کاربرد لجن کنورتور اسیدی شده (ضایعات کارخانه فولاد) به عنوان کود آهن در خاک‌های آهکی

چکیده

استفاده از لجن کنورتور، یک محصول فرعی صنایع فولاد، به عنوان کود آهن بررسی شد. حدود ۶۴ درصد وزن بین ماده را اکسیده‌ای در و سه‌گانه آهون و بقیه را به طور عمدی کلسیمدانه کنیم، سیلیس، مگنز، پتاسیم و فسفر تشکیل داده است. این پتروشیمی به صورت یک آزمایش انرژی‌برداری در حالت آهون و با نمونه‌های ۲۰۰ گرمی در تیمارهای مختلف به مدت ۲۴ ساعت کود آهن فله پس از انجام تیمارها نموده شد. آزمایشات نموده شده پس از تیمار در زمانهای ۱، ۲۰۰ و ۴۰۰ روز پس از شروع آزمایش به صورت فیکس محسوب گردید.

نتایج آزمایش نشان داد که کاربرد لجن کنورتور باعث افزایش ضایعات خاصی در pH خاک شد. ولی در این حال قابلیت جذب آهن خاک را افزایش داد. مقدار افزایش به طور عمدی مناسب با مقدار لجن مصرفی بود. اسیدی در کن لجن کنورتور باعث افزایش فیکس‌گر در قابلیت جذب آهن خاک شد ولی مقدار قابل جذب این عنصر ضایعاتی گذشت زمین کاهش یافت. استفاده از لجن کنورتور مهاره با کود کرده عضویت قابلیت جذب آهن و میکروگردهای خاکی را در مقایسه با تیمارهای لجن به تنها افزایش داد. همچنین استفاده از لجن کنورتور به تنها ی و همراه با کود کرده ضایعاتی را برای افزایش مقدار قابلیت جذب فسفر خاکی شد. به توجه به نتایج این پژوهش می‌توان دریافت که لجن کنورتور فلزسنگی پاتولوژی کاربرد به عنوان کود آهن در خاک‌های آهکی را دارای استمراری نمی‌کند. بنابراین می‌توان یک گزاره مثبت درباره فیری بررسی این موضوع مورد نیاز است.

واژه‌های کلیدی: کلرور آهن، لجن کنورتور فولاد، کود آهن مقدمه

وجود دارد (۱). مؤثرترین روش برای مرتفع کردن کلرور آهن، استفاده از کلاته‌های مصنوعی آهون است ولی به دلیل گرانی عضویت بیشتر محصولات خاص استفاده می‌شود (۸). بنابراین استفاده از ترکیبات جایگزین به توانایی طور مؤثر کلرور آهن را معلوله نماید ضروری است. تاکنون بررسی‌های عارضه کلرور آهن عمده‌تر در خاک‌های آهکی و قلیایی رایج است که بین ۲۵ تا ۳۵ درصد زمین‌های کشاورزی در سطح جهان آهکی هستند (۹). در ایران نیز این عارضه در کلیه مناطق میوه خز هموگونی خراسان، اصفهان، کرج و آذربایجان

۱. ی به ترتیب دانشجوی دکتری، استاد و دانشیار کشاورزی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
زیبایی در زمینه استفاده از محبوبات جنبی صنایع به عنوان کود آهن در صنایع انگیز گرفته است. ازجمله این صنایع می توان به لجن کنترول پلاستیک فولاد اشاره کرد. لجن کنترول

در کارخانجات تولید فولاد در مرحله اکسایش چند مایع تشکیل می شود. در این مرحله هنگامی که اکسیژن به داخل کود فولاد (کنترول) تزریق می شود و غباری از داخل کود به پیرو بهبود یافته تجهیزات و

دستگاه ها نسبت به آبی رساند، بازگردان این می شود.

و پس از خشک کردن به صورت پودر در انبار نگه داشته می شود.

به ایزول بستر هن تا فولاد، ۱۸ کیلوگرم لجن کنترول

به صورت پودر در تولید می گردد. (۱۲) تولیدان سلالم مقدار بیشتر زیابین این ماده باعث ایجاد مشکلات اتاباری کشته و همچنین

از لحاظ سیستم محیطی ممکن است خطرات را به همراه داشته باشد. ترکیب این ماده حاکی از وجود تغییرات در

مصرف (کلسم، مینزیم، ویمر و غیره) از عناصر پر

فاحش گرفتگی گاه در فولادهای آهنی مشکلات اتابار کردن این مواد و همچنین خطرات زیست محیطی حاصل از آن برطرف

خواهد شد. این بار این صنایع منبع درآمد اضافی برای کارخانه فولاد نیز خواهد بود.

مواد و روش ها

لجن کنترول علاوه بر آهن، حاصل مقدار قابل توجهی کلری، مینزیم، آلومنیوم سیلیس، نیترات روز و عناصر دیگر می باشند (جدول ۱) که مقدار آنها به نوع سنگ آهن و روش تولید فولاد، متغیر است. (۱۲).

این پروتپره پر این سه خاک آهنی از مناطق اصلی، کلسیم و مورفی خورات انتقال انجام گرفت. نمونه های خاک پس از انتقال به آزمایشگاه و شکست در مجاعات هوا

از نک میلی متری گذارده شدند و در هر خاک آهنی، منگنز (AB-DTPA)NH4HCO3-DTPA

روی و مس قابل استخراج طبق روش پیشنهاد سلطان پور و شربی (۱۰) استخراج

شد. تعدادی از دسته بندی ویژیک و شیمیایی خاک از قبل pH گل اشباع عصاره اشباع و بافت خاک

1283

علوم و فنون کشاورزی و منابع طبیعی / سال هشتم / شماره اول / بهار
جدول 1: نتایج تجزیه شیمیایی لجن کنوزتور

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>مقدار</th>
<th>ترکیب</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>24/30</td>
<td>FeO</td>
<td>19/22</td>
</tr>
<tr>
<td>ZnO</td>
<td>19/47</td>
<td>CаO</td>
<td>6/12</td>
</tr>
<tr>
<td>SiO</td>
<td>1/30</td>
<td>SiO₂</td>
<td>1/24</td>
</tr>
<tr>
<td>NaO</td>
<td>2/30</td>
<td>Al₂O₃</td>
<td>1/10</td>
</tr>
<tr>
<td>K₂O</td>
<td>1/70</td>
<td>P₂O₅</td>
<td>2/17</td>
</tr>
</tbody>
</table>

جدول 2: برخی خصوصیات فیزیکی و شیمیایی خاک های مورد مطالعه

<table>
<thead>
<tr>
<th>منطقه</th>
<th>اسفر آباد</th>
<th>کاشه‌ر</th>
<th>مورچه خورت</th>
<th>نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>باتول خاک</td>
<td>7/6</td>
<td>8/0</td>
<td>7/5</td>
<td>pH</td>
</tr>
<tr>
<td>مواد أي</td>
<td>1/0</td>
<td>2/0</td>
<td>1/7</td>
<td>(dS/m) EC</td>
</tr>
<tr>
<td>افزایش</td>
<td>0/2</td>
<td>0/7</td>
<td>0/2</td>
<td>آسیا</td>
</tr>
<tr>
<td>مدل 100</td>
<td>4/0</td>
<td>4/0</td>
<td>4/0</td>
<td>(mg/kg)</td>
</tr>
<tr>
<td>فسفر</td>
<td>15/7</td>
<td>17/7</td>
<td>15/7</td>
<td>(mg/kg)</td>
</tr>
<tr>
<td>تیتانیم</td>
<td>12/7</td>
<td>13/7</td>
<td>12/7</td>
<td>(mg/kg)</td>
</tr>
<tr>
<td>آلومینیوم</td>
<td>23/7</td>
<td>22/7</td>
<td>23/7</td>
<td>(mg/kg)</td>
</tr>
<tr>
<td>رون</td>
<td>15/7</td>
<td>15/7</td>
<td>15/7</td>
<td>(mg/kg)</td>
</tr>
</tbody>
</table>

نتایج تجزیه و ارزیابی داده‌ها (جدول 3) ار تقابلی تیمار در Zaman نگه‌داری را برای آهن قابل استخراج با شده توسط AB-DTPA در جدول 2 نشان داده است. اثر لجن کنوزتور بر خصوصیات خاک در یک آزمایش اکسپرسون و در سه نگهداری به صورت طرح یک‌کامال‌یا تصادفی در قالب فاکتوریل اجرا شد. در این آزمایش، نمونه‌های خاک (حدود 4000...
جدول ۳: تجزیه واریانس مربوط به pH و مقدار قالب عصاره گیاه آن و منگنز خاک‌ها

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>درجه</th>
<th>خاک مورچه خورست</th>
<th>pH</th>
<th>آنمن</th>
<th>منگنز</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمار</td>
<td>۷</td>
<td>**</td>
<td>۱۴۲/۲**</td>
<td>۵۹**</td>
<td>۱۲/۶**</td>
</tr>
<tr>
<td>زمان</td>
<td>۳</td>
<td>**</td>
<td>۱۴۰/۴**</td>
<td>۴۵/۷**</td>
<td>۰۰/۶**</td>
</tr>
<tr>
<td>نیمار زمان</td>
<td>۲/۱</td>
<td>**</td>
<td>۱۴۱/۸**</td>
<td>۴۵/۷**</td>
<td>۰/۰**</td>
</tr>
<tr>
<td>خطا</td>
<td>۶۴</td>
<td></td>
<td>۱۴۵/۸</td>
<td>۴۵/۷</td>
<td>۰/۰**</td>
</tr>
</tbody>
</table>

** در سطح احتمال ۱٪ معنی دار است.
*** در سطح احتمال ۵٪ معنی دار نیست.

جدول ۴: تجزیه واریانس مربوط به EC و مقدار قالب عصاره گیاه فسفر، پتاسیم و روی خاک‌ها

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>درجه</th>
<th>خاک مورچه خورست</th>
<th>EC</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>روی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمار</td>
<td>۷</td>
<td>**</td>
<td>۱۳۲/۸**</td>
<td>۳/۶**</td>
<td>۰/۰**</td>
<td></td>
</tr>
<tr>
<td>زمان</td>
<td>۳</td>
<td>**</td>
<td>۱۳۰/۸**</td>
<td>۳/۶**</td>
<td>۰/۰**</td>
<td></td>
</tr>
<tr>
<td>نیمار زمان</td>
<td>۲/۱</td>
<td>**</td>
<td>۱۳۱/۵**</td>
<td>۳/۶**</td>
<td>۰/۰**</td>
<td></td>
</tr>
<tr>
<td>خطا</td>
<td>۶۴</td>
<td></td>
<td>۱۳۵/۵</td>
<td>۳/۶</td>
<td>۰/۰**</td>
<td></td>
</tr>
</tbody>
</table>

** در سطح احتمال ۱٪ معنی دار است.
*** در سطح احتمال ۵٪ معنی دار نیست.
جدول 2. تیمار و زمان تغییر قابل عصاره‌گیری با AB-DTPA (mg/kg)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>خاک</th>
<th>زمان تکرارسازی</th>
<th>L₈S₁</th>
<th>L₂S₂</th>
<th>S₁</th>
<th>L₄P₄</th>
<th>L₂P₂</th>
<th>L₄</th>
<th>L₈</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>120</td>
<td>40</td>
<td>180</td>
<td>180</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>90</td>
<td>15</td>
<td>90</td>
<td>90</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>60</td>
<td>10</td>
<td>60</td>
<td>60</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>20</td>
<td>5</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

در هر ستون اعداد تاریخ محدودیت به خور فشرده در سطح احتمال 0.05 تعیین گردید.
تغییرات منگنز قابل استخراج خاک

طول زمان تغذیه شده است. به نظر می‌رسد که دلیل آن، افزایش pH و رسوبات ناحیه‌های پر آهور در طول زمان سه در اکثر مواقع تولید LpH2 و LpH2+ آهن قابل استخراج با AB-DTPA می‌باشد. ملاحظه‌ای از افزایش داده است. هر چند که طول زمان تغذیه دارای قابلیت استخراج آهن کاسته شده و یک مقدار از پس از گذشت 60 روز از شروع آزمایش، جدید بیشتر شاهد می‌باشد، این در حالی است که در این تیمارها pH نسبت به شاهد کاهش چشمگیر یافت. این، به عنوان یک مثال از پیش از نشان داده که pH برای استخراج لجن کنترل به جریان باشد. فروده (3) گракار گرد می‌گرم با کیلوگرم خاک است. طول EDTA با اکسید آهن ضایعاتی نشان می‌دهد. به همراه کاهش معنی‌داری در pH طول 60 روز آزمایش آنکوباسیو داشته است. ضمن اینکه ماده مورد استفاده در این پژوهش حدهای 2 گرام شده بود.

تیمار 1 درصد گردوت عنصری (S) تفاوت معنی‌داری در قابلیت استخراج آهن نسبت به شاهد نداشته در حالی که در تیمارهای لجن کنترل به همراه گردوت عنصری و (Ls3) تیوناسیلوس (نیتریک) افزایش معنی‌داری در قابلیت استخراج آهن نسبت به شاهد دیده شده و نسبت به Ls3 افزایش را نشان نمی‌دهد. در طول زمان تغذیه دارای قابلیت آهن قابل استخراج با AB-DTPA همراه گردوت عنصری همان‌طور که تیمارهای اسیدسولفوریک کاهش داشته است.

\[2 \text{میلی‌گرم به کیلوگرم خاک است. طول EDTA با اکسید آهن ضایعاتی نشان می‌دهد. به همراه کاهش معنی‌داری در pH طول 60 روز آزمایش آنکوباسیو داشته است. ضمن اینکه ماده مورد استفاده در این پژوهش حدهای 2 گرام شده بود. } \]
جدول ۶ آثار تیمار و زمان تهیه دارای برمغداز سکتر (mg/kg) قابل عصب‌پیوستگی با AB-DTPA

<table>
<thead>
<tr>
<th>تیمار</th>
<th>L₂S₁T</th>
<th>L₂S₁</th>
<th>S₁</th>
<th>L₄pH₁</th>
<th>L₄pH₂</th>
<th>L₄</th>
<th>L₄</th>
<th>L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۲/۸</td>
<td>۴۵/۸</td>
<td>۴۱/۸</td>
<td>۶۸/۸</td>
<td>۴۲/۸</td>
<td>۴۲/۸</td>
<td>۴۲/۸</td>
<td>۴۲/۸</td>
<td>۴۲/۸</td>
</tr>
<tr>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
<td>۶۸/۸</td>
</tr>
<tr>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
<td>۷۲/۸</td>
</tr>
<tr>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
<td>۸۰/۸</td>
</tr>
<tr>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
<td>۸۴/۸</td>
</tr>
<tr>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
<td>۹۰/۸</td>
</tr>
<tr>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
<td>۹۴/۸</td>
</tr>
<tr>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
<td>۹۸/۸</td>
</tr>
</tbody>
</table>

در هر ستون اعداد درون هر سطر به صورت متغیرهای تصادفی از سطح احتمال ۰/۵% زبان پژوهی ناشناخته است.
جدول ۷: تریعیم و زمان تغذیه‌های بر pH خاک ما

<table>
<thead>
<tr>
<th>تریعیم</th>
<th>زمان اکوسیون</th>
<th>خاک</th>
<th>میانگین</th>
<th>هرامین</th>
<th>هرامین</th>
<th>هرامین</th>
<th>هرامین</th>
<th>هرامین</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₄S₁</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
<tr>
<td>L₄S₂</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
<tr>
<td>S₁</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
<tr>
<td>L₄pH₄</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
<tr>
<td>L₄pH₅</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
<tr>
<td>L₄</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
<tr>
<td>L₄</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
<tr>
<td>L₄</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
<td>۷۰۵۴</td>
</tr>
</tbody>
</table>

در هر سری اعداد دارای حرف مشترک، تفاوت ۵٪ ناگفته‌می‌شود.
جدول 8: مقایسه تیمارها بر مقدار فسفر، پتاسیم و روی (mg/kg) در خاک‌های (ازمون دانکن).

<table>
<thead>
<tr>
<th>تیمار اصغر آباد</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>روی</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 7/1 a</td>
<td>0/4 a</td>
<td>10/4 a</td>
<td>11/1 a</td>
</tr>
<tr>
<td>EC 3/1 a</td>
<td>3/4 b</td>
<td>12/4 b</td>
<td>11/1 b</td>
</tr>
<tr>
<td>AB-DTPA 7/1 b</td>
<td>0/8 a</td>
<td>1/8 b</td>
<td>14/3 a</td>
</tr>
<tr>
<td>AB-DTPA 3/1 b</td>
<td>3/8 b</td>
<td>3/8 b</td>
<td>14/3 b</td>
</tr>
<tr>
<td>E 7/8 a</td>
<td>0/6 a</td>
<td>0/6 b</td>
<td>14/3 a</td>
</tr>
<tr>
<td>E 3/8 a</td>
<td>3/6 b</td>
<td>3/6 b</td>
<td>14/3 b</td>
</tr>
<tr>
<td>EC 7/9 a</td>
<td>0/7 a</td>
<td>1/7 b</td>
<td>15/3 a</td>
</tr>
<tr>
<td>EC 3/9 a</td>
<td>3/7 b</td>
<td>3/7 b</td>
<td>15/3 b</td>
</tr>
<tr>
<td>AB-DTPA 7/1 a</td>
<td>0/9 a</td>
<td>1/9 b</td>
<td>15/3 a</td>
</tr>
<tr>
<td>AB-DTPA 3/1 a</td>
<td>3/9 b</td>
<td>3/9 b</td>
<td>15/3 b</td>
</tr>
<tr>
<td>E 7/8 a</td>
<td>0/8 a</td>
<td>0/8 b</td>
<td>15/3 a</td>
</tr>
<tr>
<td>E 3/8 a</td>
<td>3/8 b</td>
<td>3/8 b</td>
<td>15/3 b</td>
</tr>
</tbody>
</table>

در هر ستون اعداد یک حرف مشترک در سطح احتمال 5% تفاوتی با یکدیگر ندارند.
در خلاصه تیمارهای اسید سولفوریک در طول زمان نگهداری انفراش معنی داری در pH خاک دیده شد که نشان‌دهنده اثر دراز مدت نور گونه‌های pH خاک است. کاهش خاک‌های آهکی در اثر افزودن گونه‌های عنصری توسط محققان زیادی آنلاین شده است. (6 و 7). تیمارهای

نتایج گیری

کاربرد لجن کنترل باعث افزایش مقدار آهن قابل جذب خاک‌ها شد و مقدار افزایش عموماً مناسب با مقدار لجن مصرفی بود. استفاده از لجن کنترل همراه با گونه‌های عنصری و اسید سولفوریک قابلیت جذب آهن و مگنز را در خاک‌ها در مقایسه به تیمارهای لجن به تنهایی افزایش داد که اسید سولفوریک از این نظر مؤثرتر از گونه‌های عنصری بود. استفاده از لجن کنترل به تنهایی و یا همراه با گونه‌های عنصری و اسید سولفوریک افزایش مخصوصاً در قابلیت جذب فسفر خاک‌ها باعث شد. کاربرد مقدار زیاد لجن کنترل باعث افزایش خاک‌ها شدند. در حالی که اسید سولفوریک و گونه‌های عنصری کاهش pH خاک‌ها را به همراه داشتند. با گذشت زمان در آزمایش انکوباسیون، به روند یکنواختی این مقدار آهن و مگنز قابل استخراج خاک‌ها در همه تیمارها دیده شد. شدت کاهش در تیمارهای حاوی گونه‌های عنصری کنترل بود. کاربرد لجن کنترل همراه با گونه‌های عنصری و اسید سولفوریک می‌تواند نتایج این ارباب مشهودی بود. به منظور تایید و کاربردی شدن نتایج این پژوهش، انجام بررسی‌های گلخانه‌ای و مرحله‌ای از انتخاب از گاهان حساس به استرس آهن و کاربرد لجن کنترل به عنوان کود آهن یوپشتهاد می‌شود.

تغییرات فسفر در قاره استخراج

نتایج تجزیه واریانس نشان داده است (جدول 4). اثر تیمارها بر AB-DTPA فسفر و روی قابل استخراج با pH خاک مورد آزمایش در سطح احتمال 1% معنی‌دار نبود. در حالی که کانسپس قابل استخراج حتی در سطح 5% معنی‌دار نبود. کاربرد لجن کنترل به تنهایی با وجود افزایش خاکی در pH خاک موجب افزایش به‌این یکینوکسیدی در قابلیت استخراج فسفر نبود به‌کلیه شده است. (جدول 8). در دوره‌های مورد آزمایش، کاربرد Tیمارها تأثیر معنی‌داری در پاسخ قابل استخراج با AB-DTPA نداشتند (جدول 8). روی قابل استخراج AB-DTPA با تیمارهای اسید سولفوریک AB-DTPA نشان داد که افراش معنی‌داری نبود به‌کلیه شده است. (جدول 8).
منابع مورد استفاده

1. صالحی، ع. ا. 1371. حاضری‌های خاک. چابهار، انتشارات دانشگاه تهران.

2. صالحی، ع. ا. و. تجربی. 1377. اصول تغذیه کیایه. چابهار، مرکز نشر دانشگاه تهران.

3. فرخزد، م. 1371. بررسی امکان استفاده از یودر اکسید آلی ضایعاتی حاصل از فرآیند اسیدشیمی فولاذ به عنوان کود آهن، دانشگاه کشاورزی پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.

4. کلیاسی، م. 1372. کلروز آلی در کیایه و راه‌های مبارزه با آن. نشریه شماره 18، سازمان پاک‌کرده و فضای سیاه اصفهان.

