پیش بینی بارندگی سالانه استان خوزستان از روی زمان و فاکتورهای پاییزه

محمد مهدی قاسمی و علیرضا سیاسخوا

چکیده

وسعت مراکز و همچنین راهکارهایی که برای توسعه کشاورزی استان خوزستان به‌صورت افزایش سطح زیر کشت دیده و امپیشت‌های شده همگی به میزان بارندگی مشغول دارد، نباید به وجود مدارسی برای پیش‌بینی بارندگی برای تصمیم‌گیری های مدیریتی نازم به نظر مسیرشند. بنابراین این مطالعه از این پژوهش به استفاده از آمار دراز مدت بارندگی روزانه 15 ایستگاه در منطقه مورد مطالعه ارتباط بین زمان و فاکتورهای زودرس پاییزه با بارندگی سالانه پرداخت.

نتایج حاکی از آن است که این ارتباط معکوس بوده و هرچه دوره بارندگی می‌باشد، باید پیش‌بینی شده شروع بارندگی به تأخیر بیفتند. در تابع مقدار بارندگی سالانه کاهش می‌پذیرد. برای افزایش ضریب تعبیه مناسب‌تر از منظره‌ای اقلیمی مانند میانگین دراز مدت بارندگی، دمام سطح آب خلیج فارس و مشخصه‌های باشگاهی استفاده گردیده که به‌جز میانگین دراز مدت بارندگی و ارتفاع ایستگاه‌ها، دیگر منظوری ضریب تعبین

$R^2=0.704$ و $P=0.055$ به کمک این پیش‌بینی نشان داده. مدل‌ساده‌تر نهایی چنین می‌باشد:

$$P_{xb} = a + b_{1} x_1 + b_{2} x_2 + b_{3} x_3$$

که در این رابطه، P_{xb} کل بارندگی سالانه (میلی‌متر)، x_1 میانگین دراز مدت بارندگی (میلی‌متر) x_2 می‌باشد.

وژه‌ها ی کلیدی: پیش بینی بارندگی سالانه، استان خوزستان، مدل رگرسیون

مقدمه

رشد روز افزون جمعیت و در نتیجه احتیاج به اشتغال به غذا و به نیاز به توسعه کشاورزی، اکثریت هستند که به برای برحل آنها داشته است و راهکارهایی برای آنها ارائه می‌شود است. هر کدام از این راهکارها به گونه‌ای منجر به شرایط کم آب و برآور می‌باشند. البته این موضوع در اقلیم‌های خشک و نیمه خشک تماشا و سیاست و دیم کاری‌ها به مزارع، قومی و چهارگان باران‌های نسبی دار(5).

رقی، ریزی و همکاران(12) برای مدل‌های 10 ساله در مناطق مختلف بلوچستان پاکستان با بررسی کرده و بررسی میانگین استحصال روزهای بارانی در هر ماه و حداکثر بارندگی

روزانه در طول دوره رشد، احتمال موفقیت کشت برخی از

1. به ترتیب: کارشناس ارشد و استاد آبیاری و جهشی. دانشگاه کشاورزی. دانشگاه شریاز
محصولات دیم در منطقه را ارزیابی کردند. آنها همچنین احتمال وقوع باران‌های کامی پیش از شروع فصل زراعی را به‌منظور تأمین رطوبت لازم برای کاشت بذر مورد بررسی و مطالعه قرار دادند.

در برخی از مناطق دنیا با استفاده از آمار بلند مدت باران‌گذاری، تأخیر وقوع نخستین باران‌ها ارتباط معنی‌داری با باران‌گذاری سالانه داشته و بدون تریب باران‌گذاری سالانه قابل پیش‌بینی می‌باشد (10). فارس و دامغان (9) حداقل بارش مورد نیاز در این بخش مویقیت آمیز در چند ماه نخست باران تاریخ‌های مختلف کاشت را ۱۵تا ۲۰ میلی‌متر نمودند. شافعی و سیاسخوی (۳) طول دوره زمین وقوع ۳۷۵/۲ میلی‌متر باران از اول فصل پاییز به عنوان باران خیس‌کننده لایه مناسب‌تری به‌شماره‌های خواسته‌شده برای نواحی غرب و جنوب شرقی ایران توسط سیاست‌های دروازه‌گذاری توصیه کرده‌اند. در این مقاله سعی کردیم که در مورد میزان روزانه باران‌گذاری سالانه باید در این منطقه‌ها نیز با بهره‌مندی از آمار بلند مدت در بررسی و ارزیابی باران‌گذاری سالانه ارتقاء کنیم. در این مقاله به‌عنوان مثال، بررسی روزانه باران‌گذاری سالانه در استان خوزستان ارائه شده است.
پیشینه بازنگری سالانه استن خوئنستن از روز زمان و نوع ریگارهای پایه

\[P_s = 1/[(2.715 \times 10^{-5} + 5.268 \times 10^{-8} t_{45})] \]

\[(R^2 = 0.374, n = 409, SE = 1.74 \times 10^{-4}, P < 0.001) \]

در این معادله، \(P_s \) زمان و نوع ریگارهای پایه \(t_{45} \) در بالا نشان داده می‌شود.

در ضمن ارتباط بهتر بین زمان و نوع ریگارهای پایه \(t_{45} \) با ریگارهای پایه استن خوئنستن از ۵/۴ میلی‌متر باردگی کل بازنگری سالانه استفاده می‌شود.

دادره‌ها در جریان تحقیق سطح آب آب ایستگاه خلیج فارس سال‌های ۱۹۶۶-۱۹۷۵ (سال‌های ۱۳۴۳-۱۳۵۳ شمسی) (Comprehensive Ocean and Atmospheric Data Set استخراج شده (۱)، و سپس دادره‌ها فصلی می‌باشد.

با توجه به اینکه در بعضی از سال‌های اطلاعات به‌طور کامل موجود نبود از روش همگینی بن ایستگاه‌های مجاور دادرها بازنگری روزانه با بازسازی و تطبیق شده. سپس آزمون همگنی توسط آزمون توالی و برنامه‌ریزی RUNTEST منظور تنش شد انجام گرفت و همگی داده‌ها محرز گردید.

رابطه بین بازنگری سالانه با عنوان منفی و همگی داده‌ها اقلیمی و جغرافیایی به عنوان منفی‌تر از سطح تعیین شد. به‌طوری که معیار دارای ضریب معادله‌ها را یا آزمون + کل معادله‌ها را با آزمون \(t \) مورد استخراج قرار داده سپس ضریب تعیین و خلاصه در چهار ملاحظه می‌شود:

\[P_s = 184.787 - 1.891 t_{45} + 0.855 P_m \]

\[(R^2 = 0.704, n = 415, SE = 116.05, P < 0.001) \]

\[P_s = 187.932 - 1.891 t_{45} + 0.838 P_m - 0.022 EI \]

\[(R^2 = 0.704, n = 415, SE = 116.187, P < 0.001) \]

\[P_s = 402.713 - 1.894 t_{45} + 0.85 P_m - 4.453 Lo \]

\[(R^2 = 0.704, n = 415, SE = 116.176, P < 0.001) \]

\[P_s = 100.528 - 1.893 t_{45} + 0.848 P_m + 2.728 La \]

\[(R^2 = 0.704, n = 415, SE = 116.184, P < 0.001) \]

\[P_s = 592.912 - 1.8961 t_{45} + 0.816 P_m - 0.870 Lo - 7.624 Lo + 0.056 EI \]

\[(R^2 = 0.704, n = 415, SE = 116.443, P < 0.001) \]

\[P_s = 373.562 - 2.051 t_{45} + 1.084 EI \]

\[(R^2 = 0.664, n = 415, SE = 123.685, P < 0.001) \]

نتایج و بحث

با استفاده از آزمون STATGRAPHIC روابط خطي و غير-خطي ساختمان زمانی و نوع ریگارهای پایه در بالا نشان داده می‌شود. در موارد خودکار بازنگری سالانه در هر استگاه بررسی گردید. شکل ۲ درصد فرآیند روابطی که ضریب تعیین بالاتری داشته‌اند را نشان می‌دهد، همانطور که ملاحظه می‌شود ارتباط بین بازنگری سالانه و زمان و نوع میزان مشخص بازنگری به وسیله معادله مکسوس (Bastert درس) فرآیند بازی در به‌طور خودکار اختصاص داده شد، لذا به ذکر است که دادره‌ها پرتو توده از افزایش مارپیچ حذف گردید. رابطه استخراج شده به شکل زیر می‌باشد:
جدول 1. نام و مشخصات جغرافیایی ایستگاه‌های مورد بررسی (منبع 9)

<table>
<thead>
<tr>
<th>دوره آماری</th>
<th>طول جغرافیایی (درجه)</th>
<th>عرض جغرافیایی (درجه)</th>
<th>ارتفاع (متر)</th>
<th>نام جغرافیایی</th>
<th>نام ایستگاه</th>
<th>وضعیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1335-72</td>
<td>500</td>
<td>28 46</td>
<td>293</td>
<td>تله رنگ</td>
<td>ذرت</td>
<td>1</td>
</tr>
<tr>
<td>1333-72</td>
<td>100</td>
<td>28 49</td>
<td>323</td>
<td>کپوند</td>
<td>کارون</td>
<td>2</td>
</tr>
<tr>
<td>1335-72</td>
<td>80</td>
<td>28 13</td>
<td>332</td>
<td>شواش دانیال</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>1335-72</td>
<td>370</td>
<td>28 36</td>
<td>493</td>
<td>شدن عباسیور</td>
<td>کارون</td>
<td>4</td>
</tr>
<tr>
<td>1335-72</td>
<td>60</td>
<td>28 51</td>
<td>332</td>
<td>کارون</td>
<td>گدارلدر</td>
<td>5</td>
</tr>
<tr>
<td>1335-72</td>
<td>300</td>
<td>28 52</td>
<td>490</td>
<td>کارون</td>
<td>پیوند</td>
<td>6</td>
</tr>
<tr>
<td>1335-72</td>
<td>100</td>
<td>28 58</td>
<td>331</td>
<td>ملاناتی</td>
<td>68</td>
<td>7</td>
</tr>
<tr>
<td>1334-72</td>
<td>30</td>
<td>28 56</td>
<td>331</td>
<td>دارخانیه</td>
<td>گرگر</td>
<td>8</td>
</tr>
<tr>
<td>1334-72</td>
<td>25</td>
<td>28 58</td>
<td>331</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1334-72</td>
<td>25</td>
<td>28 52</td>
<td>331</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1339-72</td>
<td>30</td>
<td>28 53</td>
<td>331</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1334-72</td>
<td>20</td>
<td>28 51</td>
<td>331</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1335-72</td>
<td>30</td>
<td>28 49</td>
<td>331</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1350-72</td>
<td>12</td>
<td>28 58</td>
<td>331</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1335-72</td>
<td>20</td>
<td>28 51</td>
<td>331</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 1. موقعیت ایستگاه‌های برداشت درجه حرارت سطح آب در خلیف فارس (محیط ایستگاه‌ها با علامت ⊗ مشخص شده است)
پیشینه پارامترهای سالانه استان خوزستان از روز زمان وقوع رگبارهای پاییزه

شکل 2. درصد فراوانی بروز بیماری مبتلا به آزمون شده

جدول ۲. خروجی نرم افزار TC-3D مربوط به آزمون معادله‌های ساده

<table>
<thead>
<tr>
<th>رتبه</th>
<th>ضریب تعیین</th>
<th>خطای معیار</th>
<th>آزمون F(ولف)</th>
<th>نوع معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+c+y</td>
</tr>
<tr>
<td>2</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>3</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>4</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>5</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>6</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>7</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>8</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>9</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>10</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>11</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>12</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>13</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>14</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>15</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>16</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>17</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>18</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
<tr>
<td>19</td>
<td>0.78</td>
<td>0.005</td>
<td>116/43</td>
<td>Z=a+bx+cylny</td>
</tr>
</tbody>
</table>
مدار 30 درجه، طبیعی به نظر می‌رسد. وجود رابطه معکوس بین طول جغرافیایی و بارندگی شاید به شدت بیشتر بودن استگاه‌های مورد مطالعه با بارندگی بیشتر در ناحیه شمال غرب استان جهت است. به عوارض دیگر شاید عدم توزیع مکانی بکننده استگاه‌های باران‌سنی علت این موضوع باشد. وجود رشته‌کوه زاگرس و نیز تأثیر بیشتر جبهه‌های مدیران‌های در قسمت شمال شرقی به شکل غربی بارندگی زیادی نسبت به مناطق جنوبی مغیره در صورتی که خلیج فارس بر بارندگی مناطق جنوبی مؤثر است (3). ارتفاع نیز ارتباط مستقیمی با بارندگی نشان داده است که با توجه به طبیعت منطقه، صحیح به نظر می‌رسد.

همانطوری که در مدل‌های دیگر درجه حرارت سطح آب در بیشتر حالات رابطه معکوس با بارندگی داشته است، قبل از نیز نظم ناپایدار و همکاران (11) همبستگی منفی و معنی‌دار را بین بارندگی‌های زمستان و دما سطح آب زمستان خلیج فارس در سطح استگاه‌های جنوب و جنوب غرب کشور (فارس، خوزستان و بوشهر) بیان کرده‌اند. البته در مدل‌های ارائه شده ضرایب به درجه حرارت در سطح 0.02 معمایی دار نمی‌باشد و وارد آن در معادله‌های تغییرات و درجه حرارت و در نهایت نیز در ضریب تبعین معادلات به وجود نیاورده است. بنابراین به این توجه به کمتر بودن نیتگیها و بالاتر بودن ضریب تبعین آن، در قرار بودن بارندگی‌های سالانه به‌همه‌گونه مدو شه چندم در صورت وجود

\[P_a = 169.8 - 1.782 t_{12.5}^2 + 0.891 P_m - 0.198 \text{ SST}_{\text{summer}} \]

\(R^2 = 0.72, n = 328, SE = 112.47, P < 0.001 \)

\[P_a = 169.8 - 1.782 t_{12.5}^2 + 0.891 P_m - 0.198 \text{ SST}_{\text{spring}} \]

\(R^2 = 0.72, n = 328, SE = 115.441, P < 0.001 \)

\[P_a = 169.8 - 1.782 t_{12.5}^2 + 0.891 P_m - 0.198 \text{ SST}_{\text{winter}} \]

\(R^2 = 0.72, n = 328, SE = 115.467, P < 0.001 \)

در رابطه با \(P_m \) کل بارندگی سالانه (میلی متر)، زمان و قرارگاه در مدل‌های 24/5/2 میلی متر باران از ابتدا پاییز (روز)، به میانگین دوازده مدت بارندگی استگاه (میلی‌متر)، ارتفاع ارتفاعات مورد نظر از سطح دریا (متر)، \(\text{La} \), \(\text{Lo} \) به ترتیب ضریب طول جغرافیایی و عرض جغرافیایی محل (اعضايی) و \(\text{SST}_{\text{summer}}, \text{SST}_{\text{spring}}, \text{SST}_{\text{fall}} \) به ترتیب مساحت سطح آب بر حسب درجه سانتی‌گراد \(\text{SST}_{\text{winter}} \) در پاییز، بهار، تابستان و زمستان خلیج فارس می‌باشد. نکته جالب توجه در این مدل‌ها می‌باشد که در ابتدا رابطه معکوس بین زمان و قرارگاه در مدل‌های 24/5/2 میلی‌متر باران از ابتدا پاییز و بارندگی سالانه است. شرایط چه طول قابلیت زمانی 24/5/2 میلی‌متر باران از ابتدا پاییز به تأثیر بیشتر بارندگی‌ها نسبت کمتر خواهد شد. در مدل‌های ارائه‌شده رابطه بین بارندگی سالانه و عرض جغرافیایی مستقیم است که با توجه به منطقه و با دور شدن از...
ایستگاه‌های دار‌خوین که از آمار ارائه‌های مدل استفاده شده بود به‌کار گرفته شد. نتیجه مدل‌های 3، 5 و 8 در شکل‌های 5-8-9 ملاحظه می‌گردد. در شکل‌های 1-4 بدلیل انتخاب نداشتند داده‌های در سطح آب در مدل‌های 13-7-67 تخمین بارش سالانه در این دوره انجام نشده است. هر چند در بعضی از مدل‌ها، مدل‌های اصلی قابل قبولی را ارائه نموده است ولی روند تغییرات را تا امکان‌های نشان می‌دهند. بنابراین بیش‌تر مدت‌های که با گردونی پیش‌بینی شده قبلاً بهاری بارندگی مؤثر می‌باشد و در میان تغییر مدل‌های را افزایش داده تا پیش‌بینی‌ها با خط‌های کم‌تری ارائه شود.

این نمودار یکی از مدل‌های دیگر حساب شرایط می‌توان استفاده کرد. شکل 11 نمودار یکی از مدل‌های مشاهده‌ای و تخمینی باران سالانه حاصل از مدل‌های 2 برای ایستگاه‌های که قبلاً در تعیین مدل استفاده شده را نشان می‌دهد.

معادله تا امکان‌های مشابه می‌توان ارائه باران ارائه یکی از این ایستگاه‌های جنوب و غرب می‌باشد(13). ولی در اینجا مدیر بارش برای ریزش 45 مسیر استفاده شده و ضرایب معادله‌ها نیز قدرت متفاوت است و تغییر با بین‌شیبی ضرایب معادله‌های محله غرب جنوب قرار می‌گیرد. برای مدل‌ها و چگونگی پیش‌بینی باران سالانه در آنها، مدل‌ها برای

شکل 4: نمودار یکی از مدل‌های دیگر حساب شرایط می‌توان استفاده کرد. شکل 11 نمودار یکی از مدل‌های مشاهده‌ای و تخمینی باران سالانه حاصل از مدل‌های 2 برای ایستگاه‌های که قبلاً در تعیین مدل استفاده شده را نشان می‌دهد.

معادله تا امکان‌های مشابه می‌توان ارائه باران ارائه یکی از این ایستگاه‌های جنوب و غرب می‌باشد(13). ولی در اینجا مدیر بارش برای ریزش 45 مسیر استفاده شده و ضرایب معادله‌ها نیز قدرت متفاوت است و تغییر با بین‌شیبی ضرایب معادله‌های محله غرب جنوب قرار می‌گیرد. برای مدل‌ها و چگونگی پیش‌بینی باران سالانه در آنها، مدل‌ها برای
شکل 5: مقادیر مشاهده‌ای و پیش بینی شده بارندگی سال‌های ألف - مدل (2) ب - مدل (7) ج - مدل (8)
منابع مورد استفاده

1. حقوقی، م. ۱۳۷۴. خوزستان و طرفیت‌های توسعه‌کشوارتی آن. فصل نامه آب و توانمندی، ۱۷-۲۵.
2. خلیلی، ع. ۱۳۷۰. طرح جامع آب کشور. مهندسی مشاور جامع آب، بخش ۱. صفحه ۴۴۲.
3. شافعی، ف. و. و. سیاسخواره. ۱۳۷۲. مدل‌سازی سهاد جهت پیش بینی بارندگی سالانه استان فارس. سمینار کارشناسی ارشد آب‌و-اب.
4. دانشگاه کشاورزی، دانشگاه شیراز.
5. کریمی، ش. و. سیاسخواره. ۱۳۷۲. مدل‌سازی سهاد جهت پیش بینی بارندگی سالانه در استان کرمان. سمینار منشور نشده کارشناسی ارشد آب‌و-اب.
6. دانشگاه کشاورزی، دانشگاه شیراز.
7. گزارش اطلس منابع آب کشور. ۱۳۶۹. هد. و. هد. جلد اول، انتشارات وزارت نیرو، تهران.
9. ناظری، س. م. و. ج. و. م. قاپوی. ۱۳۷۲. تجزیه و تحلیل ویژگی‌های آماری دما و سطح آب خلیج فارس و دویاب عمان در سالهای ۱۳۵۷-۲۳. مجله آب‌و-ابیاتوپشنی. ۲: ۲۳-۳۴.
10. وزارت نیرو. ۱۳۷۲. سال‌نامه‌های هوشمند سال ۱۳۷۲-۵. انتشارات وزارت نیرو، تهران.