</td>
<td>۲۰۵۰</td>
</tr>
<tr>
<td>آب و نیک</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۲۴۸۵</td>
<td>۳۹۲</td>
<td>۲۴۶۰</td>
</tr>
<tr>
<td>سولگان</td>
<td>۵۱.۱۳</td>
<td>۳۹.۱۷</td>
<td>۲۶۷۲</td>
<td>۱۹۸۵</td>
<td>۲۶۸۰</td>
</tr>
<tr>
<td>جبهگر</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۲۶۸۲</td>
<td>۱۹۵۰</td>
<td>۲۶۸۰</td>
</tr>
<tr>
<td>کوهنگ</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۶۱۹</td>
<td>۲۱۵۰</td>
<td>۲۵۰۰</td>
</tr>
<tr>
<td>گارگانه</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۲۰۹۹</td>
<td>۲۰۵۰</td>
<td>۲۰۹۹</td>
</tr>
<tr>
<td>مارنر</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۱۲۳۵</td>
<td>۱۲۳۵</td>
<td>۱۲۳۵</td>
</tr>
<tr>
<td>سرپنه</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۲۵۴۸</td>
<td>۷۸۲</td>
<td>۲۵۴۸</td>
</tr>
<tr>
<td>گارگانه</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۲۵۴۸</td>
<td>۷۸۲</td>
<td>۲۵۴۸</td>
</tr>
<tr>
<td>گارگانه</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۲۵۴۸</td>
<td>۷۸۲</td>
<td>۲۵۴۸</td>
</tr>
<tr>
<td>گارگانه</td>
<td>۵۰.۶۵</td>
<td>۳۹.۱۷</td>
<td>۲۵۴۸</td>
<td>۷۸۲</td>
<td>۲۵۴۸</td>
</tr>
</tbody>
</table>

مورد استفاده قرار گرفته است (جدول 1 و شکل‌های 1 و 2). به‌منظور تعیین مدل‌های تابع سیل در این مناطق از روش هیبرید استفاده شده است. تحلیل سیلاب در این مناطق همواره با مدل‌های همجون کمبود تعداد استگاه‌های هیپرولوژی، تعداد کم سال‌های یافته دارد. عدم تطبیق زمینه تغییرات موجود استگاه‌ها و وجود سال‌های فاقد جریان و وقوع داده‌های پرآورده در فاصله‌ها، ناشی از جریان‌های نادر مواجه به سیلاب است. هنگام بزرگ‌تر بودن یک منطقه، در این منطقه روش هیبرید گزینه‌های تک یا چندین برای مدل‌های همواره استفاده می‌گردد. است. از مجموع ۶۴ استگاه هیپرولوژی موجود در این حوضه، ۱۷ استگاه از لحاظ هیدرولوژیک همگن بوده (4) و
شکل ۱- موشیت استغفاهای مورد مطالعه در حوضه‌های گارخونی و دریاچه نمک

مدل‌های است که معمولاً در تحلیل تناوب سبل مورد استفاده

قاری می‌گیرد:

\[Q_i = a A_i B_i C_i d \]

که در آن:

- \(Q_i \) = ریز خیمه در دیاره‌ای با تاریخ \(t \) (سال)
- \(a \) = مقدار ثابت
- \(A_i \) = پارامترهای مستقل فیزیکی و اقتصادی مورد استفاده
- \(B_i \) و \(C_i \) = پارامترهای مستقل فیزیکی و اقتصادی مورد استفاده

بدین ترتیب ضمن استفاده از کلیه داده‌های موجود، همچنین
داده‌های پیش‌آمدم، بررسی توزیع‌های آماری به‌گزارش ترکیبی به
دست آمده با دقت بیشتری انجام می‌گیرد. همچنین در صورتی
که گزارش موجود دارای حداکثر شدت این‌گونه سال‌های داده‌ای باشد،
نیازه به پرورندن برای بی‌رو و دریافت دامد صد ساله نمی‌باشد و
برآورد دیگر دام نزدیک به دقت بیشتری انجام می‌گیرد.

مدل عمومی مورد استفاده در روش هیبرزد همانند انواع
شکل ۲ - موقعیت استگاههای مورد مطالعه در حوضه کارون شمالی

\[J \leq \frac{Nf}{100} \]
\[J = \begin{cases}
\text{عدد ثابت تعداد طبقات} \\
\text{مجموع تعداد استگاهه-سن آمار موجود میانگین وزنی سطح حوضه در هر طبقه طبق رابطه زیر به دست}
\end{cases} \]

\[\bar{A}_i = \text{antilog} \left[\frac{\sum_j \sum_h \sum_k 10^\log A_{ijh}}{gh} \right] \]
که در آن:
\[\bar{A}_i = \text{میانگین وزنی سطح حوضه در طبقه} \ i \]
\[A_{ijh} = \text{سطح حوضه در استگاهه} \ i \ \text{در طبقه} \ j \ \text{و در} \ h \]

\[Q = a A^b H^c \]
که در آن
\[H \] به ترتیب سطح و متوسط ارتفاع حوضه
\[A \] به ترتیب سطح و متوسط ارتفاع حوضه
\[a, b, c \] می‌باشد.

در مرحله نخست منطقه مورد مطالعه طبق رابطه زیر و براساس معیار سطح حوضه به چند طبقه تقسیم می‌گردد:

\[d = \text{میانگین رگرسیون در این تحقیق با توجه به همبستگی زیاد سطح و متوسط ارتفاع حوضه با دی اوج سیلاب} (\theta), \text{از این دو پارامتر ساخت مدل مذکور استفاده گردیده، رابطه فوق به صورت زیر درآمده است:} \]

\[d = \text{میانگین رگرسیون در این تحقیق با توجه به همبستگی زیاد سطح و متوسط ارتفاع حوضه با دی اوج سیلاب} (\theta), \text{از این دو پارامتر ساخت مدل مذکور استفاده گردیده، رابطه فوق به صورت زیر درآمده است:} \]

\[Q = a A^b H^c \]
ماتناج وبحث

منطقه مورد مطالعه شامل 17 زیر حوضه همگن با وسعت بهینه 12280 کیلومترمربع است. زیر حوضه‌های مذكور در دو حوضه اصلی گروه خوی و کارون شمالی واقع شده و مجموعاً دارای 311 ایستگاه- سال آماری بوده که می‌باشد (شکل 1 و 2)، با توجه به ترتیب رتبه‌بندی، 3 حداکثر تعداد نواحی مطالعاتی و ناحیه بوده که به شرح زیر می‌باشد:

ناحیه 1- با وسعت ۱۷۱ و مساحت ۱۷۱۰۰ کیلومترمربع شامل ۲ حوضه‌ای آبخیز ایستگاههای ماریان، پاساپرد، نگین صهار و گلچین گردیده و در چهل‌متری از شهر خوی واقع شده است.

ناحیه 2- با وسعت ۱۷۱ و مساحت ۱۷۱۰۰ کیلومترمربع شامل ۲ حوضه‌ای آبخیز ایستگاههای جهان، سواران، سراب و هشتاد گلدوزی و در چهل‌متری از شهر خوی واقع شده است.

با استفاده از رابطه ۳ میانگین وزنی پارامترهای مورد بررسی در رابطه (2) تعیین می‌گردد. مقدار میانگین وزنی ماتریس و ارتفاع تأثیر مودر مطالعه در جدول 2 نشان داده شده است.

نحوه گزارش در مدارک برای هر ناحیه شروع و مقدار استاندارد ناحیه به دو مرحله اصلی و یک مرحله اول مقدار اولیه b برای تکرار اول مساعد با یک در نظر گرفته می‌شود.

مقدار اولیه b برای تکرار اول مساعد با یک در نظر گرفته می‌شود.

مقدار اولیه b برای تکرار اول مساعد با یک در نظر گرفته می‌شود.

که در آن:

\[\text{ماکون یا} = \frac{Q_\text{یک}}{A_\text{یک}} \]

که در آن:

\[\text{ماکون یا} = \frac{Q_\text{یک}}{A_\text{یک}} \]

که در آن:

\[\text{ماکون یا} = \frac{Q_\text{یک}}{A_\text{یک}} \]

که در آن:

\[\text{ماکون یا} = \frac{Q_\text{یک}}{A_\text{یک}} \]

که در آن:

\[\text{ماکون یا} = \frac{Q_\text{یک}}{A_\text{یک}} \]

که در آن:

\[\text{ماکون یا} = \frac{Q_\text{یک}}{A_\text{یک}} \]
جدول ۲ - میانگین وزنی پارامترهای مورد بررسی در نواحی مطالعاتی

<table>
<thead>
<tr>
<th>ناحیه</th>
<th>میانگین وزنی سطح (کیلومترمربع)</th>
<th>پارامتر (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>۲۵۸۸</td>
<td>۴۴۴/۲۲</td>
</tr>
<tr>
<td>II</td>
<td>۴۴۷۷</td>
<td>۹۲۸/۱۶</td>
</tr>
<tr>
<td>III</td>
<td>۴۴۷۷</td>
<td>۱۰۱۰/۲۲</td>
</tr>
</tbody>
</table>

جدول ۳ - مقدار تخمینی S/k در نواحی مطالعاتی و در تکرار اول

<table>
<thead>
<tr>
<th>نواحی مطالعاتی</th>
<th>دوره‌های پارگشت</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۱۰</td>
<td>۹</td>
<td>۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۹</td>
<td>۸</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۸</td>
<td>۷</td>
<td>۶</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷</td>
<td>۶</td>
<td>۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۶</td>
<td>۵</td>
<td>۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۵</td>
<td>۴</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۴</td>
<td>۳</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۳</td>
<td>۲</td>
<td>۱</td>
</tr>
</tbody>
</table>

جدول ۴ - مقدار Q_i (m³/s) در نواحی مورد مطالعه و در تکرار اول

<table>
<thead>
<tr>
<th>نواحی مطالعاتی</th>
<th>دوره‌های پارگشت</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۱۷</td>
<td>۱۶</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۶</td>
<td>۱۵</td>
<td>۱۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۵</td>
<td>۱۴</td>
<td>۱۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۴</td>
<td>۱۳</td>
<td>۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۳</td>
<td>۱۲</td>
<td>۱۱</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۲</td>
<td>۱۱</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۱</td>
<td>۱۰</td>
<td>۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۰</td>
<td>۹</td>
<td>۸</td>
</tr>
</tbody>
</table>

میزان دیسپل بنا تناوب مختلف در حوضه آبخیز

مقدار اولیه ۵ معادل یک در نظر گرفته شد. با استفاده از روشهای متد آماری، توزیعهای مختلف آماری (نرمال، لگ نرمال، پیرسون، لگ پیرسون، گاما، لگ گاما) به آمار ترکیبی برخی ها داده شده، پس از تغییر پیشنهادی توزیع برای هر ناحیه، به سه روش متدآزمون یک راهی، مقدار Q_i طبق رابطه ۴ تخمین می‌شود (جدول ۴). با استفاده از رابطه (۷) مقدار
جدول 5 - مقادیر تخمینی x_2 در منطقه مورد مطالعه و در تکرار اول

<table>
<thead>
<tr>
<th>در 1/03</th>
<th>x_2</th>
<th>x_2</th>
<th>x_2</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

که در آنها:

$Q = \text{دبی اوج سیالی با دوره پاکستن 2} \text{ مترمکعب بر ثانیه}$

$A = \text{سطح حوضه آبی} \text{کیلومتر مربع}$

$H = \text{ارتفاع متوسط حوضه} \text{متر}$

از آنftar خطا

به منظور بررسی دقت مدل های به دست آمده، نخست مدل های گرفتار چند متغیری خطي نتایج سیال برای منطقه مورد مطالعه تعيين مي گردد. لازم به ذكر است که سایر مدل های گرفتار (همچون گرایش و گرایش سطح فلوید) نيز مورد پروري قرار گرفته و روند قبل تکرار مي شود با اين تفاوت كه در رابطه $	ext{ب} \text{ به چا}	ext{ي ديهاي اوج اسپتایم های مورد مطالعه از مقدار ديني های استاندارد بر دست آمده در آخرین تکرار مؤثره قيل استفاده مي شود. مقدار ثابتي مدل يعنی ضريب$	ext{ا نيز ظرفان آخرین}

عامل مورد استفاده در مدل تعيين و تنا Pra Per مي رACLE منطقه مورد

به صورت زیر به دست آمده است:

$Q_{t} = 3.0 \text{A}^{1/2} H^{1/3}$

$Q_{b} = 3.5 \text{A}^{1/2} H^{1/3}$

$Q_{t} = 3.0 \text{A}^{1/2} H^{1/3}$

$Q_{b} = 3.5 \text{A}^{1/2} H^{1/3}$

$Q_{t} = 1.0 \text{A}^{1/2} H^{1/3}$

$Q_{b} = 1.0 \text{A}^{1/2} H^{1/3}$
جدول 7- مشخصات استگاه‌های هیدرومتری و زیرنویسهای ارمند و مرغک

<table>
<thead>
<tr>
<th></th>
<th>ارتفاع</th>
<th>موقت جغرافیایی</th>
<th>طول عرض</th>
<th>شماره استگاه</th>
<th>استگاه هیدرومتری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(متر)</td>
<td></td>
<td>میلی‌متریمبو</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300کیلو</td>
<td>1060</td>
<td>3143</td>
<td>5025</td>
<td>کارون</td>
</tr>
<tr>
<td></td>
<td>980کیلو</td>
<td>3023</td>
<td>5032</td>
<td>2143</td>
<td>بافت</td>
</tr>
<tr>
<td></td>
<td>2148کیلو</td>
<td></td>
<td></td>
<td></td>
<td>مرجک</td>
</tr>
</tbody>
</table>

نسبت خطای مدل‌های فوق مقایسه‌گردد. بدین منظور از آمار دو استگاه، واقع در منطقه، که قبلاً در معادلات هیپیرید و رگرسیون مورد استفاده قرار گرفته و تعداد داده‌های مشاهده‌ای کافی دارند، بدین استگاه‌های ارمند و مرغک، استفاده شده است (جدول 7). بدین ترتیب مقادیر تخمینی دیسی در دو استگاه فوق طبق مدل‌های هیپیرید و رگرسیون تعیین و با مقادیر مشاهده‌ای دیسی استگاه‌های فوق مقایسه و طبق رابطه زیر مقادیر خطای مدل‌های فوق تعیین گردید (جدول 8):

\[
\text{Bias} (\%) = \frac{\bar{Q} - \hat{Q}}{Q} \times 100
\]

\[
R - S_q = \frac{A}{H} \quad \text{SE} = 153 \quad n = 17
\]

\[
Q_{10} = \frac{A}{H} \quad \text{SE} = 17
\]

\[
Q_{50} = \frac{A}{H} \quad \text{SE} = 18
\]

\[
Q_{100} = \frac{A}{H} \quad \text{SE} = 19
\]

韩语的维基媒体基金会不拥有此页面的版权。此页面的文字内容是全球合作的结果，版权应归属于原始作者。
جدول 8- مقایسه منادی تسهیلی خطای مدل‌های رگرسیون و هیبرید

<table>
<thead>
<tr>
<th>درجه پیشگو (سال)</th>
<th>متغیرهای نهایی</th>
<th>ارمند</th>
<th>مرغعی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(لاح)</td>
<td>(سر)</td>
</tr>
<tr>
<td>100</td>
<td>رگرسیون 32</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>هیبرید 23</td>
<td>67</td>
<td>38</td>
</tr>
<tr>
<td>150</td>
<td>رگرسیون 33</td>
<td>78</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>هیبرید 23</td>
<td>77</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>رگرسیون 32</td>
<td>69</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>هیبرید 23</td>
<td>67</td>
<td>37</td>
</tr>
</tbody>
</table>

که قبلاً توضیح داده شد، می‌توان به منظور تحلیل منطقه‌ای سیالاب به‌طوری‌که در مناطق خشک از این روش استفاده کرد. به علاوه، همان گونه که در جدول 7 دیده می‌شود، با افزایش طول دوره آماری، صادقیت خواهی در مدل افزایش می‌یابد که یکگان تایاز به وجود تعداد بیشتر داده‌های مشاهداتی جهت تعیین دقیقت در سیالاب با استفاده از این روش، لازم است در جهت اجرای این تحقیق تشکیل و قدردانی می‌شود.

منابع مورد استفاده

1- آددی، ع. 1376. بررسی هیدرولوژی سرشاخه‌های کارون. پایان‌نامه کارشناسی ارشد، رشته منابع آب، دانشگاه تهران.
2- باقری، ر. 1372. تعیین دی‌های ناشی از جریان آب در منطقه کارون، رودپارک، رود‌کوهی. پایان‌نامه کارشناسی ارشد، رشته هیدرولوژی، دانشگاه صنعتی شریف.
3- جلالی، غ. 1374. گزارش هواشناسی هواشناسی کارون، دفتر اطلاعات کارون، رودپارک، رود‌کوهی. پایان‌نامه کارشناسی ارشد، رشته هیدرولوژی، دانشگاه صنعتی شریف.
4- چاوشی، س. 1377. منطقه‌ای کردن برنامه‌های سیالاب در مناطق خشکی طبق روش هیبرید، پایان‌نامه کارشناسی ارشد، رشته هیدرولوژی، دانشگاه صنعتی شریف.
5- دستورالعمل م. 1375. بررسی تأثیر طول آمار در پیش‌بینی سیالاب در ایران. پایان‌نامه کارشناسی ارشد، رشته آبخیزداری، دانشگاه تهران.
6- روستایی، م. 1378. بررسی هیدرولوژی سرشاخه‌های آبزی کارون، پایان‌نامه کارشناسی ارشد، رشته منابع آب، دانشگاه تهران.
7- موسوی، ر. 1376. تحقیق در مورد سیالاب در مناطق خشکی طبق روش‌های آبزی، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی شریف.
8- هریش، ا. 1374. آنالیز منطقه‌ای سیالاب در منطقه آبخیز مرکزی، پایان‌نامه کارشناسی ارشد، رشته آبخیزداری، دانشگاه تهران.

