پیش بینی بارندگی سالانه استان خوزستان از روی زمان و موقع رگبارهای پاییزه

محمد مهدی قاسمی و علیرضا سیاسخواه

چکیده

وسمت مرئی و همچنین راهکارهایی که برای توصیف کشاورزی استان خوزستان به صورت افتراقی سطح زیر کشت دیم و آبی پیشنهاد شده همگی به میزان بارندگی بستگی دارند. بنابراین وجود مدل هایی به منظور پیش بینی بارندگی برای تصمیم گیری های مدیریتی لازم به نظر می رسند. بنابراین در این پژوهش با استفاده از آمار دراز مدت بارندگی روزانه ۱۵ ایستگاه در منطقه مورد مطالعه ارتباط بین زمان و موقع رگبارهای زودرس پاییز با بارندگی سالانه بررسی شد.

نتایج حاکی از آن است که این ارتباط معکوس بوده و هرچه شروع بارندگی ها به تأخیر بیفتد در نتیجه مقدار بارندگی سالانه کاهش می یابد. برای افتراقی ضریب تبعیض‌سانی از متغیرهای اقلیمی مانند میانگین دراز مدت بارندگی، دمای سطح آب خلیج فارس و مشخصه‌های جغرافیایی ایستگاه‌ها استفاده گردید که با جوز میانگین دراز مدت بارندگی و ارتفاع ایستگاه‌ها، دیگر متغیرهای ضریب تبعین R^2=0.704 و $P<0.05$ پیشنهاد می‌شود. مدل ساده نهایی چنین می‌باشد: مدل بارندگی شده در طول مدت ۲۴/۰۲ میلیمتر باران از ابتدای پاییز (روز)، میانگین دراز مدت بارندگی (میلیمتر) می‌باشد.

واژه‌های کلیدی: پیش بینی بارندگی سالانه، استان خوزستان، مدل رگرسیون

مقدمه

رشد روز افزون جمعیت و در نتیجه احتمال بیشتر بودن به ناحیه یا دیگر مزایای اقتصادی و اجتماعی، از سوی همکاری‌های بین‌المللی برای شرایط کمبودی است. در حالی که این راهکارها به همراه می‌باشد که به همراه بر اساس محاسبه احتمال روزهای بارانی در هر ماه و حداکثر بارندگی روستاها در طول دوره رشد، احتمال موقعیت کشت برخی از خشک نمی‌یابد. برای مثال وسعت مراتع و دیم کاری‌ها به میزان، نوغ و چگونگی باران بستگی دارند(۱). به دنبال آن توصیف کشاورزی، از منابعی هستند که بر شرایط کمبود و حلال آنها داشته است و راهکارهایی برای آنها ارائه نموده است.

۱. به ترتیب کارشناس ارشد و استاد آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه شیراز.
محصولات دیم در منطقه‌های ارزیابی‌کردند. آنها همچنین احتمال وقوع بارش‌های کافی در جهت رعایت را به‌منظور افزایش رطوبت زمین برای کشت بر مورد بررسی و مطالعه قرار دادند.

در برخی از مناطق دیپا با استفاده از آمار بلند‌مدت بارندگی، تاریخ وقوع نخستین بارش‌ها ارتباط معنی‌داری با بارندگی سالنگان داشته و به دنبال ترقب بارندگی سالنگان قبل بیش‌تری می‌باشد (10). فارست و دانست (9) حداکثر بارش مورد تربیت در این منطقه، افزایش زراعی به‌منظور کاست موفقیت آمیز در نهایت ناحیه هلالی زمان از 15 تا 20 میلی‌متر نمودند. شافعی و سیاسخوانه (3) طول زمانی و وقوع 375 میلی‌متر بارش از اول فصل پاییز را به عنوان باران خیس کننده و ذوب‌سازی شواهدی به‌منظور تحسن کیفیت حرارتی و توزیع آب‌های اصلی این منطقه مطرح کرده‌اند.

استان خوزستان نیز با دارای بودن حدود 250۵۷ میلی‌متر می‌باشد. ناحیه شمالی مانند دزفول، گنبدن و سنجر سیلمنان بیش از ۳۰۰ میلی‌متر می‌باشد. محل سد در سد شهید عباس پور بیش از ۵۰۰ میلی‌متر می‌باشد. در طرف ارتفاعات شمال شرقی استان به تدریج افزایش یافته‌اند. بازدهی میانه‌ای می‌باشد. خوزستان در نظر داشته که میانگین درجه حرارت آن در نیمه‌های دو ماه به‌طور متوسط ۲۰۰۹ میلی‌متر می‌باشد. در نیمه‌های دو ماه به‌طور متوسط ۲۰۰۹ میلی‌متر می‌باشد. در نیمه‌های دو ماه به‌طور متوسط ۲۰۰۹ میلی‌متر می‌باشد. در نیمه‌های دو ماه به‌طور متوسط ۲۰۰۹ میلی‌متر می‌باشد. در نیمه‌های دو ماه به‌طور متوسط ۲۰۰۹ میلی‌متر می‌باشد.
درباره سالانه استحکام خورشیدن‌ان در روی زمان وقوع ریگارهای پاییزه

\[P_s = 1(2.715 \times 10^{-2} + 5.268 \times 10^{-2} \cdot t_t) \]
\[(R^2 = 0.374, \text{SE} = 1.743 \times 10^{-3}, p < 0.001) \]
در این معادله: \(t_t \) واقع زمان وقوع ریگارهای پاییزه

در ضمن ارتباط بین زمان وقوع ریگارهای پاییزه با پیش‌بینی سالانه استحکام خورشیدن‌ان در شکل ۳ به‌صورت
درصد فراوانی برای نگرش به‌همت، ملاحظه می‌گردد. سپس برای این که

عوامل دیگری همچون میزان‌های دراز مدت وارونگی سالانه، طول و عرض جغرافیایی، ارتفاع از سطح دریا و درجه حرارت

فصل مختلف سطح آب خلیج فارس که از میانگین کل

ایستگاه‌های موجود حاصل کرده، در مدل به کار برده شود.

با پاییز روابط خطی و غیر خطی جدید می‌تواند مورد آزمون قرار

گیرد. همکاری ترک تخمین و نتایج TC-3D

اجام گرفت و نتایج

حاصل در جدول ۲ نشان داده شده است. همان‌طوری که

ملاحظه می‌شود رابطه خطی ضربی همبستگی

پالتری داشته و در سطح معنی‌دار بالاتری نیز قرار دارد. با این

برای تعیین رابطه متغیرهای مدل‌ور و پارامتری سالانه از

برگرایی جدید متغیرهای خطا استفاده شد که نتایج آن به‌طور

خلاصه در زیر ملاحظه می‌شود:

\[P_s = 184.787 \times 1.891 t_{s4,5} + 0.855 P_m \]
\[(R^2 = 0.704, \text{SE} = 116.05, p < 0.001) \]

\[P_s = 187.932 \times 1.891 t_{s4,5} + 0.838 P_m - 0.022 \text{EI} \]
\[(R^2 = 0.704, \text{SE} = 116.187, P < 0.001) \]

\[P_s = 402.713 \times 1.894 t_{s4,5} + 0.85 P_m - 4.453 \text{Lo} \]
\[(R^2 = 0.704, \text{SE} = 116.176, P < 0.001) \]

\[P_s = 100.528 \times 1.893 t_{s4,5} + 0.848 P_m + 2.728 \text{La} \]
\[(R^2 = 0.704, \text{SE} = 116.184, P < 0.001) \]

\[P_s = 592.912 \times 1.8961 t_{s4,5} + 0.816 P_m - 0.870 \text{Lo} - 7.624 \text{La} + 0.056 \text{EI} \]
\[(R^2 = 0.704, \text{SE} = 116.443, P < 0.001) \]

\[P_s = 373.562 \times 2.051 t_{s4,5} - 1.084 \text{EI} \]
\[(R^2 = 0.664, \text{SE} = 123.685, P < 0.001) \]

۳۷/۵ میلی‌متر بارندگی از ابتدای فصل پاییز به همراه بارندگی

سالانه و میانگین در مدت برای محاسبات بعد استخراج

گردید. لازم به ذکر است که اعداد ۴۷/۵ و ۳۷/۵ دانه‌ای

برای تعیین مقدار مشخص بارندگی می‌باشد...

داده‌های ماهانه درجه حرارت سطح آب سیستم خلیج

فارس برای سال‌های ۱۹۴۰-۱۹۸۵ (مالیه ۶۵-۱۳۶۴ شمسی)

از مجموع جمع‌میزان آب‌هایی اقیانوسی

(Comprehensive Oceanic and Atmospheric Data Set)

استخراج شده (شکل ۱) و سپس داده‌های فصلی

محاسبه گردید.

با توجه به این که در بعضی از سال‌ها اطلاعات مفقود شده

وجود بود از روش همبستگی بین ایستگاه‌های مجاور، داده‌های

بارندگی روزانه با پاس‌زا و تطبیق شدند. سپس آزمون همبستگی

توسط آزمون توالی و بررسی رایانه‌ای RUNTEST

ملاحظه شد که نتایج گرفت و همچنین داده‌ها محور گردید.

روابط بین بارندگی سالانه با عنوان معنی‌دار و متغیر داده‌های

اقلیمی و جغرافیایی به عنوان معنی‌دار و مستقل تغییر شد.

به‌طوری که معنی‌داری ضریب معاوده‌ها را با آزمون ۴ و کل

معادله آن با آزمون E مورد سنجش قرار داد. سپس ضریب تغییر

و خطا معیار محبوبی و معادله‌ها از یکپارچه شد.

نتایج و بحث

با استفاده از ترک تخمین و نتایج STATGRAPHIC

روابط خطی و غیر خطی قابل‌توجه در مقدار ۷۷/۵

به ترتیب زمان وقوع هر بار استخراج ۷۷/۵ و ۵/۴ میلی‌متر مانند ابتدای پاییز با مقدار بارندگی

سالانه در همین استخراج برسی گردید. شکل ۲ درصد فراوانی

ریگارهای که ضریب دیگر است، با توجه نشان می‌دهد

همان‌طور که ملاحظه می‌شود ارتباط بین بارندگی سالانه و زمان

وقوع میزان مشخص بارندگی به وسیله مکانیک مکروس

(۱/۳(1+a+bx)) به‌شیبی در مصرف. فراوانی برای نگرش به‌همت

اختصاص داده است. لازم به ذکر است که داده‌های پرتو

ترم افزایش مربوط به حذف گردید. رابطه استخراج شده به شکل

زیر می‌باشد:

\[P_s = 1(2.715 \times 10^{-2} + 5.268 \times 10^{-2} \cdot t_t) \]
\[(R^2 = 0.374, \text{SE} = 1.743 \times 10^{-3}, p < 0.001) \]
جدول 1. نام و مشخصات ایستگاه‌های مورد بررسی (منبع 8)

<table>
<thead>
<tr>
<th>نام ایستگاه</th>
<th>طول جغرافیایی (درجه)</th>
<th>عرض جغرافیایی (درجه)</th>
<th>دوره آماری</th>
<th>ارتفاع (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تله رنگ</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>500</td>
</tr>
<tr>
<td>گونون</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>100</td>
</tr>
<tr>
<td>شوش دانال</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>40</td>
</tr>
<tr>
<td>سد شهرد عباسپور</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>90</td>
</tr>
<tr>
<td>کارون</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>300</td>
</tr>
<tr>
<td>گدارلدرد</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>100</td>
</tr>
<tr>
<td>ملأتانی</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>40</td>
</tr>
<tr>
<td>حرمله</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>90</td>
</tr>
<tr>
<td>گرگر</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>10</td>
</tr>
<tr>
<td>ماراکه</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>12</td>
</tr>
<tr>
<td>چراغی</td>
<td>28.49</td>
<td>53.32</td>
<td>1333-72</td>
<td>15</td>
</tr>
</tbody>
</table>

شکل 1. موقعیت ایستگاه‌های برداشت درجه حرارت سطح آب در خلیج فارس (محال ایستگاه‌ها با علامت ⊙ مشخص شده است)
پیشرفتی بارندگی سالانه استان خوزستان از روی زمان و نقش رگه‌های پایدار

شکل ۲. درصد فراوانی برازش بهتر معادله‌های آزمون شده

جدول ۲. خروجی نرم‌افزار مربوط به آزمون معادله‌های ساده TC-3D

<table>
<thead>
<tr>
<th>رتبه</th>
<th>ضریب تعیین</th>
<th>خطای معیار</th>
<th>آزمون (F)</th>
<th>نوع معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7840</td>
<td>116/4724</td>
<td>290/29</td>
<td>Z=a+bx+cy</td>
</tr>
<tr>
<td>2</td>
<td>0.7940</td>
<td>116/4672</td>
<td>290/1</td>
<td>Z=a+bx+cly</td>
</tr>
</tbody>
</table>
| 3 | 0.8040 | 116/4726 | 289/89 | Z=a+bx+cy
| 4 | 0.8130 | 116/4736 | 289/87 | Z=a+bx/lxn+cy|
| 5 | 0.8220 | 116/4746 | 289/44 | Z=a+bx/lxn+cy|
| 6 | 0.8310 | 116/4756 | 289/12 | Z=a+bx/cy
| 7 | 0.8400 | 116/4766 | 288/74 | Z=a+bx+cy(0.5)l
| 8 | 0.8500 | 116/4776 | 288/32 | Z=a+bx/lxn+cy(0.5)l
| 9 | 0.8600 | 116/4786 | 288/11 | Z=a+bx/lxn+cy|
| 10 | 0.8700 | 116/4796 | 288/24 | Z=a+bx/cy
| 11 | 0.8800 | 116/4806 | 287/36 | Z=a+bx+cly|
| 12 | 0.8900 | 116/4816 | 287/11 | Z=a+bx/cy|
| 13 | 0.9000 | 116/4826 | 287/10 | Z=a+blnx+cy|
| 14 | 0.9100 | 116/4836 | 287/36 | Z=a+blnx+clny|
| 15 | 0.9200 | 116/4846 | 287/28 | Z=a+blnx+c/y|
| 16 | 0.9300 | 116/4856 | 287/22 | lZ=a+blnx+c/y2l
| 17 | 0.9400 | 116/4866 | 287/16 | lZ=a+blnx+c/y2
| 18 | 0.9500 | 116/4876 | 287/10 | lZ=a+blnx+c/y(2.5)
| 19 | 0.9600 | 116/4886 | 287/8 | lZ=a+blnx+c/y(3)
آمار تعداد ۳۰ طبیعی به نظر می‌رسد. وجود رابطه معکوس بین طول جغرافیایی و پایداری گذشت به احتمال بیشتر بودن است. برای این انتخاب در حالت‌های ناهمگن اثر واریانس میان‌گروهی و اثر تکراری طول جغرافیایی و عرض جغرافیایی محیط (اعضاگاه) SSTsummer و SSTspring به ترتیب سطح آب برخی از درجه سانتی‌گراد SST winter در بازی، پیش‌بینی نتایج و زمان خلیج فارس می‌باشد.

نکته جالب توجه این مدل‌ها در این مدلهای رابطه معکوس بین زمان و موقعیت بارانگی و گزارش‌های زمانی این انتخاب در حالت‌های ناهمگن اثر واریانس میان‌گروهی و اثر تکراری طول جغرافیایی و عرض جغرافیایی محیط (اعضاگاه) SSTsummer و SSTspring به ترتیب سطح آب برخی از درجه سانتی‌گراد SST winter در بازی، پیش‌بینی نتایج و زمان خلیج فارس می‌باشد.

[۸] \(P_a = 169.8 - 1.782 t_{42.5} + 0.891 P_m - 0.198 \) SSTfall

\(R^2 = 0.72, n = 328, SE = 112.47, \quad P < 0.001 \)

[۹] \(P_a = 169.8 - 1.782 t_{42.5} + 0.891 P_m - 0.198 \) SSTsummer

\(R^2 = 0.72, n = 328, SE = 115.33, \quad P < 0.001 \)

[۱۰] \(P_a = 169.8 - 1.782 t_{42.5} + 0.891 P_m - 0.198 \) SSTspring

\(R^2 = 0.72, n = 328, SE = 115.441, \quad P < 0.001 \)

[۱۱] \(P_a = 169.8 - 1.782 t_{42.5} + 0.891 P_m - 0.198 \) SSTwater

\(R^2 = 0.72, n = 328, SE = 115.467, \quad P < 0.001 \)
این دستگاه دارخومن که از آن برای اراده مدل استفاده شده بود به کار گرفته شد. نتیجه مدل‌های ۶، ۷ و ۸ در شکل‌های ۵-۱۷ و ۱۷ ملاحظه می‌گردید. در شکل ۵-۱۷ به‌دلیل در اختیار نداشتن داده‌های کافی، نمودار سایر فاکتورها حاصل از معادله ۳ برای استفاده می‌باشد.

معادله ۲ از نتایج مشابه معادله‌های ارائه شده برای بستگی‌های جنوب و غرب می‌باشد(۱۳). ولی در آنها مدت بارش برای ریشه ۷/۵ میلی‌متر استفاده شده و ضرایب معادله‌ها نیز قدری متفاوت است و تغییری بین این ضرایب معادله‌های گرب و جنوب قرار می‌گیرد. برای بررسی مدل‌ها و چگونگی پیش بینی باران سالانه در آنها، مدل‌ها برای

بی‌بی متفاوت شده(میلی‌متر)

شکل ۴. نمودار یک به یک مقادیر بارندگی مشاهده شده و پیش‌بینی شده از معادله [۲]
شکل 5. مقادیر مشاهده‌ای و پیش‌بینی شده با رنگ‌گذاری سالانه الف - مدل (2) ب - مدل (7) ج - مدل (8)
منابع مورد استفاده

1. حقوقی، م. ۱۳۷۲. خوزستان و ظرفیت‌های توسعه کشاورزی آن. فصل نامه آب و توسعه، ۴: ۱۷-۲۵.
2. خلیلی، ع. ۱۳۷۰. طرح جامع آب کشور. مهندسین معمار ایران، جلد ۸، صفحه ۲۴۴.
3. شافعی، ف. و. ع. سیاستخواهی ۱۳۷۳. مدل‌سازی ساده جهت پیش بینی بارندگی سالانه استان فارس. سمینار کارشناسی ارشد آب‌یاری، دانشکده کشاورزی، دانشگاه شیراز.
4. کریمی، ش. و. ع. سیاستخواهی ۱۳۷۳. تحلیل ساده جهت پیش بینی بارندگی سالانه در استان کرمان. سمینار متین شریف کارشناسی ارشد آب‌یاری، دانشکده کشاورزی، دانشگاه شیراز.
5. گزارش اطلس مایع آب کشور. ۱۳۶۹. هدایایی، جلد اول، انتشارات وزارت نیرو، تهران.
6. کوچک‌نیا، ی. ع. ۱۳۷۸. بهزیستی در زراعت دیم (ترجمه دکتر کوچک‌نیا). انتشارات جهاد دانشگاهی، مشهد.
7. نظام الفدادی، س. م. ج. و. م. قاسمی ۱۳۷۳. تجزیه و تحلیل ویژگی‌های آماری دما دمای رطوبتی خاک و دریای عماد سالهای ۱۳۵۶-۱۳۶۱. مجله اقیانوس شناسی ۲، صفحه ۲۱-۳۳.
8. وزارت نیرو. ۱۳۷۲. سالنامه‌ی هواشناسی سال ۱۳۷۲-۱۳۷۳. انتشارات وزارت نیرو، تهران.