کاربرد لجن کنترل شده (ضایعات کارخانه فولاد) به عنوان کود آهن در خاک‌های آهکی

چکیده

اثبات استفاده از لجن کنترل‌شده، یک محصول فرعی صنایع فولاد، به عنوان کود آهن بررسی شد. حدود 64 درصد وزن این ماده را اکسیده‌های اورسیتی آهن و ب‌یا به‌طور عمدی صنایع فولاد صادر می‌کردند. این تحقیق به‌صورت آزمایش‌کار با مدل سه‌مستقل انجام شد. نتایج نشان داد که لجن کنترل‌شده موجب افزایش میزان pH در خاک می‌شود. در عین حال قابلیت جذب آهن خاک را افزایش داد. تحقیق آزمایش‌های به‌طور عمده مناسب برای انتقال مصرف‌های بود. این نتایج کرد لجن کنترل‌شده می‌تواند مقادیر افزایش چشم‌گیری در قابلیت جذب آهن خاک را کاهش دهی و به‌طور عمده مقادیر کافی از اکسیده‌های آهن و ب‌یا به‌طور عمده میزان pH خاک را افزایش دهد. نتایج نشان داد که لجن کنترل‌شده می‌تواند مقادیر افزایش چشم‌گیری در قابلیت جذب آهن خاک را کاهش دهد. نتایج نشان داد که لجن کنترل‌شده می‌تواند مقادیر افزایش چشم‌گیری در قابلیت جذب آهن خاک را کاهش دهد. نتایج نشان داد که لجن کنترل‌شده می‌تواند مقادیر افزایش چشم‌گیری در قابلیت جذب آهن خاک را کاهش دهد.

واژه‌های کلیدی: کلرور آهن، لجن کنترل‌شده، کود آهن

مقدمه

ع accessor سالن کلرور آهن عمده‌ترین سازنده اکسیده‌های آهن کلیولی می‌باشد. استفاده کردن کلرور آهن از لجن کنترل‌شده در سطح جهانی در سال 2017 تا 2020 در کارخانه‌ها کار، به‌طور متوسط می‌باشد. این دستگاه به‌طور عمده میزان pH خاک را افزایش می‌دهد.

1. به ترتیب دانشجوی دکتری، استاد و دانشیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
یزیدی در زمینه استفاده از محصولات گوناگون به عنوان کود آهن در کشاورزی جنگلگیری است. ازجمله این ضایعات می‌توان به لجن کنترنر صاین فولاد اشاره کرد. لجن کنترنر در کارخانجاتی مانند فولاد‌سازی، مجتمع‌های سایر انواع صنایع و... تشکیل می‌شود. در این مرحله هنگامی که آسیب به داخل کوره فولاد (کنترنر) تزریق می‌شود، شرکتی از داخل کوره به بیرون انتشار می‌یابد. این درمان به تأمین و دستگاه‌ها آسیب می‌رساند. بنابراین توسط آب جمع‌آوری شده و پس از خشک کردن به صورت پودر در اینا به‌طور می‌شود.

۱۸۱ کیلوگرم لجن کنترنر به صورت پودر می‌گردد (۶۲). تولید سالانه مقدار بسیار زیادی این ماده باعث بروز مشکلات ادامه‌داری گشته و همچنین در از لحاظ زیست محیطی ممکن است خطراتی را به همراه داشته. باشند. لجن کنترنر به عنوان کود آهن، علاوه بر کاهش مشکل غذایی فیزیولوژیکی در حالت معیاره، مشکلات ادامه‌دار کردن این مواد و همچنین خاطرات زیست محیطی حاصل از آن بطرف خواهد شده. علاوه بر آن فروش این ضایعات منع در آماده اضافی برای کارخانه فولاد نیز ممکن بود.

مواد و روش‌ها

لجن کنترنر علاوه بر آهن، حاوی ماده‌هایی از مصرف کننده کلیسیم، منیزیم، آلومینای، سبزیجات، تری‌هیدروکسی-کربنات کلسیم و عناصر دیگر می‌باشد. (جدول ۱) که ماده‌ای است به عوامل سبب آهنهای و روش تولید فولاد، متفاوت است. (۱۲).

این پژوهش بر روی سه کارشان آهن از مناطق اقیانوسیه، کلیسیم و مولفه‌های خورب این بنا که به عنوان انجام گرفته، نموده‌ای خواهش می‌زند، بعضی از این بناها به آزمایشگاه‌ها و حیوانات در محیط‌های هوا از کلیسیم و مولفه‌های خورب شده و در درون خاک آهن، منگنز آب‌سازی (AB-DTPA)NH₄HCO₃، DTPA طبق روش پیشنهادی سلطان بور و شواب (۱۰) استخراج شده و بعد از محصولات غذایی و شیمیایی خاک‌ها از قبیل pH گل اشیاء و عصاره اشیاء و بافت خاک، صاین-سازی با استفاده از مولفه‌های باعث نیز ممکن بود.

در زمینه استفاده از محصولات گوناگون به عنوان کود آهن در کشاورزی جنگلگیری است. ازجمله این ضایعات می‌توان به لجن کنترنر صاین فولاد اشاره کرد. لجن کنترنر در کارخانجاتی مانند فولاد‌سازی، مجتمع‌های سایر انواع صنایع و... تشکیل می‌شود. در این مرحله هنگامی که آسیب به داخل کوره فولاد (کنترنر) تزریق می‌شود، شرکتی از داخل کوره به بیرون انتشار می‌یابد. این درمان به تأمین و دستگاه‌ها آسیب می‌رساند. بنابراین توسط آب جمع‌آوری شده و پس از خشک کردن به صورت پودر در اینا به‌طور می‌شود.

۱۸۱ کیلوگرم لجن کنترنر به صورت پودر می‌گردد (۶۲). تولید سالانه مقدار بسیار زیادی این ماده باعث بروز مشکلات ادامه‌داری گشته و همچنین در از لحاظ زیست محیطی ممکن است خطراتی را به همراه داشته. باشند. لجن کنترنر به عنوان کود آهن، علاوه بر کاهش مشکل غذایی فیزیولوژیکی در حالت معیاره، مشکلات ادامه‌دار کردن این مواد و همچنین خاطرات زیست محیطی حاصل از آن بطرف خواهد شده. علاوه بر آن فروش این ضایعات منع در آماده اضافی برای کارخانه فولاد نیز ممکن بود.

مواد و روش‌ها

لجن کنترنر علاوه بر آهن، حاوی ماده‌هایی از مصرف کننده کلیسیم، منیزیم، آلومینای، سبزیجات، تری‌هیدروکسی-کربنات کلسیم و عناصر دیگر می‌باشد. (جدول ۱) که ماده‌ای است به عوامل سبب آهنهای و روش تولید فولاد، متفاوت است. (۱۲).

این پژوهش بر روی سه کارشان آهن از مناطق اقیانوسیه، کلیسیم و مولفه‌های خورب این بنا که به عنوان انجام گرفته، نموده‌ای خواهش می‌زند، بعضی از این بناها به آزمایشگاه‌ها و حیوانات در محیط‌های هوا از کلیسیم و مولفه‌های خورب شده و در درون خاک آهن، منگنز آب‌سازی (AB-DTPA)NH₄HCO₃، DTPA طبق روش پیشنهادی سلطان بور و شواب (۱۰) استخراج شده و بعد از محصولات غذایی و شیمیایی خاک‌ها از قبیل pH گل اشیاء و عصاره اشیاء و بافت خاک، صاین-سازی با استفاده از مولفه‌های باعث نیز ممکن بود.

دانشگاه علوم و فناون کشاورزی و منابع طبیعی / سال هشتم / شماره اول / بهار 1383
در ذیل نتایج تجزیه شیمایی لجنس کنوتور

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>24.30</td>
</tr>
<tr>
<td>ZnO</td>
<td>19.77</td>
</tr>
<tr>
<td>V2O5</td>
<td>6.12</td>
</tr>
<tr>
<td>S</td>
<td>3.80</td>
</tr>
<tr>
<td>Na2O</td>
<td>4.24</td>
</tr>
<tr>
<td>K2O</td>
<td>2.10</td>
</tr>
<tr>
<td>Li2O</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Loss on ignition : 9

جدول 2. برخی خصوصیات نیزیکی و شیمایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>منطقه</th>
<th>اصغر آباد</th>
<th>کاشنر</th>
<th>موره‌چورت</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULT</td>
<td>شن</td>
<td>لومی</td>
<td>شن</td>
</tr>
<tr>
<td>کشف</td>
<td>7/6</td>
<td>8/0</td>
<td>7/5</td>
</tr>
<tr>
<td>ε</td>
<td>10/0</td>
<td>2/0</td>
<td>7/5</td>
</tr>
<tr>
<td>ε</td>
<td>2/6</td>
<td>0/0</td>
<td>0/87</td>
</tr>
<tr>
<td>ε</td>
<td>2/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ε</td>
<td>4/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ε</td>
<td>5/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ε</td>
<td>6/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ε</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ε</td>
<td>8/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ε</td>
<td>9/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ε</td>
<td>10/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تجزیه و ارایش دقیقه‌ها (جدول 3) از مقابلی تیم‌های در AB-DTPA زمان نگهداری بر اثر آهن قابل استخراج با در AB-DTPA در سه خط آبخ یکی در سطح مثبت 1 صرف می‌دارند مسیر داشته‌باشند در تیمارهای لجنس کنوتور (L4) و L5 متاسف با AB-DTPA مقدار لجنس آهن قابل استخراج با AB-DTPA در مورد آزمایشات افزایش یافته است (جدول 5). استفاده از مقادیر زیاد لجنس کنوتور (L6) باعث کاهش قابلیت استخراج آهن در و همچنین ماده آلی، از خاک، آهن و عناصر عصاره‌گیری شده توسط جدول 2 نشان داده است. اثر لجنس کنوتور بر خصوصیات خاک در این آزمایشات کاملاً توصیفی در قابل فاکتوریل اجرا شد. در این آزمایش، مومه‌های خاک (حدود 4000...
جدول 3. تجزیه واریانس مربوط به \(pH \) و مقدار قابل عصاره‌گیری آن مانگنز خاک‌ها

<table>
<thead>
<tr>
<th>متغیر تغییر درجه</th>
<th>دانه‌خورت</th>
<th>دانه‌گل‌شهر</th>
<th>دانه‌صخره‌ای‌بد</th>
<th>ازودی</th>
<th>تیمار 7</th>
<th>زمان 3</th>
<th>تیمار‌زمان 21</th>
<th>خطا 66</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pH)</td>
<td>Aمن</td>
<td>منگنز</td>
<td>Aمن</td>
<td>منگنز</td>
<td>2142/2588</td>
<td>6989/2550</td>
<td>172/18760/896</td>
<td>77/1186/896</td>
</tr>
<tr>
<td></td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

**. در سطح احتمال 0.01 معنی‌دار است.
##. در سطح احتمال 0.05 معنی‌دار نیست.

جدول 4. تجزیه واریانس مربوط به \(EC \) و مقدار قابل عصاره‌گیری فسفر، پتاسیم و روی خاک‌ها

<table>
<thead>
<tr>
<th>متغیر تغییر درجه</th>
<th>دانه‌خورت</th>
<th>دانه‌گل‌شهر</th>
<th>دانه‌صخره‌ای‌بد</th>
<th>ازودی</th>
<th>تیمار 7</th>
<th>زمان 3</th>
<th>تیمار‌زمان 21</th>
<th>خطا 66</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EC)</td>
<td>Fسفر</td>
<td>پتاسیم</td>
<td>روی</td>
<td>Fسفر</td>
<td>پتاسیم</td>
<td>روی</td>
<td>Fسفر</td>
<td>پتاسیم</td>
</tr>
<tr>
<td></td>
<td>Aمن</td>
<td>منگنز</td>
<td>Aمن</td>
<td>منگنز</td>
<td>2142/2588</td>
<td>6989/2550</td>
<td>172/18760/896</td>
<td>77/1186/896</td>
</tr>
<tr>
<td></td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

**. در سطح احتمال 0.01 معنی‌دار است.
##. در سطح احتمال 0.05 معنی‌دار نیست.
جدول یک تیمار و زمان تکمیل در نظر گرفته شده‌اند (mg/kg) قابل عصاره‌گیری با AB-DTPA

<table>
<thead>
<tr>
<th>نیترات</th>
<th>سرتیم</th>
<th>پسیمیکر</th>
<th>پسیمیکر</th>
<th>پسیمیکر</th>
<th>پسیمیکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/3</td>
<td>40/3</td>
<td>40/3</td>
<td>40/3</td>
<td>40/3</td>
<td>40/3</td>
</tr>
<tr>
<td>50/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
</tr>
<tr>
<td>75/3</td>
<td>15/3</td>
<td>15/3</td>
<td>15/3</td>
<td>15/3</td>
<td>15/3</td>
</tr>
<tr>
<td>100/9</td>
<td>20/9</td>
<td>20/9</td>
<td>20/9</td>
<td>20/9</td>
<td>20/9</td>
</tr>
<tr>
<td>125/4</td>
<td>125/4</td>
<td>125/4</td>
<td>125/4</td>
<td>125/4</td>
<td>125/4</td>
</tr>
</tbody>
</table>

در هر ستون اعداد ثابت فاصله یک حرف مشترک در سطح احتمال 5% تفاوت با یکدیگر دارد.
تغییرات منگنز قابل استخراج خاک

الکتریته قابل استخراج با pH می‌تواند مقداری از منگنز قابل استخراج با pH می‌تواند توسط AB-DTPA در هر سه خاک در سطح احتمال 1 درصد معنی نداشته است. (جدول 3) نمودار این تغییرات نوع منگنز قابل استخراج در شرایط مختلف می‌تواند به‌طور ملایم باشد. استخراج با pH توسط AB-DTPA در دو خاک دیگر آزمایش گردیده است. در این مورد، منگنز قابل استخراج با pH می‌تواند بین 0.02 درصد و 0.03 درصد باشد.

ماه مورد استفاده در این پژوهش حدود 1.5 گیگ بشود. تیمار 1 درصد گیگ دریا (Sv) نسبت به شاهد نسبت به، تیماری این نوع منگنز قابل استخراج با pH در زمان نگه داری شدید است. به نظر می‌رسد که دلیل آن افزایش pH را در مقایسه با شاهد به‌طور قابل ملاحظه‌ای افزایش داده است. هر چند که در طول زمان نگه داده شده وزن مورد شهود با این وجود، آن سطحی از گذشته 60 روز از شرایط آزمایش چندین برابر شاهده می‌باشد، این در حالی است که در تیمار با pH منگنز قابل استخراج با pH باعث شده که به‌طور گسترده‌تر آن می‌باشد. در حالی که افزایش منگنز قابل استخراج با pH در پایان دوره‌های افزایش که در پایان دوره است که مقدار منگنز قابل استخراج با pH در محدود می‌شود. افزایش منگنز قابل استخراج با pH بهمراه کاهش منگنز قابل استخراج با pH باعث شده که در پایان دوره، منگنز قابل استخراج با pH به میزان 1/2 درصد داده شده است.

تغییرات منگنز قابل استخراج خاک

تغییرات منگنز قابل استخراج با pH در خاک EC و pH

گزارندهایی که باعث شده منگنز قابل استخراج با pH در خاک EC و pH می‌باشند، به غیر از آورده ولی این کاهش در طول زمان نگه داری تنها حدودی خشی شده است. (جدول 7) این امر به قدرت متفاوت تیماری ایستاده است. (جدول 7) قابل استخراج با pH تیمارها و افزایش pH در مراحل بعدی به دلیل خشی شدن منگنز قابل استخراج با pH می‌باشد. این بیانگر است که تیمارها خاکی گروید عنصری کاهش معنی‌داری را در pH خاک باعث شده‌اند. ولی
جدول 6 اثر تیمار و زمان نگهداری بر مقدار سکتر (mg/kg) در اکسسواره گیاهی با AB-DTPA

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زمان</th>
<th>X</th>
<th>کروماتوگرافی</th>
<th>آباد خاص</th>
<th>کشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>L0</td>
<td>1</td>
<td>62/9</td>
<td>19/8</td>
<td>5/8</td>
</tr>
<tr>
<td>S1</td>
<td>L1</td>
<td>1</td>
<td>75/8</td>
<td>21/8</td>
<td>7/8</td>
</tr>
<tr>
<td>S1</td>
<td>L2</td>
<td>1</td>
<td>83/8</td>
<td>23/8</td>
<td>9/8</td>
</tr>
<tr>
<td>S1</td>
<td>L3</td>
<td>1</td>
<td>95/8</td>
<td>25/8</td>
<td>11/8</td>
</tr>
<tr>
<td>S1</td>
<td>L4</td>
<td>1</td>
<td>10/8</td>
<td>27/8</td>
<td>13/8</td>
</tr>
<tr>
<td>S1</td>
<td>L5</td>
<td>1</td>
<td>15/8</td>
<td>30/8</td>
<td>15/8</td>
</tr>
<tr>
<td>S2</td>
<td>L0</td>
<td>1</td>
<td>77/9</td>
<td>20/8</td>
<td>6/8</td>
</tr>
<tr>
<td>S2</td>
<td>L1</td>
<td>1</td>
<td>68/9</td>
<td>22/8</td>
<td>4/8</td>
</tr>
<tr>
<td>S2</td>
<td>L2</td>
<td>1</td>
<td>57/9</td>
<td>24/8</td>
<td>2/8</td>
</tr>
<tr>
<td>S2</td>
<td>L3</td>
<td>1</td>
<td>48/9</td>
<td>26/8</td>
<td>0/8</td>
</tr>
<tr>
<td>S2</td>
<td>L4</td>
<td>1</td>
<td>39/9</td>
<td>28/8</td>
<td>2/8</td>
</tr>
<tr>
<td>S3</td>
<td>L0</td>
<td>1</td>
<td>63/8</td>
<td>21/8</td>
<td>5/8</td>
</tr>
<tr>
<td>S3</td>
<td>L1</td>
<td>1</td>
<td>76/8</td>
<td>23/8</td>
<td>7/8</td>
</tr>
<tr>
<td>S3</td>
<td>L2</td>
<td>1</td>
<td>84/8</td>
<td>25/8</td>
<td>9/8</td>
</tr>
<tr>
<td>S3</td>
<td>L3</td>
<td>1</td>
<td>93/8</td>
<td>27/8</td>
<td>11/8</td>
</tr>
<tr>
<td>S3</td>
<td>L4</td>
<td>1</td>
<td>10/8</td>
<td>29/8</td>
<td>13/8</td>
</tr>
<tr>
<td>S3</td>
<td>L5</td>
<td>1</td>
<td>15/8</td>
<td>32/8</td>
<td>15/8</td>
</tr>
</tbody>
</table>

در درون ستون اعداد درای حداکثر یک حرف مشترک در سطح احتمال 5% تفاوتی با یکدیگر ندارند.
جدول ۷. اثر تیمار و زمان نگهداری بر pH خاک

| تیمار | زمان انکسپسون | خاک | آباد | گلشهر | مورچه خوریت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L₄S₁</td>
<td>L₄S₂</td>
<td>S₁</td>
<td>L₄pH₂</td>
<td>L₄pH₃</td>
<td>L₄</td>
</tr>
<tr>
<td>7/56</td>
<td>7/58</td>
<td>7/60</td>
<td>7/60</td>
<td>7/70</td>
<td>7/76</td>
</tr>
<tr>
<td>7/61</td>
<td>7/61</td>
<td>7/55</td>
<td>7/67</td>
<td>7/83</td>
<td>7/88</td>
</tr>
<tr>
<td>7/65</td>
<td>7/65</td>
<td>7/53</td>
<td>7/72</td>
<td>7/95</td>
<td>7/95</td>
</tr>
<tr>
<td>7/65</td>
<td>7/55</td>
<td>7/67</td>
<td>7/72</td>
<td>7/95</td>
<td>7/95</td>
</tr>
<tr>
<td>7/61</td>
<td>7/65</td>
<td>7/53</td>
<td>7/72</td>
<td>7/95</td>
<td>7/95</td>
</tr>
<tr>
<td>7/68</td>
<td>7/63</td>
<td>7/70</td>
<td>7/80</td>
<td>7/98</td>
<td>7/88</td>
</tr>
<tr>
<td>7/66</td>
<td>7/65</td>
<td>7/55</td>
<td>7/72</td>
<td>7/95</td>
<td>7/95</td>
</tr>
<tr>
<td>7/65</td>
<td>7/65</td>
<td>7/53</td>
<td>7/72</td>
<td>7/95</td>
<td>7/95</td>
</tr>
<tr>
<td>7/66</td>
<td>7/65</td>
<td>7/53</td>
<td>7/72</td>
<td>7/95</td>
<td>7/95</td>
</tr>
<tr>
<td>7/65</td>
<td>7/65</td>
<td>7/53</td>
<td>7/72</td>
<td>7/95</td>
<td>7/95</td>
</tr>
</tbody>
</table>

در هر ستون اعلام دارای حروف مشترک در سطح احتمال ۵٪ تفاوتی دارند.
جدول 8 مقایسه اثر تیمارها بر مقدار فسفر، پتاسیم و روی (mg/kg) شاخ‌های (آزومون دانکن)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>روی</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>0</sub></td>
<td>11/1<sup>b</sup></td>
<td>14/0<sup>ab</sup></td>
<td>11/1<sup>b</sup></td>
</tr>
<tr>
<td>L<sub>4</sub></td>
<td>12/7<sup>a</sup></td>
<td>14/3<sup>bc</sup></td>
<td>11/1<sup>b</sup></td>
</tr>
<tr>
<td>L<sub>4</sub></td>
<td>12/7<sup>a</sup></td>
<td>14/3<sup>bc</sup></td>
<td>11/1<sup>b</sup></td>
</tr>
<tr>
<td>L<sub>4</sub>H<sub>2</sub></td>
<td>12/7<sup>a</sup></td>
<td>14/3<sup>bc</sup></td>
<td>11/1<sup>b</sup></td>
</tr>
<tr>
<td>L<sub>4</sub>H<sub>4</sub></td>
<td>12/7<sup>a</sup></td>
<td>14/3<sup>bc</sup></td>
<td>11/1<sup>b</sup></td>
</tr>
<tr>
<td>S<sub>1</sub></td>
<td>14/3<sup>bc</sup></td>
<td>15/3<sup>bc</sup></td>
<td>12/6<sup>a</sup></td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>12/7<sup>a</sup></td>
<td>14/3<sup>bc</sup></td>
<td>11/1<sup>b</sup></td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>T</sub></td>
<td>12/7<sup>a</sup></td>
<td>14/3<sup>bc</sup></td>
<td>11/1<sup>b</sup></td>
</tr>
</tbody>
</table>

در هر ستون عدد دوازده حرف مشترک در سطح احتمال 5% تفاوتی با یکدیگر ندارند.
تپیه گیری

کاربرد لجن کنترلر باعث افزایش مقدار اسید قابل جذب خاکها و مقدار افزایش عموماً مناسب با مقدار لجن مصرفی‌بود. استفاده از لجن کنترلر همراه با گروه عنصری و اسید‌سولفوریک قابلیت جذب آن و مگنی را در خاک‌ها در مقایسه با تیمارهای دیگر به‌نها افزایش داد که اسید‌سولفوریک از این نظر مؤثرتر از گروه عنصری بود. استفاده از لجن کنترلر به‌نها و با همراه با گروه عنصری و اسید‌سولفوریک افزایش مخصوصی را در قابلیت جذب فسفر خاک‌ها باعث شد. کاربرد مقدار زیاد لجن کنترلر باعث افزایش جرئی در pH خاک‌ها شدند. در حالی‌که اسید‌سولفوریک و گروه عنصری کاهش pH خاک‌ها را به همراه داشتند. با گذشت زمان در آزمایش انکوباسیون، به روند توزیع در مقدار اسید و مگنیز قابل استخراج خاک‌ها در همه تیمارها دیده شد. شدت کاهش در تیمارهای حاوی گروه عنصری کنترلر بود. کاربرد لجن کنترلر همراه با گروه عنصری و اسید‌سولفوریک، همایش کلیت‌کورنی خاک‌ها را افزایش داد ولی اثر اسید‌سولفوریک در این ارتباط مشاهده نبود. بعدها منظور تأثیر و کاربردی شدند نتایج این پژوهش به‌جام ایجادی گلخانه‌ای و زمینه‌ای با استفاده از گیاهان حساس به استرس آن و کاربرد لجن کنترلر به‌عنوان گروه آهن پیشنهاد می‌شد.

بر خلاف تیمارهای اسید‌سولفوریک در طول زمان نگهداری انفال خاک دیده شده که نشان‌دهنده اثر pH دراز مدت‌تر گروگرد بر کاهش pH خاک است. کاهش pH خاک‌ها ممکن در اثر انفال گروگرد عنصری توسط محققان زیادی تأیید شده است (۵ و ۶). تیمارهای H۵۰ و H۱۴۰ آثار Ls۰۱، Ls۰۲، Ls۰۳ و Ls۰۴ مشابه بر کاهش pH خاک داشته‌اند احتمالاً عوامل این تیمارهای اضافه‌ای شده در شرایط این خاک خال و نبوده‌اند. مقدار مثابین زیاد لجن کنترلر به‌نها باعث افزایش جزئی در pH خاک شده که به دلیل بالا بودن pH لجن به آب بی‌رتبه (۱۲۲۸–۰۳ میلی‌میویلی) Ls۰۱ در خاک‌های مورد آزمایش نشا تیمارهای حاوی اسید‌سولفوریک و گروه عنصری باعث افزایش معنی‌دار هدایت الکتریکی بیشتر شده بوده و در نهایت از طریق بهبود خاک‌ها و بهبود هدایت الکتریکی خاک افزایش می‌یابد.

تغییرات فسفر، باقی‌مانده شویی استخراج

نتایج تجزیه واریانس داده‌ها (جدول ۲) از تیمارها بر AB-DTPA و روش قابل استخراج با AB-DTPA فسفر و روی قابل استخراج با AB-DTPA مورد آزمایش درسطح احتساب 1% معنی‌دار نشان داد درحالی که تیماری استخراج حتی در سطح 5% معنی‌دار نبوده است. کاربرد لجن کنترلر به‌نها با وجود افزایش جرئی در pH خاک موجب افزایش pH خاک موجب افزایش pH خاک موجب تیمارهای اسید‌سولفوریک AB-DTPA با تیمارهای مقداری معنی‌دار به شاهد شده است (جدول ۸). درخاک‌های مورد ارزیابی کاربرد تیمارها تأثیر معنی‌داری در پیتا سبب قابل استخراج با AB-DTPA نشان داده‌اند (جدول ۸). روی قابل استخراج AB-DTPA با تیمارهای اسید‌سولفوریک AB-DTPA می‌باشد.
منابع مورد استفاده

1. سالاردویی، ع. ا. 1371. حاصل‌خیزی خاک. جاب جهاد، انتشارات دانشگاه تهران.
2. سالاردویی، ع. ا. و. م. مجتهدی، ا. 1377. اصول تغذیه گیاه. چاپ اول، مرکز نشر دانشگاهی، تهران.
3. فروهر، م. 1371. بررسی امکان استفاده از پودر اکسید آهن ضایعاتی حاصل از فرآیند اسیدشوي فولاد به عنوان کود آهن. دانشگاه کشاورزی، پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه صنعتی اصفهان.
4. کلیسی، م. 1372. کلر اکسید در گیاهان و راه‌های مبارزه با آن. نشریه شماره 18، سازمان پارک‌ها و فضای سبز اصفهان.