کاربرد CCA به منظور ارزیابی و مقایسه توانایی و SOI زمستانه سواحل دریای خزر در پیش بینی بارش Nino's SST

سید محمد جعفر ناظم السادات و امین شیروانی

چکیده

در ایران، حدود 70% از تولیدات برنج داخلی در استان‌های گیلان و مازندران که از پر بارش ترین نواحی کشورند، تهیه می‌شود. پیش‌بینی‌هایی که تأثیر بارش‌های تاکید معمولی در تولید محصول و کاهش خطرهای حوادث آبی در این ناحیه حاصل که کاهش در آمارهای کاهش در بارش‌های و کاهش در میزان کاهش بررسی‌های طبیعی و دریایی (Incremental Correlation Analysis, CCA) (Wang, 2012) و اندازه‌گیری شدنی‌های انجام‌شده در منطقه تازه‌گرفته شده‌اند. به منظور کاهش تعداد تغییر‌های پیشگویی در پیش‌بینی بارش به‌طور محدود از مجموعه‌های اساسی (Empirical Orthogonal Function, EOF) و مجموعه‌های داده‌های آن، انتخاب شده و پیش‌بینی‌ها به دست آمده در نظر گرفته شده‌اند. بر مبنایی (Noise) در نظر گرفته شده، انتخاب شده و پیش‌بینی بارش در محدوده‌های مختلف، در پیش بینی بارش، زمستانه سواحل دریای خزر Nino's SST در نظر گرفته شده و پیش‌بینی داده شده.

نتایج نشان داد که پیش‌بینی کننده‌های در نظر گرفته شده در حدود 25% در کل وارایانس سری زمستانه بارش را شرح می‌دهند. ضرایب مبتنی بر انتخاب مشاهده شده و به‌طور محدود، در محدوده 0.70 و محدوده 0.70 میان‌بندی‌های در دست رسمی و علامت مفاهیم ترمال بندی شده و شاید مسایلی به کشان بوده، به میزان می‌تواند در پیش بینی بارش، نوسان‌های CCA، Nino's SST و SOI بازماندگی ایجاد شود.

SST، Nino، EOF، ENSO و افزایش کلیدی: CCA، Parch، ایران در پیش بینی بارش دریای خزر، زمستانه، گیلان، مازندران، خشکسالی،...

1. به ترتیب دانشیار و کارشناس ارشد مرکز مطالعات اقیانوسی، گروه آبی، دانشگاه کشاورزی، دانشگاه شیراز
مقایسه با سایر استخراج‌های کشور، در این است که ثبتیکی نشانه‌های حساسیت را به این دیده‌دار دارد. توضیحات، شاخص SOI، ENSO، و تأثیر آن بر بارش کشور توسط اندازه‌گیری‌های سایر کشورهای گزارشگر و بارش در مرحله پایین‌دهنده، به‌طور مثال، در سال‌های زراعی ۷۷-۷۳ و ۰۹-۷۸ به‌طور محدود و حدود ۷۶ و ۷۲٪ از کل تولید بینم ممکن است بر اساس وسیعی از مواد غذایی تهیه و تواحی اطراف در نواحی شما به‌طور محدود می‌شود. شناسایی عامل مؤثر بر بارش‌های باربار در یک فصل و پیش بهینه مقداری از مواد غذایی در آن زمان که از چندان مال قبل تلقی شد از عمارت و آبادان و توسعه اقتصادی کشورها در این همیشه متغیر است. ۲)

جهان تحقیقات زیست‌پزشکی در این زمینه در حال انجام است. پیش‌بینی بارش‌های از اقتباسات اساسی به منظور به‌طور قابل توجه شاخص SOI در نواحی اقیانوس آرام (Nino3.4) می‌تواند توانایی پیش‌بینی را افزایش دهد و برای مدل‌های شبیه‌سازی و برنامه‌های بارشوی زمان‌بندی‌های در این ناحیه گزارش استفاده شود. این مدل می‌تواند همانطور که در شکل ۱ نشان داده شده، تأثیر استوایی آب باران‌های تا کاهش ناشی از متغیرهای بارشی و دو ناحیه مختلف جهانی است که در گزارش‌های اقیانوسی آنها و مخصوصاً میان نواحی آب در این نواحی تأثیر داشته باشد. نتایج Nino3's SST یک ناحیه مختلف جهانی. علاوه بر SOI، مقادیری به عنوان شاخصی از پایین‌دهنده در نظر گرفته شده و گرم و سرد شدن سطح آب به ترتیب تنشگر و قوی بوده، برای بارش در نقاط مختلف دنیا به دمای سطح آب این ناحیه تابع زمان و مکان می‌باشد. این ممکن است بارش زمستانه بیشتر ناحیه بیشتر متاثر از ۲+0.4 در بهار بیشتر متاثر از Nino3's SST یکانه می‌باشد. بنابراین، اگر است که واریانس ها و سازمان‌های هم‌امام وزارت جهاد کشاورزی، وزارت نیرو، سازمان مدیریت و برنامه ریزی کشور و شرکت‌های بیمه‌ای مخصوصاً بیمه مصوبات کشاورزی که خدمات آنها به قرارن و مستقیم در ارتباط است پیش‌بینی لازم دارد در داده‌های را می‌باشد. Nino3's SST و SOI از آن‌ها باید یکدیگر مقایسه شود و ارائه مدلی بزرگ امر
بازارده بررسی زمان‌سازی به دنبال افزایش نوشهر و نوشهر مورد توجه قرار گرفت. با توجه به توضیحات داده شده اهداف پژوهش حاضر به شرح زیر خلاصه می‌گردد:

الف) تعمیم کمیت و مقایسه نوشهر به مدل سه‌قطعه‌ای Nino3.4

سیانه‌های آب در هر یک از نوشهر مورد بررسی بی‌پیشینه وارد نوشهر مورد بررسی. استخراج سری زمانی اینگونه متعادل از نوشهر های فصلی به عنوان شاخص جدید دارای ارزیابی بارش Nino's SST و SOI نوشهر مورد بررسی.

ج) بررسی نش اندازه زمان‌سازی زمان‌سازی و نوشهر انزیمی از ارزیابی مقدار شبیه سازی شده با مشاهدات.

مواد و روش‌ها

د) آزمایش بارش سری ماهانه زمانی، فوری و مارچ استگاههای اسپیتیک نوشهر و نوشهری بارش در ماهان از 1961 تا 1997 از سالنامه‌های شناسی استخراج گردیدند. با میانگین گیری از داده‌های این سه ماه، سری زمانی زمان‌سازی بارش به‌دست آمد.

م) نوشهر، تحلیل‌های کانورلاس CCA (Canonical Correlation Analysis) جدیدترین اشاره‌های مربوط به پیش‌بینی وضعیت آب و هوایی در سال 2004 میلادی برای اساس این مدل در سایت اینترنتی NOAA موجود گردید. با توجه به نصول زیاد این مدل در این بخش پیشین اقلیمی، استفاده از آن به مقدور
محققان علمی در این پژوهش ها از نظر مهندسی و فیزیکی با استفاده از ویژگی‌های شناختی (SST) این نیروی سازمانی، آرام بیشتر فعالیت در این پروتکل نداشتند. نیروی SST ۱۹۶۵-۱۹۹۶ استرخ شده و به عنوان شامل نمادی نیروی SST مورد استفاده قرار گرفت. در مرحله بعدی، سری زمانی نیروی SST این سری زمانی فاصله نیروی شدید. میانگین دمای سطح آب ماهانه از آوریل تا ژوئن، جولای تا سپتامبر و اکتبر تا دسامبر. به وجود آمدن دمای سطح آب در فصول بهار، تابستان و پاییز در نظر گرفته شدند. یادآوری می‌شود که برای پیش بینی بارشه زمانی، به عنوان ضرورتی بود.

SOI

NS = \[N_{11}, N_{21}, \ldots, N_{31}, N_{12}, N_{22}, \ldots, N_{32}, N_{13}, N_{14}, S_{1}, \ldots, S_{4} \]

به طوری که سیستم نیروی SST در فصل آم و موفقیت زامیانده (Nino's SST) در فصل آم (i = 1, 2, 3, 4) هم چنین S_{1} بیانگر سری زمانی در فصل آم است.

ROSH محسوباتی

الف) نمودار محدود داده‌ها

کلمه سری زمانی فصلی پیش‌بینی روش های مختلف از نظر تاریخ به صورت سری زمانی استفاده شده با مقدار نرمال تبدیل گردیدند. معیار نمودار داده‌ها و نرم روش محاسباتی مربوطه توسط نام صدها و همکاران (۲) توضیح داده شده است. پاد آور می‌شود که داده‌های ماهانه به صورت نمودار شده از این قرار می‌گیرد و نباید نرمال نمودار نیاورد تا آنها نیز.

(Emperical orthogonal functions, EOF)

به معنی که سری زمانی فصلی و استخراج تعداد

محدودی سری‌های زمانی مستقل از آنها روش

مورد توجه

۱۴
ب) تحلیل همبستگی متعارف (CCA)

همان‌طور که در بخش پیشین بار CCA را برای بررسی ارتباط دو مجموعه از داده‌های متنی قرار دادیم، این روش می‌تواند بهترین مدل جمله‌بندی و پرینت‌دنده‌رفر (3)، بارزدان (4)، و رایانه‌سازی (5) و لادمان و میتسو (6) در علم هواشناسی بکار برده‌باشد.

روش CCA توابع خطی بین دو مجموعه از متغیرهای SOI و Nino (متغییرهایی که تأثیرات آن‌ها در داده‌های پیش‌گزاری بر روندهای آبیاری دنیا را در جوگرهای تولد می‌نماید)

و به ترتیب این متغیرهای پیش‌گاه کنده و Wi به نمودار تأثیر پیشگاه کنده و Wi زمانی ضریب همبستگی ساده بین متغیرهای متعارف Wi و پیشگاه کنده و Wi (W1,W2,...,Wm) و در هر یک از پیشگاه‌های بسته‌نیا (منبع 1) مقدارهای همبستگی در هفته‌های انجام این محاسبات آن روند شرود که مقدارهای گردیده از تکرار و W1, W2,..., Wm متغیرهای پیشگاه کنده همبستگی بیشتر با W1 و W2 باید رسید. به این دلیل، هدف اصلی cp منابع (آن که در بررسی زمانی و پیشگاه کنده و Wi به نمودار تأثیر پیشگاه کنده و Wi به نمودار تأثیر پیشگاه کنده و Wi به Nino3.4 می‌باشد) بیشترین همبستگی و دیگر مقدارهای متغیرهای متعارف پیشگاه کنده و در صورت SOI و Nino's SST مختلف سال‌های مختلف، به‌صورت زیر تعریف می‌گردد:

\[
(W1, W2, Z1, W3, Z2, W4, Z3, ... , Wm, Zm)\]

و حتی که:

\[
\begin{align*}
W1_i &= \beta_{11}X_{1i} + \beta_{12}X_{2i} + \ldots + \beta_{1p}X_{pi} \\
Z1_i &= \gamma_{11}Y_{1i} + \gamma_{12}Y_{2i} + \ldots + \gamma_{1q}Y_{qi} \\
W2_i &= \beta_{21}X_{1i} + \beta_{22}X_{2i} + \ldots + \beta_{2p}X_{pi} \\
Z2_i &= \gamma_{21}Y_{1i} + \gamma_{22}Y_{2i} + \ldots + \gamma_{2q}Y_{qi}
\end{align*}
\]

در مرحله بعدی، ترکیب‌های خطی برای تولید یک سری مشخص شده که مقدارهای CCA مجموعه (W1, Z1) و (W2, Z2) مشخص می‌شود.

\[
[W2_i = \beta_{21}X_{1i} + \beta_{22}X_{2i} + \ldots + \beta_{2p}X_{pi}]
\]

\[
[Z2_i = \gamma_{21}Y_{1i} + \gamma_{22}Y_{2i} + \ldots + \gamma_{2q}Y_{qi}]
\]

این معنی همبستگی متعارف m این روش نا مستقل آماده است از شرایط

\[
(m = \min(p, q))
\]

با Nino's SST و SOI
نحوه محاسبه \(M^{*} r_{m}^{i} \) و \(m^{*} r_{m}^{i} \) و \(m^{*} r_{m}^{i} \) در روابط بالا

\[
M^{*} r_{m}^{i} = \sum_{i=1, 2, 3, 4} \left(\sum_{j=1, 2, 3, 4} \left(\sum_{i=1, 2, 3, 4} \left(\sum_{j=1, 2, 3, 4} \left(r_{m}^{i} r_{m}^{i} \right)^{2} + \left(r_{m}^{i} r_{m}^{i} \right)^{2} \right) \right) \right)
\]

نتایج و بحث

(EOFs) SOI و Nino

1- مدل‌های متعلق به Nino یا کاربردها روی توانمندی تجزیه و اعمال روش ارائه شده توسط ناهمواری همبستگی و همبستگی مؤلفه‌های اصلی (کهار) EOF اولیه مربوط به همبستگی و چند-تایی و تحلیل‌های بیشتر وارد به مباحث NS برای تجزیه و تحلیل همبستگی و توانمندی در نظر گرفته شده است. مقدار واریانس توجیهی از کل CCA واریانس تغییرات پیشگو کننده توسط چند-تایی مؤلفه اول در جدول 1 بیان شده است. جدول 1 نشان می‌دهد که مؤلفه‌های اولیه EOF4 تأثیری به توجه 92 درصد از کل واریانس عنصر ماتریس NS (SOI و Nino's SST) نشان می‌دهند.

2- برای تشخیص آن چه‌ی که هنگامی گریفید به کدامیک از عنصر ماتریس NS وابستگی بیشتری دارند، در مدل‌های اول عوامل با استفاده از مدل‌های تجزیه‌های (Loadings) داده شده و استاده هر یک از عنصر این ماتریس با چهار گانه مورد بررسی قرار گرفت. نتایج به‌دست آمده که در جدول 1 خلاصه گریفیده با نتایج آن است که صورت زمایی اولین عنصر همبستگی با الیا به همبستگی نابودی Nino's SST را با کلیه Nino's SST و پایین‌تر است. علاوه بر این، این مؤلفه همبستگی نابودی با الیا را با کلیه Nino's SST و پایین‌تر نشان داده که در این میانگین +2 نابودی با الیا در Nino's SST ضمیمه برخورد بود. بنابراین تغییرات به‌همه تابستان و پایان نمایش در صورت نابودی و توسعه نسایه‌هاي Nino's SST و نسایه‌هاي SOI تابستان و پایان در صورت وابستگی معمول در سری زمایی RA توجهی می‌شود. به‌دین ترتیب بر خلاف EOF1
جدول 1. مقادیر واریانس که توسط هر یک از متغیرهای مورد بهره‌برداری است در عناصر با تاثیر کمیتی و آماری

عناصر ماتریس	همگنی	همبستگی	گشتاور	نسبت
SOI	0.38	0.91	0.91	1.0
زمان	0.38	0.91	0.91	1.0
تابع	0.38	0.91	0.91	1.0

یادآوری می‌شود که نتایج این مطالعه نشان دادند که مقادیر واریانس در عناصر با تاثیر کمیتی و آماری بالای 0.90 و نسبت به همبستگی بالا، نشان‌دهنده است که این عناصر با هم مرتبط هستند.
نیترات مصرفی، برای تهیه نمونه آزمات، از پیش ۵۰۰ میلی‌متریک نمونه‌های بیشتری اختیار به‌طور به‌کارگیری سازمان ملی زمین‌شناسی و محیط زیست ایران (IGAC) می‌شود. نمونه‌گیری بدنامی موم و گلومنزابهای ورودی آزمایشگاه‌های ورودی به‌طور کلی به‌طور متناوب بر اساس تراکم و ممکن است ترکیبی داشته باشد. تیمارهای مختلف طبقه‌بندی شده‌اند و به‌طور کلی نمونه‌گیری معمولی مورد استفاده قرار گرفته است. این مطالعه به‌طور کلی سه مرحله‌ای انجام می‌شود: در مرحله اول، تیمارها و نمونه‌های بافتی مورد بررسی قرار گرفته و در مرحله دوم، نمونه‌های بافتی مورد بررسی قرار گرفته و در مرحله سوم، نمونه‌های میکروبی و مولکولر مورد بررسی قرار گرفته و در نهایت، نمونه‌های مولکول‌شناسی مورد بررسی قرار گرفته است. در این مطالعه، از نظر سازمان ملی زمین‌شناسی و محیط زیست، به‌طور کلی نمونه‌گیری معمولی مورد استفاده قرار گرفته است. در این مطالعه، از نظر سازمان ملی زمین‌شناسی و محیط زیست، به‌طور کلی نمونه‌گیری معمولی مورد استفاده قرار گرفته است.
جدول ۲. ضریب همیشه‌گی بین هر یک از مؤلفه‌های اصلی و متغیرهای معنی‌دار

<table>
<thead>
<tr>
<th>همبستگی بین EOF ها و متغیرهای معنی‌دار</th>
<th>EOF1</th>
<th>EOF2</th>
<th>EOF3</th>
<th>EOF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>0.7</td>
<td>-0.2</td>
<td>0.3</td>
<td>-0.7</td>
</tr>
<tr>
<td>W2</td>
<td>0.7</td>
<td>-0.2</td>
<td>0.3</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

جدول ۳. تأثیر هر یک از فصول در توجهی واریانس W2 و W1 بر حسب درصد

<table>
<thead>
<tr>
<th>فصل مرتبط به پیشگوگری</th>
<th>درصد واریانس از طیف W1</th>
<th>درصد واریانس از طیف W2</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمستان</td>
<td>9</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>تابستان</td>
<td>35</td>
<td>33</td>
<td>68</td>
</tr>
<tr>
<td>پاییز</td>
<td>22</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>جمع</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

پیش بینی مصرف که از طرف هر دو متغیر معنی‌دار نشان می‌دهد که تغییرات SOI و SST در فصل بهار بافت بیشتری مورد توجه قرار گرفته و در مرحله بعدی روند این تغییرات در فصول تابستان و پاییز به‌طور دقیق پایش گردیده. جانبه این تغییرات در طول فصل‌های یاد شده از روند خاص و هم‌اکنونی و لازم تبیین نمایندگان مدل CCA در ایران بین افزایش خواهد یافت.

بررسی دارایی ارزش نتایج بی‌مسند در جدول ۳ نشان داد که تغییرات بیشتری در فصل بهار بافت بیشتری وارد می‌شود. به عهده دارد. به پیش بینی جزئی روی اقلیمی و SOI و Nino's SST تأثیر فصلی نوسان‌های ۲ به روش استفاده از رابطه ۸ مورد ارزیابی قرار گرفت. نتایج جدول ۳ نشان داد که اگر کل واریانس بارش زمستان که توسط W2 تغییر می‌گردد ۱۰۰ درصد شود، به‌صورت تغییرات بیشتری عبارت‌های از فصل تابستان، بهار و SOI بهترین تغییرات بیشتری وارد می‌شود. به‌طوری‌که در فصل مورد بهترین نوسان‌های Nino's SST می‌باشد. بنابراین تغییرات و در فصل W1 و W2 تابستان بیشتری و در بارش ZM است. تا تغییرات بیشتری وارد می‌شود. به‌طوری‌که در فصل مورد بهترین نوسان‌های Nino's SST می‌باشد. بنابراین تغییرات و در فصل W1 و W2 تابستان بیشتری و در بارش ZM است.

پیش بینی مصرف که از طرف هر دو متغیر معنی‌دار نشان می‌دهد که تغییرات SOI و SST در فصل بهار بافت بیشتری مورد توجه قرار گرفته و در مرحله بعدی روند این تغییرات در فصول تابستان و پاییز به‌طور دقیق پایش گردیده. جانبه این تغییرات در طول فصل‌های یاد شده از روند خاص و هم‌اکنونی و لازم تبیین نمایندگان مدل CCA در ایران بین افزایش خواهد یافت.

پیش بینی مصرف که از طرف هر دو متغیر معنی‌دار نشان می‌دهد که تغییرات SOI و SST در فصل بهار بافت بیشتری وارد می‌شود. به عهده دارد. به پیش بینی جزئی روی اقلیمی و SOI و Nino's SST تأثیر فصلی نوسان‌های ۲ به روش استفاده از رابطه ۸ مورد ارزیابی قرار گرفت. نتایج جدول ۳ نشان داد که اگر کل واریانس بارش زمستان که توسط W2 تغییر می‌گردد ۱۰۰ درصد شود، به‌صورت تغییرات بیشتری عبارت‌های از فصل تابستان، بهار و SOI بهترین تغییرات بیشتری وارد می‌شود. به‌طوری‌که در فصل مورد بهترین نوسان‌های Nino's SST می‌باشد. بنابراین تغییرات و در فصل W1 و W2 تابستان بیشتری و در بارش ZM است. تا تغییرات بیشتری وارد می‌شود. به‌طوری‌که در فصل مورد بهترین نوسان‌های Nino's SST می‌باشد. بنابراین تغییرات و در فصل W1 و W2 تابستان بیشتری و در بارش ZM است.
جدول ۲. مثابه هر یک از SOI و Nino’s SST در توجهی واریانس W2 و W1

<table>
<thead>
<tr>
<th></th>
<th>SOI</th>
<th>Nino1+2</th>
<th>Nino3</th>
<th>Nino3.4</th>
<th>Nino4</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد واریانس از طریق W1</td>
<td>۲۵</td>
<td>۸</td>
<td>۱۵</td>
<td>۳۰</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td>درصد واریانس از طریق W2</td>
<td>۱۲</td>
<td>۱۴</td>
<td>۲۵</td>
<td>۱۹</td>
<td>۱۰۰</td>
<td></td>
</tr>
</tbody>
</table>

۵. مقایسه Ha و Nino’s SST بر روی W1 و W2 در مجاورت‌های پیشگوکننده

پیشگوئی

به منظور بررسی معادلات وابستگی بین داده‌های دیده در استقلاه‌های پیشگوکننده (W1, W2) و Nino’s SST جدول ۲ حاصل بر این تحلیل در جدول ۲ خلاصه گردد.

از این نتایج نشان می‌دهد که اگر کل واریانس موجود در سری زمانی بارش برابر ۱۰۰‌فیصد شود سری زمانی واریانس Nino’s SST در مجاورت ها چه مقدار این را می‌توان را تعیین نمود.

۱۰۰ واحد را تعیین نماید. نیاز به این که مثابه متوالی مثبت Nino’s SST، نشان می‌دهد در مجاورتی که داده‌های W1 و W2 در توجهی واریانس از هم‌مرتبه Nino1+2 Nino3 Nino4 و Nino4

شکل ۳۰/۱۰۰ در مقایسه با سایر موارد Nino’s SST و Nino4 اهمیت بالاتری برای پیش بینی بارش برخوردار می‌باشد. بین، ترکیب نشان می‌دهد در این که در مجاورت‌های یکی در سطح SST در مجاورت‌های ۵ درجه شمارش تا ۱۴۰ درجه شیری (۱۵۰درجه) غربی آیانوس آرام (Nino4) از اهمیت بیشتری برخوردار می‌باشد. همچنین مشخص گردید که Nino1+2 حداکثر ۷۸/۲۸ در W1 و W2 در توجهی واریانس از نظریات نیاز به برخورد نمایند. نیاز به این که در این روش می‌توان در مجاورت‌هایی که شرایط گریز نمایند، نقش دمای سطح آب در مجاورت سطح آب در آسیای جنوبی در اسر پیش بینی بارش زمستان افزایش می‌یابد.
کاربرد CCA در پیش‌بینی تواملی مدل CCA در امر پیش‌بینی پارش‌زمانی از طریق مقایسه مقادیر شیبی سازی شده توسط مدل و مشاهدات مورد ازبین کردن گرفته‌نشده. بر این اساس، برای هر یک از سال‌های مورد مطالعه، فرض کرد که پارش در آن ایستگاه موجود نبود. سپس با استفاده از مدل CCA مقدار پارش در آن سال برآورد گردید. این عمل برای همه سال‌های مورد بررسی و برای هر دو ایستگاه تکرار شد.

در نهایت باید برای هر ایستگاه علاوه بر سرمایه زمانی مشاهدات، یک سری زمانی از مقدار پیش‌بینی شده پارش به‌دست آورد. (شکل‌های 2-3 و 4-5). مقادیر ارائه شده ضریب همبستگی بین این دو سری زمانی (سری پیش‌بینی شده و سری مشاهدات) و نیز میزان انحراف از میانگین داده‌ها پیانکر دقت مدل CCA به‌منظور پیش‌بینی پارش‌زمانی با استفاده از معادله

پیش‌بینی شده، مشخص شد که این چنین پارش‌زمانی مشاهده نمی‌شود و بند نانلو بی‌پارش درباره 27 و 20 هسته‌که قد از نظر آماری در سطح 5% معنی‌دار است. این نشان دهنده که میزان دیگری از مقدار مورد تأثیر گذیده بر پارش ایستگاه‌های بارش دارد. بررسی دفت‌ریزی شرایط آب و هوایی سواحل جنوب غربی دریای مازندران در این سال‌ها می‌تواند در شناخت عواملی که در جهت افزایش دقیقه وارد مدل CCA گردیده را مشخص نماید.

گرچه در سال‌های 1969 و 1983، نمودار پارش زمانی بیشتر از نرمال بوده و مدل نسبی پیش‌بینی شده، مشاهدات از نرمال را نشان می‌دهد. در عین حال مقدار پارش در شده و مشاهدات در نینو's SST در سال‌های 1980 و 1981 (یک سال قبل) نشان می‌دهد که در این سال‌ها تغییرات از یک روند خاص تعبیه نموده است.

جدول 5. ضریب همبستگی بین Z1 و Z2 با پارش‌زمانی

<table>
<thead>
<tr>
<th>تنشه‌های وقفه</th>
<th>پارش‌زمانی</th>
<th>Z1</th>
<th>Z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدید/متوسط</td>
<td>0.24</td>
<td>0.26</td>
<td>0.23</td>
</tr>
<tr>
<td>زمانی</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
شکل ۲: اف: سری زمانی مقادیر مشاهده شده و مقادیر پیش بینی شده در استنگا، بندز انتلی Scatterplot

شکل ۳: اف: سری زمانی مقادیر مشاهده شده و مقادیر پیش بینی شده در استنگا، نوشهر Scatterplot

نوسان‌های نموده است. نتایج به‌دست آمده بینانک آن است که دقت پیش‌بینی مدل در سال‌هایی که تغییرات فصلی دما ی سطح آب یکنواخت بناشود و با خیلی به‌نرملا تزدیک بانند، کاهش می‌یابد. در عین حال در سال‌هایی که نوسان‌های SST از زمستان باریک تا پاییز همان سال از یک گروه ثابت (سایش‌دار) تعبیه می‌شود، امکان پیش‌بینی به‌معنی زیادی افزایش می‌یابد. پژوهش‌های جدیدتر به‌منظور پیش‌بینی می‌شود که مقادیر SST در زمستان و بهار این سال‌ها زیر نرملا بوده و در تابستان و پاییز به‌طور تدریج افزایش پیدا کنند. این مشاهده‌ها در مدت ۱۵ سال بین ۱۹۷۱ و ۲۰۱۶ تأیید شده‌اند. همچنین، مشاهده‌های فصلی، خاصی تعبیه نمی‌نمودند. همچنین، مشاهده‌های فصلی SST در سال ۱۹۷۱ بینانک آن است که مقادیر SST این سال باریک نرم‌تر هستند و در محدوده مزی از ۲۲
نتیجه گیری

تأثیر نوسان‌های و سویچ سی‌اس‌ای (SOI) بر پارامترهای واریانس بارش و دما در CCA

نحوه تغییرات در طول فصول با بایز تا پاییز از روند Nino's SST خاصی تعبیه نموده‌ماند. علاوه بر این، علت می‌رود که شبیه‌سازی‌های نمونه نیز با نموده‌ماند. علاوه بر این، علت می‌رود که شبیه‌سازی‌های نمونه نیز با نموده‌ماند. علاوه بر این، علت می‌رود که شبیه‌سازی‌های نمونه Nino's SST

منابع مورد استفاده

1. ناگهانی، س. م. ج. ج. 1380، آیا پاردان سیری؟ خوشبختی سالاری و بارش موارد در ایران و روابط آنها با پیش‌بینی آبی- Nوسانات جغرافیا، اشتراک‌های دانشگاه شیراز، 104 صفحه.

2. ناگهانی، س. م. ج. ج. 1380، آیا پاردان سیری؟ خوشبختی سالاری و بارش موارد در ایران و روابط آنها با پیش‌بینی آبی- Nوسانات جغرافیا، اشتراک‌های دانشگاه شیراز، 104 صفحه.

