کاربرد لجن کنترل اسیدی شده (پایانات کارخانه فولاد) به عنوان کود آهن در خاک‌های آهکی

علی عیسی پور، محمود کلیسی و حسین شریعتمداری

چکیده

افزایش استفاده از لجن کنترلور، یک محصول فرعی سنگین فولاد به عنوان کود آهن پربریست به نسبت ۴۲ درصد وزن این ماده را افزایش داد. اکسیدهای در و سطح طرفین آهون و یکه را به‌طور عمده نهایی ماده آلومینیم، سیلیم، مگنز، پتاسیم و ویاگر شکل داده است. این پرورش به صورت پک آزمایش اکسیژن در سه خاک آهون و با نمونه‌های ۴۰۰‌گرم در رفاهی گریز زنگزه و دمای اتاق به مدت دو ماه انجام شد. تیمارها شامل سطوح مختلف لجن کنترلور (۱۰ درصد) لجن همراه با گوگرد عصاره تیمیاپا سیلوس و لجن اسیدی شده بودند. نمونه برداری از تیمارها در زمان‌های ۱، ۳، ۵ و ۶۰ روز پس از شروع آزمایش صورت گرفت.

نتایج آزمایش نشان داد که کاربرد لجن کنترلور باعث افزایش مخصوصی در pH خاک شد ولی در میان حال قابلیت جذب آهن خاک را افزایش داد. مقدار افزایش به‌طور عمده متناسب با مقدار لجن مصری بود، اسیدی کردن لجن کنترلور باعث افزایش چشمگیری در قابلیت جذب آهن خاک شد ولی مقدار قابل جذب این عنصر عموماً با گذشت زمان کاهش یافته استفاده از لجن کنترلور ماهربا گوگرد عصاره لجن به دنبال‌های افزایش داد. میزان استفاده از لجن کنترلور به تنهایی همراه با گوگرد عنصری وارد سوسیستم باعث افزایش مخصوصی در قابلیت جذب فسفر خاک شد. به‌توجه به نتایج این پژوهش می‌توان در نتیجه که لجن کنترلور فولادسازی پانسیل کاربرد به عنوان کود آهن در خاک‌های آهونی را دارای مقدارهای مناسب بررسی این موضوع مورد تیزاس است.

واژه‌های کلیدی: کلزور، آهن، لجن کنترلور فولاد، کود آهن

مقدمه

غاریش گلوژروس آهن عمده‌تر در خاک‌های آهون و قلبی‌ای رایج است که بین ۲۵ تا ۳۵ درصد زمین‌های کشاورزی در سطح جهان آهون‌هستند(۱). در ایران نیز این عارضه در کلیه مناطق میوه خیز هموجون: خراسان، اصفهان، كرک و آذربایجان

۲ میوه و غذا کشاورزی و منابع طبیعی / سال هشتم / شماره اول / بهار ۱۳۸۳

وجود دارد (۱). مسئولین روش برای مرتفع کردن کلزور آهن استفاده از کل‌های بسته‌ای آهن است و بر دیل ریگانی عموماً برای محصولات خاص استفاده می‌شود(۸). بنابراین استفاده از ترکیبات جایگزین که به‌توانید به طور مؤثر کلزور آهن را معلول به‌واسطه ضروری است. تاکون پربریستی‌های

۲ به‌ترتیب دانشجوی دکتری، استاد و دانش‌پژوه خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۶۱
بیانات در زمینه استفاده از محققالابنیصهی معنایی به عنوان
کود آهن در کربوکسول انجم گرفته است. ازجمله این ضایعات
می‌توان با لجنس کربوهای کربوهای فولاد اشکال کرد. لجنس کربوهای
در کاراخانه‌های تولید فولاد در مرحله واکنش چند ماد
تشکیل می‌شود. در این مرحله هنگامی که آکسیژن به داخل
کوره فولاد (کربوهای) تزریق می‌شود و غباری از داخل
کوره به پیرو و انشار می‌یابد، این ذرات به تأسیسات و
دستگاه‌ها آسیب می‌رسانند. نابپذیرنی آب جوی آن می‌شود و
پس از خشک کردن به صورت پودر در اینجا نگه‌داشته می‌شود.

به ازای تولید هر تن فولاد، ۱۲۳ تا ۱۸ کیلوگرم لجنس کربوهای
به‌صورت پودر و تولید می‌گردد (۱۲). تولید سالانه مقدار بسیار
زیاد این ماده باعث بروز مشکلات اپاره‌داری گشنی و همچنین
به‌وجود آمدن خطاهای مکانیکی است حمایت را به همراه داشته
باشند. لجنس آهن ماهی حاکی از وجود تعدادی از عناصر بر
مصرف (کلسیم، نیتریک، و فسفر) و کم مصرف (آهن و مگنزی) در
غلط در بالاست. بدیعت بودن آن (سطح ویژه زیاد) و وجود
مقدار نسبتاً زیاد آهن به خصوص آهن دو طرفین امکان
کاربرد آن را به عنوان کود آهن تقویت می‌کند.

استرولین و برگر (۱۱) از فروش حاصل از صنایع فولاد به
عنوان کود آهن و ماده اصلاحی استفاده نمودند. این ماده که
مخلوط از اسیددولور و سولفور و سهولت‌های آهن است، توانست
آنزیم‌های سیستمی کلین دنی و در راه همراه داشته باشد.
پارکیان (۹) از لجنس کربوهای به عنوان کود آهن استفاده نمود.
این لجنس کربوهای عناصر ۴۳ درصد آهن، ۵ درصد روی و ۲ درصد
مگنز بوده و در صورت پدیداری و داننگ منجر به
اسیدولور (نسبت ۱:۲) اسید به لجن
استفاده قرار گرفت که بیشترین عملکرد سوپرگرم در تیمار لجنس
پودر اسیدی شده دیده شد. فروهر (۳) در بررسی خود از
پودر آهن ضایعاتی حاصل از صنایع فولاد استفاده نمود که
درصد لجنس کربوهای به عنوان تکیه‌گاه می‌داد. این استفاده از
لجنس کربوهای معنی‌دار PH و افزایش معنی‌دار آهن
قابل استخراج با

مواد و روش‌ها

لِجنس کربوهای عایق بر آهن، حاوی مقدار قابل توجهی گلیم،
مضیز، آمونیوم، سیلیک، منگنز، روی، فسفر و عناصر دیگر
به‌نحوی (جدول ۱) که مقدار آنها به‌نماد سنگ آهن و
روش تولید فولاد، متفاوت است (۲) (۱۴).

این پژوهش بر روی سه خاک آهنی از مناطق اطرافیان،
کشور و مرور خورش استان اصفهان انجام گرفت. نمونه‌های
خاک پس از انتقال به آزمایشگاه و حیاط خاک در محیط‌ها
از هر که میلی‌متری گذارده شدند و روی خاک آهنی، منگنز،
(AB-DTPA)NH4HCO3DTPA)
روی و مس کلی استخراج مازنی از
طلاق روش بیشته‌حدود سلطان بور شواب (۱۰) استخراج
شده و مقدار حاصل از خصوصیات فیزیکی و شیمیایی خاک و

از قبیل pH گل اشاعه‌های عصاره‌ای آشاعه و بافت خاک

۶۲
جدول 1. تناوب تجزیه شیمیایی لجنس کونتور

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>مقدار</th>
<th>ترکیب</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>44/30</td>
<td>Fe₂O₃</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>19/24</td>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>V₂O₅</td>
<td>6/12</td>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1/30</td>
<td>SiO₂</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0/24</td>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0/10</td>
<td>Al₂O₃</td>
<td></td>
</tr>
<tr>
<td>L.O.I*</td>
<td>0/7</td>
<td>P₂O₅</td>
<td></td>
</tr>
</tbody>
</table>

Loss on ignition:*

جدول 2. برخی خصوصیات فیزیکی و شیمیایی‌های خاک

<table>
<thead>
<tr>
<th>نوع‌های مختلف</th>
<th>نمونه برداری</th>
<th>مقدار</th>
<th>کالر</th>
<th>شن رسی</th>
<th>مقدار</th>
<th>pH</th>
<th>(dS/m)</th>
<th>مواد آبی</th>
<th>افت خاک</th>
<th>اثر کل</th>
<th>یکول</th>
<th>(mg/kg)</th>
<th>یکول</th>
<th>(mg/kg)</th>
<th>(mg/kg)</th>
<th>روزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 600</td>
<td>17/7</td>
<td>15/6</td>
<td>20/7</td>
<td>7/5</td>
<td>7/5</td>
<td>7/5</td>
<td>10/0</td>
<td>7/0</td>
<td>10/0</td>
<td>4/0</td>
<td>4/3</td>
<td>2/9</td>
<td>2/9</td>
<td>1/4</td>
<td>1/0</td>
<td></td>
</tr>
<tr>
<td>مدل 500</td>
<td>12/5</td>
<td></td>
</tr>
<tr>
<td>مدل 400</td>
<td>11/7</td>
<td></td>
</tr>
<tr>
<td>مدل 300</td>
<td>10/5</td>
<td></td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تجزیه و ارایش داده‌ها (جدول 3) این مقاله تیمار در AB-DTPA در 60 کمک‌مانده برای آهن قابل استخراج با در AB-DTPA مقدار لجنس کونتور. آهن قابل استخراج با AB-DTPA مقدار لجنس کونتور، که در فاکتوریل اجرای شد. در اکثر آزمایش، نمونه‌های خاک (جدول 4)
جدول 3. تجزیه واریانس مربوط به pH و مقدار قابل عصاره گیری آمی و منگنز خاک‌ها

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>منگنز</th>
<th>آمیز</th>
<th>مقدار قابل عصاره گیری</th>
<th>منگنز</th>
<th>آمیز</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آمن</td>
<td>0.07</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>پایدار</td>
<td>0.07</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>منگنز</td>
<td>0.05</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

تجدر ذکر که ** در سطح احتمال 1% معنی دار است. *** در سطح احتمال 0.5% معنی دار نیست.

جدول 4. تجزیه واریانس مربوط به EC و مقدار قابل عصاره گیری فسفر، پتاسیم و روز خاک‌ها

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>منگنز</th>
<th>آمیز</th>
<th>مقدار قابل عصاره گیری</th>
<th>منگنز</th>
<th>آمیز</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آمن</td>
<td>0.07</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>پایدار</td>
<td>0.07</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>منگنز</td>
<td>0.05</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

تجدر ذکر که ** در سطح احتمال 1% معنی دار است. *** در سطح احتمال 0.5% معنی دار نیست.
جدول ۱. آزمایش زمان نگهداری بر مقدار آمن (mg/kg) قابل عصاره‌گیری با AB-DTPA

<table>
<thead>
<tr>
<th>شاخص</th>
<th>زمان نگهداری</th>
<th>L₅S₁</th>
<th>L₃S₁</th>
<th>S₁</th>
<th>L₅D₄</th>
<th>L₃D₄</th>
<th>L₉</th>
<th>L₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصلی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اکثر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کمتر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* میانگین

* در هر ستون اعداد تاریخ حداقل یک حرف مشترک در سطح احتمال ۰/۵ تفاوتی با یکدیگر ندارند.
تغییرات منگنز قابل استخراج خاک

اثر مقاومت تیمار در زمان تکثیف بر اثر منگنز قابل استخراج با pH و رسوب تکثیف‌ها نمایش دهنده مقدار نمایش دهنده مقدار نمایش دهنده را در مقایسه با شاهد بطور قابل ملاحظه‌ای افزایش داده است. هر چند که در طول زمان تکثیف افزایش آهن کامی این دو تا این وجود مقدار آن پس از گذشت 40 روز به شدت کاهش یافت. افزایشی در طول زمان تیمار pH کاهش یافت که در هنگام افزایش نسبت به شاهد. کاهش کلی میزان افزایش منگنز pH در خاک می‌تواند به تیمار pH سبب یا در افزایش منگنز pH باعث افزایش منگنز قابل استخراج خاک باشد.

تیمار افزایش خاکی pH

آماده‌سازی منگنز

کاربرد لجن سیاست‌کننده تیمار استخراج آهن به شاهد نشان دهنده مقدار به طور میزان pH کاهش منگنز قابل استخراج خاک به ویژه به سبب افزایش منگنز قابل استخراج خاک باعث افزایش منگنز قابل استخراج خاک شده است. افزایش pH به سبب افزایش منگنز قابل استخراج خاک باعث افزایش منگنز قابل استخراج خاک شده است.
جدول ۵ اثر تیمار و زمان تهیه هدایار بر مقدار مکنتر (mg/kg) فیتامین C از عصاره گیاه با آب

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زمان اکوسیون</th>
<th>خای</th>
<th>اصغر آباد</th>
<th>گشهر</th>
<th>مورچه خورت</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>LsT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26/8</td>
<td>19/7</td>
<td>31/8</td>
<td>16/9</td>
<td>41/2</td>
<td>19/3</td>
<td>5/7</td>
</tr>
<tr>
<td>48/8</td>
<td>35/3</td>
<td>28/7</td>
<td>31/2</td>
<td>18/8</td>
<td>21/8</td>
<td>8/2</td>
</tr>
<tr>
<td>92/8</td>
<td>41/3</td>
<td>27/7</td>
<td>19/6</td>
<td>16/4</td>
<td>15/6</td>
<td>6/3</td>
</tr>
<tr>
<td>140</td>
<td>44/8</td>
<td>20/8</td>
<td>26/3</td>
<td>32/6</td>
<td>25/8</td>
<td>10/1</td>
</tr>
<tr>
<td>34/0</td>
<td>19/7</td>
<td>17/8</td>
<td>26/6</td>
<td>33/7</td>
<td>25/8</td>
<td>10/1</td>
</tr>
<tr>
<td>76/3</td>
<td>16/7</td>
<td>16/8</td>
<td>26/7</td>
<td>33/7</td>
<td>25/8</td>
<td>10/1</td>
</tr>
<tr>
<td>140</td>
<td>44/8</td>
<td>20/8</td>
<td>26/3</td>
<td>32/6</td>
<td>25/8</td>
<td>10/1</td>
</tr>
<tr>
<td>34/0</td>
<td>19/7</td>
<td>17/8</td>
<td>26/6</td>
<td>33/7</td>
<td>25/8</td>
<td>10/1</td>
</tr>
</tbody>
</table>

در هر ستون اعداد درای حاصلی بک جرف مشتری در سنج اختیار ۵% تفاوت با یکدیگر ندارند.
جدول 7. اثر تیمار و زمان تهیه‌داری بر پH خاک ما

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زمان تهیه‌داری</th>
<th>انگیزه</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_2S,T</td>
<td>L_4S_1</td>
<td>S_1</td>
</tr>
<tr>
<td>7/16</td>
<td>7/18</td>
<td>7/18</td>
</tr>
<tr>
<td>7/16</td>
<td>7/16</td>
<td>7/16</td>
</tr>
<tr>
<td>7/16</td>
<td>7/16</td>
<td>7/16</td>
</tr>
<tr>
<td>7/16</td>
<td>7/16</td>
<td>7/16</td>
</tr>
</tbody>
</table>

انگلیسی

<table>
<thead>
<tr>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/16</td>
</tr>
<tr>
<td>7/16</td>
</tr>
<tr>
<td>7/16</td>
</tr>
<tr>
<td>7/16</td>
</tr>
</tbody>
</table>

در هر ستون اعداد دارای حروف مشترک در سطح احتمال 0/05 تفاوت نداشته.
جدول 8 مقایسه تیمارها بر مقدار فسفر، پتاسیم و روی (mg/kg) قابل عصاره گیری با AB-DTPA (dS/m) EC و خاکها (آزمون دانکن)

<table>
<thead>
<tr>
<th>خاک مورچه‌خورنده</th>
<th>خاک گل‌شاهی</th>
<th>خاک اصغر آباد</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>فسفر</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>3/1</td>
<td>2/4</td>
<td>1/6</td>
</tr>
<tr>
<td>2/8</td>
<td>2/4</td>
<td>1/6</td>
</tr>
</tbody>
</table>

در هر سری اعداد دویای حداکثر یک حرف مشترک در سطح احتمال 5% تفاوتی با یکدیگر ندارند.
تبدیل تیمارها بر لحظه‌های سوم و آنگلگی‌هایی، این تیمارها در مدت حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

تغییرات فسفر، با کربن کاهش انتخاب استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۴) این تیمارها بر فسفر و روی قابل استخراج با AB-DTPA تأثیری نداشت. حاصل نشان داد که تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

تغییرات فسفر، با کربن کاهش انتخاب استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۴) این تیمارها بر فسفر و روی قابل استخراج با AB-DTPA تأثیری نداشت. حاصل نشان داد که تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

تغییرات فسفر، با کربن کاهش انتخاب استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۴) این تیمارها بر فسفر و روی قابل استخراج با AB-DTPA تأثیری نداشت. حاصل نشان داد که تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

تغییرات فسفر، با کربن کاهش انتخاب استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۴) این تیمارها بر فسفر و روی قابل استخراج با AB-DTPA تأثیری نداشت. حاصل نشان داد که تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

تغییرات فسفر، با کربن کاهش انتخاب استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۴) این تیمارها بر فسفر و روی قابل استخراج با AB-DTPA تأثیری نداشت. حاصل نشان داد که تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

تغییرات فسفر، با کربن کاهش انتخاب استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۴) این تیمارها بر فسفر و روی قابل استخراج با AB-DTPA تأثیری نداشت. حاصل نشان داد که تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

تغییرات فسفر، با کربن کاهش انتخاب استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۴) این تیمارها بر فسفر و روی قابل استخراج با AB-DTPA تأثیری نداشت. حاصل نشان داد که تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.

در خلاصه‌های بهبود یافته، تیمارها بر لحظه‌های سوم و آنگلگی‌هایی در محل حضور در محل ۳ تا ۴ روز بهبود یافته و در اثر افزایش pH در محل جاری، بهبودی یافته.
ftarz-2k.jpg.png

منابع مورد استفاده

1. سالاردوستی، ع. 1371. حاصلخیزی خاک. چاب، چهارم، انتشارات دانشگاه تهران.
2. سالاردوستی، ع. 1371 در ماه. اصول تغذیه کیان. چاب، اول، مرکز نشر دانشگاه تهران.
3. فرهنگی، م. 1372. بررسی امکان استفاده از پودر اکسید آهن ضایعات حاصل از فرآیند اسیدسوزی فولاد به عنوان کود آهن. دانشکده کشاورزی، پایان‌نامه کارشناسی ارشد، دانشگاه آزاد تهران.
4. کلباسی، م. 1372. کلر آهن در گیاهان و راه‌های مبارزه با آن. نشریه شماره 18 سازمان پرورش، اصفهان.