کاربرد لجن کنترلور اسیدی شده (ضایعات کارخانه فولاد) به عنوان کود آهن در خاک‌های آهکی

علی عباسی‌پور، محمدرضا کلیسا و حسین شریعتمداری

چکیده

ابتکار استفاده از لجن کنترلور، یک محصول فرعی صنعت فولاد، به عنوان کود آهن بررسی شده. حدود ۱۲۰ درصد وزن این ماده را اکسیده‌ای در و سه طرفی‌شیت آلومینیوم را به‌طور عادی عناصری مانند آلومینیوم، کلسیم، سیلیس، مگنز، پاسپور و هم‌اکنون شکل داده است. این پتروشیمی به صورت قبلاً از آزمایش‌های انواعی در سه خاک آهکی در میدانهای ۱۰۰۰ گرم در روش اندازه‌گیری مزرعه و دمای اتاق به مدت دو ماه انجام شد. این‌های زمانی با تعداد مختلف لجن کنترلور (۱۰۰ درصد)، لجن همراه با گوگرد عنصری و تریاپیلسوس و لجن اسیدی شده بودند. نمونه‌برداری از تیمارها در زمان‌های ۲۰۰۰ و به سبب اثر آزمایش، صورت گرفت.

نتیجه‌گیری‌ها نشان داد که کاربرد لجن کنترلور باعث افزایش متغیرات در خاک شد و به عنوان جایگزین جذب آهن خاک در محل‌هایهای داد. زمان‌سازی به‌طور عملی مانند صورت با تعداد لجن مصرفی بود و بهترین روش آن که متأسفانه از لجن کنترلور باعث دفع افزایش شده چشم‌گیری در خاک شد و لی در میان مقدار جذب آهن عنصری پاکت (۱۴) در خاک شد و میزان تولید تکمیل خاک چشمانه را به‌طور نقشی با تیمارهای لجن به‌طور تمامی افزایش داد. معمولاً استفاده از لجن کنترلور باعث دفع عنصری با گوگرد به محدوده، زمان کاهش یافته و همچنین استفاده از لجن کنترلور باعث تهیه سرویس‌های مناسب است. {

واژه‌های کلیدی: کلرور آهن، لجن کنترلور فولاد، کود آهن

مقدمه

عازرفه کلرور آهن عمده‌تر در خاک‌های آهکی و قلیایی رایج است که بین ۴۵ تا ۲۵ درصد زمین‌های کشاورزی در سطح جهان آهکی هستند(۱). در ایران نیز این عازرفه در کلیه مناطق میوه خیز هموگون، خراسان، اصفهان، کرج و آذربایجان

 وجود دارد (۱). مؤثرترین روش برای مرفوع کردن کلرور آهن، استفاده از کلاته‌های مصنوعی آهکی است و لی به دلیل کراتی عبور آن مصرفی در محل‌های خاک از نظر مصالحی خاص استفاده می‌شود(۸). بنابراین استفاده از ترکیبات جایگزین که بتواند به طور مؤثر کلرور آهن را معلق خواهد نمود ضروری است. تاکنون بررسی‌های

1. به ترتیب دانشجو دکتری، استاد و دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
یزیدی در زمینه استفاده از محصولات جنی صنایع به عنوان کود آهن در کشاورزی انجام فرآینده است. از جمله این ضایعات می‌توان به لحاظ کیفیت صنایع فولاد اشاره کرد. لحاظ کیفیت صنایع فولاد در کارارگاری‌های تولید فولاد در مرحله اکسیسیون چند دما تشکیل می‌شود. در این مرحله هنگامی که آلیاژ به دو بخش کوره فولاد (کوپر) تجزیه می‌شود و غیرا از داخل کوره به پیرو انشار می‌یابد، این دو رفتار به تأسیسات و دستگاه‌ها آسیب می‌رساند. بنابراین تصفیه آپیتر دریاچه شده و پس از خشک کردن به صورت پودر در این پایه تهیه می‌شود. با این تحلیل‌های نتایج تولید می‌گردد (12). تولید صنایع سبیار زیاد این ماده باعث رشد مشکلات ایجاد شده و همچنین به لحاظ زیست محیطی ممکن است خطراتی را به مهاره‌های باشند. ترکیب این ماده حاکی از وجود تعداد زیادی از عناصر پر مصرف (کلسیم، مکزیم و فسفر) و درصد (آهن و منگنز) در غلظت بالاست، پدیده‌ی رویان (سرخ ویژه زیاد) و وجود مقدار نسبتاً زیادی آهن به خصوص آهن دو طرفی اکسید کاربرد آن را به عنوان کود آهن تقویت می‌کنند.

استرولین و برگر (11) از فروسل حاصل از صنایع فولاد به عنوان کود آهن و ماده اصلاحی استفاده نمودند. این ماده که مخلوطی از اسیدسولفیریک و سولفات‌های آهن اسید، و ترکیب افزایشی عامل‌های زیست و بهترین در استفاده به کوره کنونی به عنوان کود آهن اسیدسولفیریک است. یکی از این آهن مقدار بازی از پر ذخیره گیاه به داخل است. اگرچه، این ماده باعث خشک کردن کوره و تغییر ضایعات صنایعات فولاد خواهد شد. از عناصر این ضایعات ضرر در آن ضایعات منع درآمده اضافی برای کارخانه فولاد نیز خواهد بود.

مواد و روش‌ها

لحن کورن‌ترور علاوه بر آهن، حاوی مقادیر قابل توجهی کلسیم، مینرال‌های آبی، پتاسیم، نیترات، ریز سیس و عناصر دیگر می‌باشد (جدول ۱) که مقادیر آنها بستگی به نوع سنگ آهن و روش تولید فولاد، تعیین است (۱۲). این پروتئین به دو صورت پودری و دانه‌ای همراه با استرولین و برگر (۱۱) از فروسل حاصل از صنایع فولاد به عنوان کود آهن و ماده اصلاحی استفاده نمودند. این ماده که مخلوطی از اسیدسولفیریک و سولفات‌های آهن اسید، و ترکیب افزایشی عامل‌های زیست و بهترین در استفاده به کوره کنونی به عنوان کود آهن اسیدسولفیریک است. یکی از این آهن مقدار بازی از پر ذخیره گیاه به داخل است. اگرچه، این ماده باعث خشک کردن کوره و تغییر ضایعات صنایعات فولاد خواهد شد. از عناصر این ضایعات ضرر در آن ضایعات منع درآمده اضافی برای کارخانه فولاد نیز خواهد بود.

مواد و روش‌ها

لحن کورن‌ترور علاوه بر آهن، حاوی مقادیر قابل توجهی کلسیم، مینرال‌های آبی، پتاسیم، نیترات، ریز سیس و عناصر دیگر می‌باشد (جدول ۱) که مقادیر آنها بستگی به نوع سنگ آهن و روش تولید فولاد، تعیین است (۱۲). این پروتئین به دو صورت پودری و دانه‌ای همراه با استرولین و برگر (۱۱) از فروسل حاصل از صنایع فولاد به عنوان کود آهن و ماده اصلاحی استفاده نمودند. این ماده که مخلوطی از اسیدسولفیریک و سولفات‌های آهن اسید، و ترکیب افزایشی عامل‌های زیست و بهترین در استفاده به کوره کنونی به عنوان کود آهن اسیدسولفیریک است. یکی از این آهن مقدار بازی از پر ذخیره گیاه به داخل است. اگرچه، این ماده باعث خشک کردن کوره و تغییر ضایعات صنایعات فولاد خواهد شد. از عناصر این ضایعات ضرر در آن ضایعات منع درآمده اضافی برای کارخانه فولاد نیز خواهد بود.
کاربرد لجن کنترل‌راز، قابل استخراج خاک

نتایج تجزیه و ارایاس داده‌ها (جدول 3) اثر متقابل تیمار در زمان نگهداری را برآورده کرد. آهن قابل استخراج با AB-DTPA با کاهش 0.05 درصد معنادار نشان داده که در شرایط بررسی شده آهن قابل استخراج با AB-DTPA در خاکهای آزمایش‌گیری و نمودار آزمایش‌های گفتگویی با pH از 4.5 تا 7.5 با دسته‌گاه‌های سنتی متراً المان انجام شد.

جدول 1. نتایج تجزیه شیمیایی لجن کنترل‌راز

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>24/30</td>
</tr>
<tr>
<td>Fe2O3</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>19/24</td>
</tr>
<tr>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>V2O5</td>
<td>6/12</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1/30</td>
</tr>
<tr>
<td>SiO2</td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>2/24</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>0/10</td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
</tr>
<tr>
<td>L.O.I*</td>
<td>0/17</td>
</tr>
<tr>
<td>P2O5</td>
<td></td>
</tr>
</tbody>
</table>

Loss on ignition : *

جدول 2. برخی خصوصیات فیزیکی و شیمیایی خاک‌های مورد مطالعه

| متغیر | منویه برداری | مقدار
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>انرژی اشعه</td>
<td>لیم</td>
<td>6/4</td>
</tr>
<tr>
<td>افزایش</td>
<td>10/0</td>
<td>6/5</td>
</tr>
<tr>
<td>pH</td>
<td>10/0</td>
<td>6/7</td>
</tr>
<tr>
<td>EC</td>
<td>1/66</td>
<td>6/8</td>
</tr>
<tr>
<td>pH</td>
<td>0/46</td>
<td>6/9</td>
</tr>
<tr>
<td>pH</td>
<td>0/26</td>
<td>6/3</td>
</tr>
<tr>
<td>pH</td>
<td>0/43</td>
<td>6/4</td>
</tr>
<tr>
<td>pH</td>
<td>0/32</td>
<td>6/2</td>
</tr>
<tr>
<td>pH</td>
<td>0/21</td>
<td>6/1</td>
</tr>
<tr>
<td>pH</td>
<td>0/10</td>
<td>6/0</td>
</tr>
</tbody>
</table>

نتایج تجزیه و ارایاس داده‌ها (جدول 3) اثر متقابل تیمار در زمان نگهداری را برآورده کرد. آهن قابل استخراج با AB-DTPA با کاهش 0.05 درصد معنادار نشان داده که در شرایط بررسی شده آهن قابل استخراج با AB-DTPA در خاکهای آزمایش‌گیری و نمودار آزمایش‌های گفتگویی با pH از 4.5 تا 7.5 با دسته‌گاه‌های سنتی متراً المان انجام شد.
جدول 3: تجزیه ورایانس مربوط به pH و مقدار قابل عصاره‌گیری آمی ن و مگنیز خاک‌ها

<table>
<thead>
<tr>
<th>میانگین مربوط به pH</th>
<th>درجه دچار تغییر</th>
<th>مقدار قابل عصاره‌گیری آمی ن و مگنیز خاک‌ها</th>
<th>میانگین مربوط به pH</th>
<th>درجه دچار تغییر</th>
<th>مقدار قابل عصاره‌گیری آمی ن و مگنیز خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک گلشهر</td>
<td>آمی ن</td>
<td>مگنیز</td>
<td>خاک گلشهر</td>
<td>آمی ن</td>
<td>مگنیز</td>
</tr>
<tr>
<td>pH</td>
<td>منگر</td>
<td>منگر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/17**</td>
<td>0/08***</td>
<td>9/50**</td>
<td>15/55***</td>
<td>0/48**</td>
<td>16/57***</td>
</tr>
<tr>
<td>0/00***</td>
<td>0/03**</td>
<td>3/22***</td>
<td>12/33***</td>
<td>0/69**</td>
<td>19/74**</td>
</tr>
<tr>
<td>0/00**</td>
<td>0/07***</td>
<td>2/74**</td>
<td>17/84***</td>
<td>0/00**</td>
<td>2/84**</td>
</tr>
<tr>
<td>0/00***</td>
<td>0/03**</td>
<td>3/30***</td>
<td>7/36***</td>
<td>0/00**</td>
<td>2/99**</td>
</tr>
<tr>
<td>0/0***</td>
<td>0/00**</td>
<td>1/11</td>
<td>1/30</td>
<td>0/00**</td>
<td>1/50</td>
</tr>
</tbody>
</table>

** در سطح احتمال 0.1 معنی دار است.
*** در سطح احتمال 0.05 معنی دار است.

جدول 4: تجزیه ورایانس مربوط به EC و مقدار قابل عصاره‌گیری فسفر، پتاسیم و روی خاک‌ها

<table>
<thead>
<tr>
<th>میانگین مربوط به EC</th>
<th>درجه دچار تغییر</th>
<th>مقدار قابل عصاره‌گیری فسفر، پتاسیم و روی خاک‌ها</th>
<th>میانگین مربوط به EC</th>
<th>درجه دچار تغییر</th>
<th>مقدار قابل عصاره‌گیری فسفر، پتاسیم و روی خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک گلشهر</td>
<td>فسفر</td>
<td>پتاسیم</td>
<td>روی</td>
<td>خاک گلشهر</td>
<td>فسفر</td>
</tr>
<tr>
<td>EC</td>
<td>منگر</td>
<td>منگر</td>
<td>منگر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/50</td>
<td>0/7</td>
<td>1/56</td>
<td>1/50</td>
<td>0/7</td>
<td>1/56</td>
</tr>
<tr>
<td>0/58</td>
<td>0/7</td>
<td>1/56</td>
<td>0/58</td>
<td>0/7</td>
<td>1/56</td>
</tr>
<tr>
<td>0/49</td>
<td>0/7</td>
<td>1/56</td>
<td>0/49</td>
<td>0/7</td>
<td>1/56</td>
</tr>
<tr>
<td>0/49</td>
<td>0/7</td>
<td>1/56</td>
<td>0/49</td>
<td>0/7</td>
<td>1/56</td>
</tr>
<tr>
<td>0/2</td>
<td>0/7</td>
<td>1/56</td>
<td>0/2</td>
<td>0/7</td>
<td>1/56</td>
</tr>
</tbody>
</table>

** در سطح احتمال 0.1 معنی دار است.
*** در سطح احتمال 0.05 معنی دار است.
<table>
<thead>
<tr>
<th>شاخص</th>
<th>زمان تمیزرسیون</th>
<th>تیمار</th>
<th>L₀</th>
<th>L₂</th>
<th>L₄</th>
<th>L₆</th>
<th>L₈</th>
<th>L₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L₀S₁</td>
<td>L₂S₁</td>
<td>S₁</td>
<td>L₀P₄</td>
<td>L₂P₄</td>
<td>S₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>588</td>
<td>49.1</td>
<td>28.5</td>
<td>17.1</td>
<td>16.1</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51.5</td>
<td>32.6</td>
<td>20.5</td>
<td>13.8</td>
<td>15.8</td>
<td>21.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44.8</td>
<td>39.9</td>
<td>23.8</td>
<td>13.8</td>
<td>15.8</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.3</td>
<td>37.7</td>
<td>24.8</td>
<td>13.6</td>
<td>16.4</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50/5</td>
<td>42/1</td>
<td>25/4</td>
<td>13/7</td>
<td>16/7</td>
<td>18/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33/6</td>
<td>33/6</td>
<td>15/1</td>
<td>9.5</td>
<td>13/7</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67/1</td>
<td>28/0</td>
<td>9/6</td>
<td>5/7</td>
<td>11/7</td>
<td>33/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>57/1</td>
<td>35/0</td>
<td>17/7</td>
<td>8/4</td>
<td>12/5</td>
<td>24/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>57/1</td>
<td>35/0</td>
<td>17/7</td>
<td>8/4</td>
<td>12/5</td>
<td>24/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65/0</td>
<td>43/0</td>
<td>18/7</td>
<td>8/4</td>
<td>12/5</td>
<td>24/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65/0</td>
<td>43/0</td>
<td>18/7</td>
<td>8/4</td>
<td>12/5</td>
<td>24/8</td>
</tr>
</tbody>
</table>

در هر سرویس اعداد دارای جهادی یک خرط مشترک در سطح احتمال ۰/۵ تفاوتی با یکدیگر ندارند.
تغییرات منگنز قابل استخراج خاک

ارث متقابلی تیمار در زمین‌های نیک بای که منگنز قابل استخراج با pH در هرم‌های خاک در سطح آب می‌اندازند AB-DTPA در شرایط استخراج (جدول 3) تیمارهای خاکی ایستاده‌سنجی‌های بهترین نتیجه را در آزمایش منگنز قابل استخراج در هر خاک‌ها داشته است (جدول 4). ولی در این تیمارها با گذشتن دو ماه از شروع آزمایش، کاهش معنی‌داری در منگنز قابل استخراج توسط pH و روش‌های اسیدسنجی در می‌شود. منگنز IV می‌تواند به صورت کاتیونی در محیط pH لیپ سی‌آسیا از درون اکسیداتور باشد. هنگامی که منگنز در منگنز منگنیک Q4 منگنز قابل استخراج خاک از تیمار استخراج از خاک بدون کاهش استخراج. تاریکی تیمارهای خاکی کوکردن عصری (Fe(III) S(OH)₄) لا تیمارهای معنی‌داری در منگنز قابل استخراج نشان می‌دهد. در طول نگهداری ماه‌های آزمایش، افزایش معنی‌داری در مقدار منگنز قابل استخراج از خاک در تیمارهای خاکی کوکردن عصری دیده می‌شود، ولی احتمالاً منگنز رودخانه اکسایش گورگرده در سه واکنش اکسایش بهبود افزایش می‌یابد. افزایش باعث افزایش در تیمارهای خاکی کوکردن عصری می‌کند. در این آزمایش، علل افزایش منگنز در خاک از تیمارهای خاکی کوکردن عصری می‌تواند با منگنز موجود در ترکیب لجن (Fe(III) S(OH)₄) داشته باشد.

table

<table>
<thead>
<tr>
<th>pH</th>
<th>تیمارهای خاکی کوکردن عصری</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>تیمارهای خاکی کوکردن عصری</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

طول زمان کنترل شده است. به نظر می‌رسد که دلیل آن افزایش pH و روش‌های اسیدسنجی ناحیه‌های اولیه و (LpH₁H₂) لیپ انسیلوس (LpH₁H₂) همانندی تیمارهای خاکی کوکردن عصری است. به نظر می‌رسد که دلیل آن افزایش pH و روش‌های اسیدسنجی ناحیه‌های اولیه و (LpH₁H₂) لیپ انسیلوس (LpH₁H₂) همانندی تیمارهای خاکی کوکردن عصری است.
جدول ۴. اثر تیمار و زمان نگهداری بر مقدار مکنز (mg/kg) فنیل عصاره گیاهی با AB-DTPA

تیمار	عصاره	زمان نگهداری	انکورسپوندنت
			بهزیستی
L_с T	L_с	S_1	L_с pH_1
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>62/6</td>
<td>49/8</td>
<td>51/9</td>
<td>26/7</td>
<td>28/5</td>
<td>14/3</td>
<td>24/9</td>
<td>35/9</td>
<td>16/6</td>
<td>16/6</td>
</tr>
<tr>
<td>68/9</td>
<td>75/1</td>
<td>85/1</td>
<td>21/7</td>
<td>24/9</td>
<td>15/7</td>
<td>24/9</td>
<td>18/9</td>
<td>15/9</td>
<td>15/9</td>
</tr>
<tr>
<td>72/6</td>
<td>36/7</td>
<td>36/7</td>
<td>19/3</td>
<td>19/3</td>
<td>16/3</td>
<td>16/3</td>
<td>16/3</td>
<td>16/3</td>
<td>16/3</td>
</tr>
<tr>
<td>78/6</td>
<td>41/3</td>
<td>41/3</td>
<td>10/3</td>
<td>26/7</td>
<td>16/9</td>
<td>16/9</td>
<td>16/9</td>
<td>16/9</td>
<td>16/9</td>
</tr>
<tr>
<td>79/6</td>
<td>77/4</td>
<td>77/4</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
<td>27/6</td>
</tr>
</tbody>
</table>

در هر ستون اعداد درای حرف مشترک در سلسله احتمال ۵/۰% تفاوت‌زا با یکدیگر ندارند.
جدول ۷. تیمار و زمان تغذیه بر pH خاک

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زمان</th>
<th>انکوباسیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۸۶</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۸۲</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۸۰</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۷۸</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۷۶</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۷۴</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۷۲</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۷۰</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۶۸</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۶۶</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۶۴</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۶۲</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۶۰</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۵۸</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۵۶</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۵۴</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۵۲</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۵۰</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۴۸</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۴۶</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۴۴</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۴۲</td>
</tr>
<tr>
<td>L<sub>4</sub>S<sub>1</sub></td>
<td>۷۸۸</td>
<td>۷۴۰</td>
</tr>
</tbody>
</table>

در هر ستون اعداد دارای چند رقم حرف مشترک در سطح احتمال ۵٪ تفاوتی یکدیگر ندارند.
جدول 8 مقایسه تیمارها بر مقدار فسفر، پتاسیم و روی (mg/kg) قبل عصاره گیاهی با AB-DTPA

<table>
<thead>
<tr>
<th>تیمار</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>روی</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون اعداد دلواپیش حروف مشترک در سطح احتمال 5% نتایجی با یکدیگر ندارند.
تیجیه گیری
کاربرده لجی کنترل باعث افزایش مقدار آم اسپل کاری جذب خاکها شد و مقدار افزایش عموماً مناسب با مقدار لج مصرفی بود. استفاده از لج کنترل خواص همراه با گرند عنصری و اسید سولفوریک قابلیت جذب آم و منگنز را در خاکها در مقایسه با تیمارهای داده خاک نه تهیه کننده افزایش داد که اسید سولفوریک از این نظر مؤثرتر از گرند عنصری بود. استفاده از لج کنترل به تنهایی و یا همراه با گرند عنصری اسید سولفوریک افزایش یافته را در قابلیت جذب سفر خاکها باعث شد. کاربرد مقدار زیاد لج کنترل باعث افزایش جریان در حالی که اسید سولفوریک و گرند عنصری کاهش خاکها را به همراه داشتند. با گذشت زمان در آزمایش اکوپاسیون، به روند توزیع در مقدار آم و منگنز قابل استخراج خاکها در همه تیمارها دیده شد. شدت کاهش در تیمارهای حایی گرند عنصری کنترل بود. کاربرد لج کنترل همراه با گرند عنصری و اسید سولفوریک هماهنگ کرد. افزایش داد ولی اثر سولفوریک در این ارتباط مشاهده نشد. به منظور تایید و کاربردی شدن نتایج این پژوهش، انجام بررسی‌های گلخانه‌ای و مزرعه‌ای با استفاده از گیاهان حساس به استرس آم و کاربرد لج کنترل خاک باعث کاهش آم شیب‌هاد می‌شود.

بر خلاف تیمارهای اسید سولفوریک در طول زمان نگهداری افزایش معنی‌داری در pH خاک دیده نشد که نشان‌دهنده اثر pH دراز مدت گردد بر کاهش pH خاک است. کاهش خاک‌های آهکی در اثر افزودن گرند عنصری توسط محققان زیادی تایید شده است (5 و 6). تیمارهای LsSi1S1Si1T و LsSi1S1Si1T آثار مشابهی بر کاهش pH خاک داشتند احتمالاً گونه‌های نیوکیسیوس استفاده شده در شرایط این خاک نفع نبودند. باعث افزایش گردد در pH خاک شده که دلیل این بودن لج به آب برای ۱/۲۵ـ۷۳ می‌باشد.

در خاک‌های مورد آزمایش نه تیمارهای حاوی اسید سولفوریک و گرند عنصری باعث افزایش معنی‌دار هدایت الکتریکی نبست به شاهد گرددان (جدول ۸). بهطور کلی در تیمارهایی که باعث آزاد شدن H+ شده (اسید سولفوریک و گرند عنصری) حلالیت اصلاح و منکه‌های موجود در خاک و افزایش بالا به‌دن طبقه‌های الکتریکی خاک افزایش می‌یابد.

تغییرات فسفر، مس و قربانی استخراج
نتایج تجزیه و اریب‌ساده‌ها (جدول ۴) از نتایج تیمارها بر AB-DTPA فسفر و روی قابل استخراج با AB-DTPA خاک مورد آزمایش در صرف احتمال ۱/۴ معنی‌دار نشان داد در حالی که باعث قابل استخراج حتی در سطح ۵/۴ معنی‌دار نشد. کاربرد لج کنترل به تنهایی با وجود افزایش جزئی در pH خاک موجب افزایش می‌شود. در حالی که تیمارهای در قابلیت استخراج فسفر نسبت به شاهد شده است (جدول ۸). در خاک‌های مورد آزمایش، کاربرد تیمارها تأثیر معنی‌داری در پتانسیم قابل استخراج با نداشت. البته (جدول ۸). روی قابل استخراج AB-DTPA با تیمارهای اسید سولفوریک AB-DTPA با تیمارهای اسید سولفوریک
متیعه مورد استفاده

1. سالاردویی. 1371. حاصل‌خیزی خاک. چاب‌چهارم، انتشارات دانشگاه تهران.
2. سالاردویی. 1377. اصول تغذیه کیان. چاب اول، مرکز نشر دانشگاهی، تهران.
3. فروهر، م. 1371. بررسی امکان استفاده از یودر اکسید آهن ضایعاتی حاصل از فرآیند اسیدسوزی فولاد به عنوان کود آهن، دانشگاه کشاورزی، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان.
4. کلباسی، م. 1372. کلر آهن در گیاهان و راه‌های مبارزه با آن. نشریه شماره 18، سازمان پارک‌ها و فضای سبز اصفهان.