تخمین دیپ سیل با تناوب مختلف در حوضه آبخیز زاینده‌رود
طبق روش منطقه‌ای هیرید

سارا چاوشی پروچنی و سید سعید اسلامیان

چکیده
مطالعه تناوب سیلاب در مناطق خشکی به دلیل تعداد کم ایستگاه‌های هیدرومتری، کمبود آمار و وجود داده‌های پراکنده ناشی از وقوع جریان‌های نادر بسیار مشکل می‌باشد. تحلیل منطقه‌ای سیلاب یکی از روش‌های مناسب چهت غله بر چهین مشکلاتی می‌باشد. در این تحقیق یکی از روش‌های تحلیل منطقه‌ای سیلاب به نام روش هیرید مورد بررسی قرار گرفته است. منطقه مورد مطالعه شامل ۱۷ حوضه همگان واقع در استان‌های اصفهان و چهارمحال و بختیاری می‌باشد.
نتهای با استفاده از رگرسیون چندگانه بین دی سیلاب با دوره‌های مختلف بازگشت، به عنوان عامل بازه و خصوصیات فیزیکی و اقلیمی حوضه، به عنوان عوامل مستقل، مهمترین عوامل فیزیکی و اقلیمی مرتبط با سیلاب که عبارتند از سطح و ارتفاع متوسط حویضه بویش می‌دهند تعیین گردید. مدل‌های تناوب سیل هیرید مرتبط با این دوره عامل تعیین و با توجه به تعداد هزاران کیلومتر مربع از استان‌های اصفهان و چهارمحال و بختیاری، مدل‌های هیرید در منطقه مورد نظر بهبود یافت. مقایسه مقدار نسبی خطای مدل‌های هیرید و رگرسیون نشان داد که در دوره‌های بازگشت کوتاه، دقت مدل هیرید پیش‌تر از روش رگرسیون بوده ولی در دوره‌های بازگشت بالا، دقت مدل رگرسیون پیش‌تر از روش هیرید می‌باشد.

واژه‌های کلیدی - تحلیل منطقه‌ای سیلاب، آزمون همگنی حوضه‌های آبخیز، روش‌های برآورد دیپ سیلاب

مقدمه
یکی از مشکلات اساسی در مدیریت مناطق خشکی، کمبود آب می‌باشد که تطبیقی بر نامه‌های توسعه را تحت شرایط خشک قرار داده، به طوری که برنامه‌های توسعه در این مناطق بر محور استفاده بهینه از منابع آب استوار است. در این راستا، تحقیقات متفاوت در زمینه‌های مختلف انجام گرفته تا ضمن ارائه

- به ترتیب کارشناسی ارشد بیانات‌ها و مراکز، محققان و اعضای انجام شده. دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

1
طراحی سازه‌های آیپی، دبی اوج لحظه‌سازی سیال‌سازی می‌باشد.

ورشکده متدی جهت برآورنده دبی اوج لحظه‌سازی سیال‌سازی شده است که به عنوان مثال می‌توان به تحلیل منطقه‌سازی سیال‌سازی اشاره نمود. تحلیل منطقه‌سازی سیال‌سازی شامل دو بخش می‌باشد. نتایج حضورهای آبخیزی که از لحاظ هیدرولوژیک به‌آسانی متقابل نمی‌باشند و سپس مدل‌های نانو سیال بالغ‌ترین مسیر بر دیگر سیال‌سازی و تهیه‌گر که سطح حضورهای مهم‌ترین و مؤثرترین پارامتر است. تولید سیال‌سازی است. سپس به آن دو عامل باید آب‌ریزی و ذوب و نتایج بستگی به سیال‌سازی هستند. به‌دنبال این نتایج بستگی به سیال‌سازی ندارد. در تحقیقات دیگر مدل‌های منطقه‌سازی سیال‌سازی را در دو روش مدل‌سازی گزارش 275 و 50 سال برای حضورهای استرآمیش آمیکا ارائه نموده که توسط آنها به اوج سیال منطقه حضور به‌آورنده گردید (15).

با استفاده و همسر (16) روش‌های مختلف تخمین ذوب‌سازی سیال‌سازی با دوبه‌راه منطقه‌سازی گزارش را برای رودخانه‌های ایالت جورجیا آمیکا به کار برده و چنین نتیجه‌گیری که سطح حضورهای ذوب‌سازی را در دو روش مدل‌سازی سیال‌سازی و نرمال دارای نگرش جهت اعمال منطقه‌سازی می‌باشد در نتیجه منطقه مورد حضورهای سطح به‌همراه گروه سیال‌سازی می‌باشد.

همگی طبقه‌بندی روابط تابع سیال برای منطقه ذوب‌سازی گردید (12) در تحقیق خود از تکنیک تحلیل منطقه‌سازی سیال‌سازی و روش‌های مدل‌سازی سیال‌سازی منطقه‌سازی مرزی ارائه‌دهند. حضورهای آبخیزی بین‌سانی استفاده کد و نتیجه‌گیری که می‌توان با تکنیک کنونی دوبه‌راه ذوب‌سازی سیال منطقه حضورهای ذوب‌سازی را در دو روش مدل‌سازی سیال‌سازی و نرمال دارای نگرش جهت اعمال منطقه‌سازی می‌باشد.

با استفاده و همسر (16) روش‌های مختلف تخمین ذوب‌سازی سیال‌سازی با دوبه‌راه منطقه‌سازی گزارش را برای رودخانه‌های ایالت جورجیا آمیکا به کار برده و چنین نتیجه‌گیری که سطح حضورهای ذوب‌سازی را در دو روش مدل‌سازی سیال‌سازی و نرمال دارای نگرش جهت اعمال منطقه‌سازی می‌باشد در نتیجه منطقه مورد حضورهای سطح به‌همراه گروه سیال‌سازی می‌باشد.

همگی طبقه‌بندی روابط تابع سیال برای منطقه ذوب‌سازی گردید (12) در تحقیق خود از تکنیک تحلیل منطقه‌سازی سیال‌سازی و روش‌های مدل‌سازی سیال‌سازی منطقه‌سازی مرزی ارائه‌دهند. حضورهای آبخیزی بین‌سانی استفاده کد و نتیجه‌گیری که می‌توان با تکنیک کنونی دوبه‌راه ذوب‌سازی سیال منطقه حضورهای ذوب‌سازی را در دو روش مدل‌سازی سیال‌سازی و نرمال دارای نگرش جهت اعمال منطقه‌سازی می‌باشد.
جدول 1- مشخصات استگاه‌های هیدرومتری و زیرحوضه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>ماشیت</th>
<th>موضع</th>
<th>رودخانه</th>
<th>طول</th>
<th>عرض</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسکندری</td>
<td>پلاسیان</td>
<td>210</td>
<td>140</td>
<td>33.98</td>
</tr>
<tr>
<td>شاهین</td>
<td>شاهین</td>
<td>225</td>
<td>150</td>
<td>33.49</td>
</tr>
<tr>
<td>سواران</td>
<td>سواران</td>
<td>220</td>
<td>160</td>
<td>33.45</td>
</tr>
<tr>
<td>سمندن</td>
<td>سمندن</td>
<td>210</td>
<td>170</td>
<td>33.47</td>
</tr>
<tr>
<td>مندرجان</td>
<td>مندرجان</td>
<td>220</td>
<td>180</td>
<td>33.41</td>
</tr>
<tr>
<td>زریشکه</td>
<td>زریشکه</td>
<td>215</td>
<td>190</td>
<td>33.43</td>
</tr>
<tr>
<td>آب و چشمه</td>
<td>آب و چشمه</td>
<td>220</td>
<td>200</td>
<td>33.43</td>
</tr>
<tr>
<td>سیلورن</td>
<td>سیلورن</td>
<td>215</td>
<td>210</td>
<td>33.41</td>
</tr>
<tr>
<td>گیلابان</td>
<td>گیلابان</td>
<td>220</td>
<td>220</td>
<td>33.43</td>
</tr>
<tr>
<td>رانشن</td>
<td>رانشن</td>
<td>215</td>
<td>230</td>
<td>33.43</td>
</tr>
<tr>
<td>جوهران</td>
<td>جوهران</td>
<td>220</td>
<td>240</td>
<td>33.41</td>
</tr>
<tr>
<td>گیلابان</td>
<td>گیلابان</td>
<td>220</td>
<td>250</td>
<td>33.43</td>
</tr>
<tr>
<td>کلاهک</td>
<td>کلاهک</td>
<td>215</td>
<td>260</td>
<td>33.43</td>
</tr>
<tr>
<td>سرخ‌شکر</td>
<td>سرخ‌شکر</td>
<td>220</td>
<td>270</td>
<td>33.41</td>
</tr>
</tbody>
</table>

کالیفرنیای شرقی و آریزونای غربی در آمریکا به کار گرفته شده است.

مواد و روش‌ها

مورد مطالعه شامل دو حوضه بزرگ گاوخوئی (واقع در استان اصفهان) و کارون شمالی (واقع در استان چهارمحال و بختیاری) می‌باشد. مساحت حوضه گاوخوئی 413,247 کیلومترمربع و مساحت حوضه کارون شمالی 1,270,467 کیلومترمربع است.

از مجموع 36 استگاه هیدرومتری موجود در این دو حوضه، 17 استگاه از لحاظ هیدرولوژیک همکن بوده (4) و

مورد استفاده قرار گرفته است (جدول 1 و شکل‌های 1 و 2). به منظور تعیین محل‌های تابو در این مناطق از روشن‌های هیریفت استفاده شده است. تحلیل سیلاب در این مناطق همواره با مشکلات همچون کمبود تعداد استگاه‌های هیدرومتری، ایجاد مسالماتی در بسته‌گیری، عدم تطبیق زمانی گازهای موجود استگاه‌ها، وجود سالنی فاقد جریان و وقوع دامنه‌ای در این مناطق، نیاز به ایجاد مدل‌های پیشرفته و پیش‌بینی دارد.

یک گزارش واحد در مدت برای منطقه به دست می‌آید.
شکل ۱- موتیفیت‌ایستگاه‌های مورد مطالعه در حوضه‌های گازوئی، و دریاچه نمک

مدل‌های است که معمولاً در تحلیل تناوب سیل مورد استفاده قرار می‌گیرند:

\[Q_t = a A^b B^c C^d \]

که در آن:

\[Q_t = \text{دی‌ایوج با دوره پارکست} \times (\text{سال}) \]

\[a = \text{مقدار ثابت} \]

\[B = \text{پارامترهای مستقل فیزیکی و اقلیمی مورد استفاده} \]

بدین ترتیب ضمن استفاده از کلیه داده‌های موجود، همچنین داده‌های پراکندگی، برازش توزیع‌های آماری به گزارش ترکیبی به دست آمده با دقت پیشتری انجام می‌گیرد. همچنین بر صورتی که گزارش موجود دارای حداکثر حد ایستگاه-سال داده باشد نیازی به پرون‌نیابی برای پراورد دیگر صد ساله نمی‌باشد و پراورد دیگر های نادر نیز با دقت پیشتری انجام می‌گیرد.

مدل عمومی مورد استفاده در روش هیبرید همانند انواع
شکل ۲- موقعیت ایستگاه‌های مورد مطالعه در حوضه کارون شمالی

\[J \leq N_f / 100 \]

که در آن:

\[J = \text{جدور تعداد طبقات} \]

\[N_f = \text{مجموع تعداد ایستگاه-سال آمار موجود} \]

\[\overline{A}_i = \text{میانگین وزنی سطح حوضه در طبقه } i \]

\[Q = a A^b H^c \]

که در آن:

\[a, b, c \] = مولفه‌های رگرسیون

در این تحقیق با توجه به همبستگی زیاد سطح و متوسط ارتفاع حوضه با دیج اوج سیلاب (۲۴)، آینه دو پارامتر بررسی شد.

مذکور استفاده گردیده‌د، رابطه فوق به صورت زیر درآمد است:

که در آن:

\[A = \text{میانگین وزنی سطح حوضه در طبقه } i \]

\[H = \text{میانگین طبیعی سطح راهب زیر و در مرحله نخست منطقه مورد مطالعه طبقه رابطه زیر و براساس معیار سطح حوضه به چند طبقه تقسیم می‌گردد:}
ایستگاه سالنیک

\[b_i = \sum_{j=1}^{k} \left[\frac{1}{f} \sum_{i=1}^{n} A_i Q_i \right] \]

\[S_{ijk} = \frac{Q_{ijk}}{A_{ijk}} \]

\[Q_i = S_i \left(\bar{A}_i \right)^b \]

منطقه مورد مطالعه شامل 17 زیر حوضه همگن با وسعت بین 12-14280 کیلومتر مربع است. زیر حوضه‌های مذکور در دو حوضه اصلی گروه خوی و کارون شمال واقع بوده و مجموعاً دارای 1311 ایستگاه سالنیک است. بالاترین شدت می‌باشد (شکل 1 و 2) بنابراین طبق رابطه 3 حداکثر تعداد نواحی مطالعاتی 3 ناحیه بوده که شرح زیر می‌باشد:

ناحیه 1- با وسعت 16242 کیلومتر مربع زیر حوضه‌های آبخیز ایستگاههای ماریان، پایاچه‌دری، نگ اسیرجان، چله‌گرود، مندرجان، وانشان و گداقیک بهشته‌باد با استفاده از رابطه 4 میانگین وزنی پارامترهای مورد بررسی در رابطه 2 تعبیه می‌گردد. متقادیر میانگین وزنی سطح و ارتفاع نواحی مورد مطالعه در جدول 2 نشان داده شده‌است.

فرآیند تکراری هیربید با ترکیب آمار موجود در هر ناحیه و تهیه گزارشات باید برای هر ناحیه شروع و متقادیر الگوی استاندارد شده در هر ناحیه طبق رابطه 5 به دست آمد، به طوری که مشخص خواهد بود که این مقاله در فراوانی بیشتر استفاده می‌شود.
جدول 2 - میانگین وزنی پارامترهای مورد بررسی در نواحی مطالعاتی

<table>
<thead>
<tr>
<th>ناحیه</th>
<th>میانگین وزنی سطح (سانتیمتر)</th>
<th>پارامتر (کیلومترمربع)</th>
<th>میانگین وزنی ارتفاع</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2588</td>
<td>244/22</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>247</td>
<td>228/16</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2444</td>
<td>1010/24</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3 - مقادیر تخمینی S_{ij} در نواحی مطالعاتی و در تکرار اول

<table>
<thead>
<tr>
<th>نواحی مطالعاتی</th>
<th>دوره پارگشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلومتر مربع</td>
<td>2</td>
</tr>
<tr>
<td>3/0</td>
<td>0/7</td>
</tr>
<tr>
<td>0/38</td>
<td>0/21</td>
</tr>
<tr>
<td>0/88</td>
<td>0/81</td>
</tr>
<tr>
<td>0/69</td>
<td>0/69</td>
</tr>
<tr>
<td>0/61</td>
<td>0/61</td>
</tr>
<tr>
<td>0/44</td>
<td>0/44</td>
</tr>
</tbody>
</table>

جدول 4 - مقادیر تخمینی Q_{ij} (m³/s) در نواحی مورد مطالعه و در تکرار اول

<table>
<thead>
<tr>
<th>نواحی مطالعاتی</th>
<th>دوره پارگشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلومتر مربع</td>
<td>2</td>
</tr>
<tr>
<td>3/0</td>
<td>0/7</td>
</tr>
<tr>
<td>0/38</td>
<td>0/21</td>
</tr>
<tr>
<td>0/88</td>
<td>0/81</td>
</tr>
<tr>
<td>0/69</td>
<td>0/69</td>
</tr>
<tr>
<td>0/61</td>
<td>0/61</td>
</tr>
<tr>
<td>0/44</td>
<td>0/44</td>
</tr>
</tbody>
</table>

مقدار اولیه S میزان یک در نظر گرفته شد. با استفاده از روش‌های متد آماری، توزیع‌های مختلف آماری (ترنال، لگ-نرمال، پیرسون، لگ پیرسون، گاما، لگ گاما و لگ گاما) به آمار ترکیبی برایش داده شده و از تیپهایی توزیع برای هر ناحیه به سه روش متد آزمون برایش به عنوان یک مقادیر میانگین، کلیمروف اسپرموف و کاسکوکر، دیه سبلایا با دوارهای پارگشت، 1، 5، 10 و 50 ساله استخراج گرفته شد. (جدول 3). به منظور تعیین دقیقه اوج در هر ناحیه، مقادیر Q_{ij} طبق رابطه 6 تعیین می‌شود (جدول 4). با استفاده از رابطه (7) مقدار Q_{ij} تعیین می‌شود (جدول 5).
جدول ۵ - مقادیر تخمینی $Q_гр$ در منطقه مورد مطالعه و در تکرار اول

<table>
<thead>
<tr>
<th>دوربازگشت (سال)</th>
<th>$Q_гр$</th>
<th>A</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۷۸</td>
<td>۵۰۰</td>
<td>۲۵</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۹۷۹</td>
<td>۲۷۰</td>
<td>۹۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۱۹۸۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۹۸۱</td>
<td>۸۰</td>
<td>۸۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

که در آنها:

- $Q_гр$ = دیس اویل سیلاب با دوربازگشت ۲ (متر مکعب بر ثانیه)
- A = سطح حوضه آبخیز (کیلومتر مربع)
- H = ارتفاع متوسط حوضه (متر)

آزمون خطأ به منظور بررسی دقیق مدلهای به دست آمده نخست مدل‌های رگرسیون چند متغیری خطي تا ناوان سیری آنجا منطقه مورد مطالعه تعیین می‌گردد. لازم به ذکر است که سایر مدل‌های رگرسیون (همچون رگرسیون چندکام‌یکی، رگرسیون چندکام‌یک گامی) نیز مورد بررسی قرار می‌گرفته که از ضریب همبستگی پایایی برخورد بود. بنابراین منظور آمار مشاهداتی است. همچنین نتایج تحقیق اکثریت اکثریت مدل‌های چند متغیری دیوی در دوره‌های پیشین مورد مطالعه با توزیع معنی‌داری برآورد و مناسبی برای تنوع انتخاب و سپس مقادیر دیوی در دوره‌های بارگذاری مختلف استخراج شد. با استفاده از رگرسیون چندگانه بین این مقادیر و پارامترهای سطح و متوسط ارتفاع حوضه، مدل‌های رگرسیون به صورت زیر می‌باشد:

$$Q_гр = 30A^{1.1}H^{-1.3}$$

$$Q_гр = 35A^{1.2}H^{-1.1}$$

$$Q_гр = 3A^{1.3}H^{-1.8}$$

$$Q_гр = 27A^{1.3}H^{-1.7}$$

$$Q_гр = 10A^{1.3}H^{-1.7}$$
جدول 7- مشخصات استیگمراه‌های هیدرومتری و زیروضوح‌های ارمند و مرغک

<table>
<thead>
<tr>
<th>استیگمراه هیدرومتری</th>
<th>موقعیت جغرافیایی</th>
<th>اندازه</th>
<th>مرغک</th>
<th>ارمند</th>
<th>پازفته</th>
<th>کارون</th>
</tr>
</thead>
<tbody>
<tr>
<td>(کیلومتر مربع)</td>
<td>(متر)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>980</td>
<td>590</td>
<td>3123</td>
<td>5032</td>
<td>2436</td>
<td>5025</td>
</tr>
</tbody>
</table>

نسبت خطای مدل‌های فوق مقایسه گردید. بدین منظور از آمار
دو ایستگاه واقع در منطقه، که قبلاً در معادلات هیپرئد و
رگرسیون مورد استفاده قرار گرفته، و تعداد داده‌های مشاهدهای
کافی دارند، به‌عنوان استیگمراه‌های ارمند و مرغک استفاده شده
است (جدول 7). بدین ترتیب، مقادیر تخمینی دبی در دو
استیگمراه فوق طبق مدل‌های هیپرئد و رگرسیون تعیین و با
مقادیر مشاهدهای دبی استیگمراه‌های فوق مقایسه و طبق رابطه
بین مقادیر خطای مدل‌های فوق تعیین گردید (جدول 8):

\[
\text{Bias} (\%) = 100 \times \left(\frac{Q_t - \hat{Q}_t}{Q_t} \right)
\]

که در آن:
\[
Q_t = \text{دبی حقیقی}
\]
\[
\hat{Q}_t = \text{مقدار مشاهدهای دبی}
\]

همان‌گونه که در جدول 8 دیده می‌شود برای دوره‌های یازده
کم‌تر متوسط، مقادیر درصد نسبی خطای طبق روش هیپرئد، در
مقایسه با روش رگرسیون کمتر است. که بیانگر دقت بیشتر مدل
هیپرئد در مقایسه با مدل رگرسیون مشابه است. بنابراین با توجه به
آن که در مناطق خشک جغرافیایی آبی از لحاظ کمی کوچک و آب
لحاظ دوره زمانی کوتاه مدت هستند، تیزی به طراحی
سازه‌های آبی بزرگ همچنین سد‌هایی مخزنی نمی‌باشد. در این
مناطق جهت بهره‌برداری بهینه از منابع آب عمداً از روش‌های
آب‌یابی ایجاد جریان آب استفاده می‌شود. طراحی سازه‌های آبی در مناطق خشک
می‌تواند بر روی خشک‌سازی کوتاه‌مدت موثر باشد. لذا با
توجه به دقت خوب روش هیپرئد و همچنین مزایای این روش

\[
R - S_q = \frac{4}{60} \quad SE = 153 \quad n = 17
\]

\[
Q_t = 10^6 A + \frac{1}{9} H
\]

\[
R - S_q = \frac{2}{68} SE = 313 \quad n = 17
\]

\[
Q_0 = 10^6 A + \frac{1}{16} H
\]

\[
R - S_q = \frac{1}{33} SE = 660 \quad n = 17
\]

\[
Q_{10} = 10^6 A + \frac{1}{33} H
\]

\[
R - S_q = \frac{1}{20} SE = 90 \quad n = 17
\]

معادلات 12 تا 19 نشان می‌دهد که در سطح معنی‌دار
5/0 و برای دوره‌های یازده‌گیفت کوتاه مدت، روابط نسبتاً
مختصری داریم بین دو حاصلکننده سیال‌بای سطح و متوسط
ارتفاع حوضه‌ای، آب‌زدایی و وجود دارد و با اندازه‌گیری طول دوره
یازده‌گیفت صورت همبستگی کاهش می‌یابد.

در ادامه، مقادیر خطای نسبی مدل‌های هیپرئد با مقدار

جدول 8- مقایسه منادی نسبی خطای مدل های رگرسیون و هیبرید

| دهه بازگشت (سال) | پیشنهاد | مدل استفاده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ارتند</td>
<td>مرکزی</td>
</tr>
<tr>
<td>روگرسیون</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>هیبرید</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

یکی از توصیفی‌های داده‌های سیالاب به‌طور غیر از روگرسیون و هیبرید نیز مورد بررسی و با یکدیگر مقایسه گردد.

سیاستهایی

از سمتون و همکاران محوری تحقیقات منابع، عمده‌ای اصفهان به‌طور اصلی انجام تجربه‌ها در جهت اجرای این تحقیق‌ها و رشد و توسعه می‌شود.

منابع مورد استفاده

1- اسدلی، ع. 1376. بررسی هیدرولوژی سرنشین‌های کارون. پایان نامه کارشناسی ارشد، رشته مهندسی، اصفهان.
2- بارفی، 1372. تهیه می‌باشد. یهود، اصفهان. فاقد آمار محدوده رود. پایان نامه کارشناسی ارشد، رشته آبیاری و زه‌کشی، اصفهان.
3- جلالی، ع. 1376. گزارش اولیه کارشناسی کارنهای تونکه، کارون و زاینده‌رود. انجمن آب و آبیاری.
4- چاوشی، م. 1377. منابع کارشناسی کرد. پایان نامه کارشناسی ارشد، رشته کارشناسی اصفهان.
5- دستورالعمل، م. 1375. تهیه تأثیر طول آمر در یک‌سیالاب در ایران. پایان نامه کارشناسی ارشد، رشته آب‌داری، اصفهان.
6- رونکاب، ع. 1373. بررسی هیدرولوژی سرنشین‌های کارون. پایان نامه کارشناسی ارشد، رشته منابع آب، اصفهان.
7- موسوی، ح. 1364. تهیه می‌باشد. یهود، اصفهان. فاقد آمار محدوده رود. مجموعه مقالات اولین کنفرانس هیدرولوژی ایران، ص 110-119.
8- هشتمی، ا. 1374. آنالیز منابع در سیالاب در حوزه آب‌خاکی مرکزی. پایان نامه کارشناسی ارشد، رشته آب‌داری، اصفهان.

