مطالعه کاتیو های رسی خاک‌های گچی زمین ریخته‌ای مختلف در منطقه شرق اصفهان

حمیدرضا کرمزاده، احمد جلالیان و حسن خادمی

چکیده
کاتیو های رسی شاخص بررسی نشان می‌دهند، زیرا در بیشتری از خاک‌های تقلیل مهمی بازی می‌کنند. شناسایی کاتیو های رسی نسبت به [X-ray diffraction (XRD)] سورد بررسی قرار گرفته است زیرا، برای خاک‌ها و رسوب‌های رس‌اسپاس با استفاده از طریقه ایکس [Energy dispersive X-ray analyser (EDX)] نمایش می‌دهند.

نتایج تحقیق اینکه در همه نسبت‌های خاک، کاتیو پالیگورسکیتیک، میکا، کانمولینیت، کریت و کوارتز به نمودار ناچیز وارست. کاتیو های مخلوط ناپایدار و وجود دارند. اینکه در خاک‌های سنگ‌های قبیلی رودخانه شناسایی شده و در صورت خاک‌های مخلوط افزایش. در حالی که در خاک‌های رس‌اسپاسی رودخانه، با شکل قبیلی مشابه کاتیو پالیگورسکیتیک در خاک‌های مخلوط افزایش. در پایان، بررسی خاک‌های رس‌اسپاسی در منطقه محسوب کرده می‌باشد. به‌طور کلی، اینکه در افزایش شکل‌گیری ابنا، کاتیو به طور محسوس ایجاد می‌شود. انتشار اسپاسیت با عملیات مقاومت با کادمیوم. به‌طور کلی، اینکه در افزایش شکل‌گیری ابنا، کاتیو به طور محسوس ایجاد می‌شود.

واژه‌های کلیدی: کاتیو های رسی، اردوی سولهای گچی، اشکال اراضی، پالیگورسکیتیک، اسپاسیت، خود تشکیل

مقدمه
هویات مورد نیاز برای شدان مطلوب گیاهان با فرآیند می‌کنند. همواره هوا دیده شدن کاتیو، اعمال غاری گیاهان را آزاد می‌کند (15). رس‌ها به‌خشن فعال متقابل خاک‌ها را تشکیل می‌دهند. اینها همایش فیزیکی گیاه را به‌هنه دارد و آب و...

1. استادیار مرغ و آب‌خورندی، دانشکده مهندسی منابع طبیعی، دانشگاه صنعتی اصفهان
2. به ترتیب استاد و دانشیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

73
می‌دهند که اغلب به صورت گلوتئیدی و پلورین می‌باشند.
کانی‌های رسی خاک‌های پهنازی دارای بودن سطح ورژه بالا و بار
منفی نمایندگان کندی‌های در جذب عناصر غذایی مورد نیاز
کیفیت دارند. شناسایی کیفی و کیفیت ترکیب ساختاری آنها
اطلاعات ارزشمندی از وضعیت جذب، تنیت و راهسازی
کانی‌ها در انتخاب می‌قرار می‌دهند (7).

در مدت معنی‌داری از کانی‌های رسی تشکیل شده که پاره‌ای از
آنها به طور مستقیم از مواد مادی به گرمی و برخی دیگر
در خاک وجود می‌شود که هدف شماری: تشکیل کانی از محلول
خاک (نحو تشکیل (Authigenic formation)) (8).
کانی‌های موجود در یک گونه جدید (پایژن) (9).

به نظر برای نوع کانی تشکیل شده تحت تأثیر سه
عملکردی، تشکیل و نوع مواد مادی الیافی می‌شود
(9). انسال و همکاران (10) معمولاً به غازه و تعداد
پوستی در سیستم خاک؛ فاز اول انحلال (Solubility product)
تشکیل‌های شیمیایی موجود، شرایط می‌تواند ممکن، می‌تواند
Eh-pH و سرعت

واژگانی را تشکیل کانی‌های خاک مؤثری دانست.

همیشه نهان‌سایی کانی‌های رسی در تکامل خاک به حدی
است که به اعتقاد برخی، نوع کانی‌های موجود در خاک پیانگ
مرحله‌های واقعی‌گرایی خاک می‌باشد (9). به طور کلی در نقطه که
مواد مادی در محلول خاک دریافت شده مرحله مشابهی به شکل
شرایط ذهنی در شرایط زمین مجدد باشد. به طوری که کانی‌های
فلزی نتواند آلیشون شود، اسکسنت‌ها تشکیل خواهد شد.
پاساژ، میکرو ریزدانه و اسکسنت‌ها پیشرفت در کانی‌های رده
بردی‌ست (اریدیسول) (11). دیده می‌شود (9) پالیگورسکیت
کانی رسی پایه (21) است که در خاک‌ها و رسوب‌های رسی
از منطقه خشک و نمای خشک کگوش و سپس دارد (10). این
کانی در محیط‌های دریایی (Marine environments) و
محیط‌های هیدروترمال و در محیط‌های دریایی قبا (Alkaline lacustrine)

سیلوپتی در رسوبات دریایی به‌عنوان کانی‌های آواره
به شمار نمی‌آید بلکه که تنها از محلول‌های
بومی به‌عنوان کانی‌های تشکیل می‌شود (10).

فیلتری مکان‌ها واقع در بین در رنگ‌های خاک‌های رنگی و
زاگرس گونال و سپس است که از رسوبات جوان‌تره است
(11) این فلاته در دوران مريطیک به عنوان بخشی از دریای
متحده قدیمی تمسس (Ancient Tethys seaway)
(12). در اوایل کیفیت از اقیانوس
حداکثر (21). به طوری که شکل گرفته اصلی فلاته از که
دوران سوم (ترشیاری)، به‌خصوص میوه این فلاته داده می‌شود.
با کم در ارتباط دریای میون در دارای آزاد و پیرامون
خطی چه می‌باشد دریای خاک، دریای خاک که شرکت کننده را از
عوامل سیل بوده که به فلاته کننده می‌باشد.
یا (21) این مناطق کم‌عمق با شرایط زیاد مناسبی‌ها از
نور شیمیایی برای تشکیل پالیگورسکیت و سیلوپتیس می‌باشد
است (12).

تاونو بررسی‌های نسبتاً زیادی از ارتباط با تعیین کانی‌های
رسی خاک‌های مناطق خشک ایران انجام شده است. برای مثال،
ابطح و همکاران (1) با بررسی خاک‌های پلیگرافی، شرکت به این
نتیجه رسیدند که با توجه به وجود کانی پالیگورسکیت در
نمونه سنگ مادی، بدون شک بکی از منابع وجود کانی‌های
بذایی در خاک‌های این منطقه ترواژ است. همچنین افزایش
مقادیر پالیگورسکیت از زمین کوهستانی به طرف دشت را
به تشکیل خاک‌پالیگورسکیت در این خاک‌ها نسبت دانست. خاک‌های
خاکی (3) با بررسی کانی‌های رسی خاک‌های رودزینی اصفهان
به این نتیجه رسید که نیروی خاک با شرایط منافوت
شوری، قابلیت و زیستگی، از نظر کیفی دارای کانی‌های
مشابهی بوده و از نظر کیفی فقط مقدار اسکسنت‌ها با ضعیف‌تر
شنید و وضعیت و مقدار افزایش نشان می‌دهد که این
مستطیلی نتواند احتمالاً دلیل بر خود تشکیل‌پذیری از این
کانی در این خاک‌ها باید.

اهمیت نهان‌سایی کانی‌های رسی در تکامل خاک به حدی
است که به اعتقاد برخی، نوع کانی‌های موجود در خاک پیانگ
مرحله‌های واقعی‌گرایی خاک می‌باشد (9). به طور کلی در نقطه که
مواد مادی در محلول خاک دریافت شده مرحله مشابهی به شکل
شرایط ذهنی در شرایط زمین مجدد باشد. به طوری که کانی‌های
فلزی نتواند آلیشون شود، اسکسنت‌ها تشکیل خواهد شد.
پاساژ، میکرو ریزدانه و اسکسنت‌ها پیشرفت در کانی‌های رده
بردی‌ست (اریدیسول) (11). دیده می‌شود (9) پالیگورسکیت
کانی رسی پایه (21) است که در خاک‌ها و رسوب‌های رسی
از منطقه خشک و نمای خشک کگوش و سپس دارد (10). این
کانی در محیط‌های دریایی (Marine environments) و
محیط‌های هیدروترمال و در محیط‌های دریایی قبا (Alkaline lacustrine)
کمی کانال‌ها و ریزشگاه‌های گچی مرتفع در منطقه شرق اصفهان و
بررسی چگونگی پیش‌بینی آنها و تغییرگرایی توزیع
کانال‌های ریزشگاهی در زمین‌ریخته‌های مختلف.

مواد و روش‌ها

خصوصیات منطقه و نمونه‌برداری

منطقه مورد بررسی در فلاته مرکزی ایران در حوزهٔ آبخیز
زاینده‌رود و در زیرشاخه‌های مرغاب واقع شده‌است. منطقه
با دب‌های خزر و در نزدیکی میانه‌کننده سالن‌های منطقه
درجه سه‌گانه و در نزدیکی حشرات تازگان و زمان‌بندی به
تردد 15/8 در هر سانتی‌گراد و میانگین بارندگی منطقه
حدود 1000 میلی‌متر می‌باشد.

به‌طور کلی، درون منطقه شرق اصفهان را به
عبارت ایکس‌سی‌کیو و دشت
گرفته، دشت‌های مرکزی و دشت‌های
زیستی ارتفاعی شامل کوه‌های زمین‌ریخته‌های
پایه‌زد و سطح قسمت‌های مرکزی حوضهٔ روی‌سنگی کشیده‌شده‌اند. این
رسته‌های ارتفاعی شامل سطح‌هایی با گذشته از محل
باتبیان کوه‌های مرکزی، شیب این
اسکلت‌سازی شیب (Knick)
به سمت اراسته می‌پردازد. این اراسته
کوه‌های شیب، بافت تاریخی و رودخانه‌های
می‌پردازد. در این بین، کوه‌های نسبتاً سطحی
بدون سنگ‌ریزی و بافت سنگین است که به‌طور عمده دشت کشت
محصولات آبی‌میانه و اراضی در بعضی قسمت‌ها تحت
تأثیر شوری آب زیرزمینی با املاح منطقه بوسیله روان آب
ناشی از بارندگی‌های بالا‌دری در قرار گرفته و به‌دنبال شور و
سدبندی شده‌اند. تراس‌های قدمی در واقع زاینده‌رود تحت
تأثیر سیل به‌کلی نمی‌باشد، اما در این موارد در
کوه‌های شیب به سطح سطح مرتفع‌تر قرار داشته است. این
تراس‌ها در المنطقه مورد بررسی شامل سطح‌های پهن و قبیلاً
سطح، بدون سنگ‌ریزی و بافت ریز میانه که عموماً تحت
تأثیر رسوبات بادی قرار دارد و در گذشته تحت تأثیر سطح
کمی کانال‌ها و ریزشگاه‌های گچی مرتفع در منطقه شرق اصفهان و
بررسی چگونگی پیش‌بینی آنها و تغییرگرایی توزیع
کانال‌های ریزشگاهی در زمین‌ریخته‌های مختلف.

75
شکل ۱ نمودار سه بعدی منطقه مورد مطالعه و موقعیت حفر پروفلی‌ها در مخروط افکت ناپکشی (A1 و A2) دشت دامنهای (PP و TRAS) قدیمی رودخانه‌های T1 و T2 و موقعیت محل نمونه‌برداری از سد‌های سازندگی K1، K2، K3 انتخاب از منبع (۱۲).

آب زیرزمینی بالا و شرایط غرفه‌ای بوده است.

خاک‌های مخروط افکت‌های بخصوص در تحت‌الارض، به شدت گچی هستند. (بیشتر از ۵۰ درصد در بعضی از افق‌ها). در تراس‌های قدیمی رودخانه‌ای، خاک‌های گچی در مکان‌هایی یافت می‌شود که آب زیرزمینی شور در نزدیک سطح خاک و یا مانند سطح‌های یاده ماهی از روسیه نیز باید. خاک‌های گچی در دشت‌های دامنه‌ای فقط در مکان‌های یافت می‌شوند که آب زیرزمینی شور در نزدیک سطح خاک باشد.

تعیین خصوصیات خاک‌ها

نمونه‌های خاک در سایه خشک و پس از کوبیدن از کل میلی‌متری عبور داده شد. اگر اشکاب از خاک‌های نیمه‌ویژه، نسبی اسیدی (pH) عصاره‌های خاک به‌وسیله الکترود شیشه‌ای اندازه‌گیری و عصاره‌های خاک به‌وسیله پمپ مکش‌تهیه شد. کربن آنی به روش آکسیداسیون (۱۶) و مقادیر آن متعلق به روش تیتراسیون برق‌گشته اسید کربنیک را به‌وسیله‌سیستم سدیم اداسه‌گیری شد.

برای تعیین مقادیر گچ خاک‌ها، نخست خاک‌ها آب‌خوری می‌شده و سپس یک گرم نمونه کامل آسیاب شده و در یک لیتر آب متغیر اضافه شده تا یک نسبت ۱۰۰۰:۱ خاک به آب تهیه شد. به منظور رسیدن به تعادل، مخلوط آب و خاک را به مدت ۲۴ ساعت با یک هم‌ویژه الکتریکی تکان داده و سپس آن را عصاره‌گیری و هدایت الکتریکی عصاره جمع‌آوری شده با هدایت سنج الکتریکی قرار گرفته، با توجه به خاک‌ها محلول محدود گچ در آب و استفاده از روابط هدایت الکتریکی محلول گچ در نمونه ارائه گردید. نتایج اندک خاک (بافت) به روش پیش‌بینی گردید (۱۱).

نمونه‌های جهت تجزیه‌های پراش‌اشته‌ایکس (X-ray diffraction analysis) کربنیت‌ها و نکس‌های محلول، مواد آن و اسیدهای آهن نمونه‌ها به ترتیب با استان سدیم ۱ مولار (pH=۵) آن ۲۰ درصد و سپس به کربنات دی‌نیترات نمونه‌ها به ترتیب با استان سدیم ۱ مولار آن ۲۰ درصد و سپس به کربنات دی‌نیترات دی‌نیترات
مطالعه کانی‌های رس شاخه‌های گچی، زین‌ریختی‌های مختلف در منطقه شرق اصفهان

درصد‌های مختلف کانی‌های رس شاخه‌های گچی، زین‌ریختی‌های مختلف در منطقه شرق اصفهان

dichromite citrate bicarbonate

حذف عوامل سیمان کننده، اجرای مختلف رس (زرد و درشت) و سیلت (زرد، متوسط و درشت) با دستگاه سانتریفژ و عملیات ثانویه ای مختل شن با روش الک مرتوبه

جدایی گردید (13).

به منظور تجزیه نیمه کانی کانی‌های رس و انواع مقاپس‌های دقیق‌ترین انواع دیپ‌باینگ و چک‌ها با یکدیگر، مقداری از عوامل سیمان رس را در درجه 15 درجه سانتی‌گراد به مدت 24 ساعت خشک نموده و سپس آن را سالیده نامید، یک‌نواخته به‌دست آید. سپس اندازه 40 میلی‌گرمی از رس دقیقاً توزین گردید (12).

آنالیزهای پراش اشعه ایکس

دو نمونه توزین شده از هر بخش رس را یکی با منیزیم و دیگری با یک پدیمک اشعه نموده و بک سیستم‌های تمام کاملاً یکنواخته به حجم‌های مختلف متکنیک تته و آن را به‌طور کاملاً بر روی یک تکنیک آمیزه‌ای ریخته و اجازه داده شد که در (Oriented) دامنه انتقال اشعه ایکس نمونه آرسیم گرفته شکل گردد. سپس نمونه‌های تیمار شده به طور جدیدانه مورد تجزیه با اشعه ایکس قرار گرفتند.

لامه‌ای اشعه ایکس به روی قرار گرفتن، این اشعه ایکس به روی این اتیل‌گلیکول به مدت یک شب مورد خشک کن در دمای 70 درجه سانتی‌گراد قرار گرفته و نمونه‌های اشعه ایکس با پنکسی به ترتیب در دمای 110 و 550 درجه سانتی‌گراد به مدت 2 ساعت تحت تیمار حرارت قرار گرفتند. سپس نمونه‌های تیمار شده به‌وسیله سطح‌گیری دیفراکتومتری اشعه ایکس گردید، مدل Shimadzu (Cu-Kα) با استفاده از (X-ray diffractometer XD-610, Shimadzu) پک تکنیک اندازه‌گیری (Monochromator) و تشخیص Cu-Kα تحت جریان مولکولی 40 میلی‌امپر و ولتاژی برابر 40 کیلوولت قرار گرفتند. هر بخش نیمه کاملاً از سطح زیر پک استفاده گردید. برای انجام این کار نمودن با نمونه‌ها ترتیب گذاری خوراکی باشد.
جدول 1. خصوصیات انتحاب شده بین نیم‌خاک از سه لدفم مختلف

<table>
<thead>
<tr>
<th>نیم‌خاک</th>
<th>عمق cm</th>
<th>رنگ زمینه</th>
<th>pH</th>
<th>EC (dS m^{-1})</th>
<th>OC</th>
<th>CaCO$_3$</th>
<th>Gypsum</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیم‌خاک 1 (Typic Calcigypsids)</td>
<td>0-16</td>
<td>7.5YR4/4</td>
<td>8/1</td>
<td>0.10</td>
<td>0.75</td>
<td>3/0</td>
<td>0.57</td>
<td>42</td>
<td>0.37</td>
<td>22</td>
</tr>
<tr>
<td>نیم‌خاک 2 (Typic Calcigenic Dystic Haploxerolls)</td>
<td>16-29</td>
<td>7.5YR4/6</td>
<td>6/2</td>
<td>0.20</td>
<td>0.75</td>
<td>3/0</td>
<td>0.46</td>
<td>54</td>
<td>0.48</td>
<td>26</td>
</tr>
<tr>
<td>نیم‌خاک 3 (Typic Calcigenic Dystic Haploxerolls)</td>
<td>29-42</td>
<td>7.5YR3/4</td>
<td>6/2</td>
<td>0.30</td>
<td>0.75</td>
<td>3/0</td>
<td>0.57</td>
<td>42</td>
<td>0.37</td>
<td>22</td>
</tr>
<tr>
<td>نیم‌خاک 4 (Typic Calcigenic Dystic Haploxerolls)</td>
<td>42-64</td>
<td>7.5YR4/4</td>
<td>6/2</td>
<td>0.40</td>
<td>0.75</td>
<td>3/0</td>
<td>0.46</td>
<td>54</td>
<td>0.48</td>
<td>26</td>
</tr>
<tr>
<td>نیم‌خاک 5 (Typic Calcigenic Dystic Haploxerolls)</td>
<td>64-100</td>
<td>7.5YR4/4</td>
<td>6/2</td>
<td>0.10</td>
<td>0.75</td>
<td>3/0</td>
<td>0.46</td>
<td>54</td>
<td>0.48</td>
<td>26</td>
</tr>
</tbody>
</table>

دست دامنه‌ای (pp) در دارای خاکی با رنگ قهوه‌ای تیره و بافت رسی تا لوم رسی سیلیک است. این خاک با افتخای مشخصه سالیک و زیپسیک در گروه بزرگ زیپسیک (GypsieHaplosalids) قرار می‌گیرد. تشکیل افتخای زیپسیک و سالیک در قسمت‌های بالایی این نیم‌خاک به دلیل فاصله بین نیم‌خاک و آجریک (Calcic Argipsids) آجری زیپسیک (Caliche) می‌گیرد.
گچ در خاکهای این ترасс را نسبت به ۱۵۰۰۰ تا ۲۰۰۰۰ سال پیش در زیر آب دریاچه‌گاوخونی وجود داشت که بعداً آب دریاچه به طرف شرق عقبه‌نشینی کرد است.

کانالهای رس خاکهای مورد مطالعه (X-ray diffraction Patterns) برش نگاشته‌های برخی از رس خاک شانه شب مخروط‌فانکی پایوه‌ای (A1) نشان دهنده رس درشت و بخش رس رنگ این خاک نشان می‌دهد که در چه درشت درشت‌تر می‌گردد از مقدار کانال پالیمرسکیت کاسته و پیژANTA کانال های کلیپ و کاراکتر افزوده می‌گردد (مقایسه شکل‌های ۲ و ۳) ضمن این که مقدار این نوعی کوارتزر (فله) ۳۳۳ (نام‌گذاری) تربیت در بخش رس درشت دیده می‌شود (شکل ۲) که با یافته‌های دیگر محلول بنزین نیز مشابه استوار در (۲،۳ و ۴) جدول ۲ مقدار نیمه کلی‌های رس درشت افت در احیا متفاوت خاک نشان می‌دهد.

در خاک‌های شیب مخروط‌فانکه پایوه‌های (۲) پالیمرسکیت به عنوان کانال رس‌ی گالب در لایه عمقی خاک می‌باشد. پالیمرسکیت به عنوان یک پوشک مایع در پرنسپ‌های پمپ ایکس پل سقوط در تغذیه رسی‌های پمپ ایکس پل فلزی تا ناحیه ۱/۶ نا ۵۰/۱ نام‌بندی دارد (۷،۸) ضخامت بلور با تغییر رطوبت نسبی اشتغال با کانال‌ها و با پام‌و‌پاپین سیلیکا آلی آن تغییر نمی‌کند. گچ دادن یا درجه حارات ۵۰ درجه سانتی‌گراد باعث متالیشی شدن کانال‌ها می‌گردد (۷، ۸). در پرنسپ نگاشته‌های ایکس رس درختان تمامی اف‌های نیم‌بزه‌های مورد مطالعه این خاکهای صعود کاپیلاریزی آب زیرزمینی شور و سبدی‌ها و‌افزایش رس‌های داخلی بسته می‌باشد. خاکهای واقع بر ترасс قدمتی روودخانه (خاکهای آبی) بالا یک توسه و تکامل کم خاکهای جوانی هستند.

تبخیر (۱) خاک است که تحت تأثیر رسوبات بادی قرار گرفته و دارای خاک عمیق با بافت رس پنیل و اف‌های مشخصه سالیک، زیبیسک، و کمیکی می‌باشد که در گروه زیرگ زیبیسک‌های پالاسانز کرده می‌گردد. افزایش رسوبات بادی حاوی اماً و گچ به سطح این خاکا، نسبت تشكل اف‌های سالیک و زیبیسک‌های فیلر بالای برای گردیده است. تصویر (۱۸) درز گچ اضافه شده به سطح این خاکا در اثر فرایش رسپرسی را نشان می‌دهد.

شکل خاک نمایش (۲) فاقد هرگونه گاهی و افق سطحی آن فرسایش پایه است. این نمایش نشان دهنده شکل قائم را بافت رس می‌باشد این شکل در صحنه‌های بالای کاری‌های حاصل از اب زیرزمینی شور و سبدی‌ها به سطح و تبخیر آن است. در عمل سانتی‌متری نمایش (۲) و (۱۷) و عمیق‌های (۱۲ و (۱۶ مقدار این نوعی رسپرسی (Gley) می‌باشد که درای رنگ متفاوت از افق چاپان ماکور (جدول ۱) و نشان دهنده شریکانی ماندابی در کلیه‌سته و به ترتیب‌بندی بهترین خاک بر می‌گردد همچنین درصد مولی آن در حد همچنین درصد مولی آن در حد حکم یک قطعه سنجی در این را نشان می‌دهن درجه و وجود روتوپ در نتیجه ذوب یخ‌ها و پایین تبخیر، در میان گاویونی فعل در منطقه اصفهان سکرری زیر استفاده یافته در آن زمان. ترасс قدمتی رودخانه زاینده‌رود تحت تأثیر نگرفته اثر مادرود (Hydromorphism) ماندابی تبخیر آب زیرزمینی شور و و انتقال پونه‌های سولفات و کلسیم توسط روتوپ از ساقدان‌های گچ منطقه باعث شده که
شکل 2: پرسش‌های اولیه برای X افزایش درجه حرارت و نیروخ.

دشت دامنه‌ای و مشخص می‌شود که پالیگورنسیت یا عمق افزایش گذشت دامنه‌ای و مشخص می‌شود که پالیگورنسیت یا عمق افزایش می‌باید (جدول 2). به طوری که در لایه پنجشیر، درصد فله حذف 1/5 نانومتر در نیاز حالت 150 °C به حذف پالیگورنسیت کنترلی تقریباً به‌کمک از 15 درصد شدت اولیه می‌رسد (شکل 4). همچنین در این پرسش نگاشت فله‌های بقیه 0/10، 0/23/0/39، 0/22/0/25 و 0/50 نانومتر مربوط به فله‌های رده‌های بیشتر از پالیگورنسیت دیده می‌شود که در هجیج کدام از پرسش نگاشت‌های افتق‌های دیگر نیم‌پر رشد بررسی مشخص نشده است. این‌ها ممکن است درصد زیادی این کانال در افتق‌های عمیق شاخه‌های مخرب و ناکوهدانه پالیگورنسیت عمقی باشد.

با توجه به توزیع یکنواخت کانال‌های رسی مانند ایلیت،

کلمیت و کانولیت در شاخه‌های مورد بررسی (جدول 2).

اکثر پرسش‌های اولیه در داده‌های افتق‌های نیم‌پرای میان‌المتال (شکل 4)، در نمونه‌های اشاعات با منیزیم (MG) یک فله حدود 5/10 نانومتر دیده می‌شود که در نمونه تیمار شده با بخار ایتان گلیکول (EG) نمایش داده شده با پتاسیم (K) و پس از حرارت دادن نمونه به دست 2 ساعت در 110 °C تغییر نموده است و یک چهارم از حالت دادن نمونه تا 550 °C می‌گذارد. (شکل 2). این پیک کاهش یافته که دایلی بر ناحیه نشان می‌دهد. درصد زیادی این کانال در افتق‌های عمیق شاخه‌های مخرب و ناکوهدانه پالیگورنسیت عمقی اکثر در این شاخه‌ها می‌باشد.
تصویر 1. تصویر میکروگراف از ذرات گیچ در اندازه شن ریز که از سطح قدیمی فرسایش پاکته توسط باد حمل و به سطح خاک‌های اکسیسیون سیستم قدیمی رودخانه زایند، تعداد اضافه شده است.

شکل 3. پراش تگشته‌های پرتو X ذرات رس درشت افقی Byk نیم‌برخ اول مخروط افکن پایکوهی (81)
جدول 2: مقادیر نسبی (نیمه کمی) کانی‌ها در بخش رس ریز و رس درشت خاک‌های انتخاب شده نیبرخ‌های مورد مطالعه از سه لندفرم متفاوت

<table>
<thead>
<tr>
<th>افق</th>
<th>M</th>
<th>Pi</th>
<th>Sm</th>
<th>Vm</th>
<th>Ch</th>
<th>Ka</th>
<th>M-Sm</th>
<th>Ch-Vm</th>
<th>Ch-Sm</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byk</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>tr</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Brk</td>
<td>XXXX</td>
<td>XX</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz1</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzg</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>-</td>
<td>tr</td>
<td>XX</td>
<td>XX</td>
<td>tr</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz1</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>-</td>
<td>tr</td>
<td>XX</td>
<td>XX</td>
<td>tr</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz1</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>-</td>
<td>tr</td>
<td>XX</td>
<td>XX</td>
<td>tr</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz1</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>-</td>
<td>tr</td>
<td>XX</td>
<td>XX</td>
<td>tr</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz1</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>-</td>
<td>tr</td>
<td>XX</td>
<td>XX</td>
<td>tr</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz1</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bz2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2Bzy</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy2</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bzy3</td>
<td>XXXX</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tr</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

نیبرخ A1 (محور اکتن پایکوبه‌ی)
رس وزن (100 μm)

نیبرخ A2 (محور اکتن پایکوبه‌ی)
رس وزن (50 μm)

نیبرخ PP (دشت دامنه‌ای)
رس وزن (50 μm)

نیبرخ T1 (پادگانه قدمی رودخانه زاینده‌ی رود)
رس وزن (50 μm)

نیبرخ T2 (پادگانه قدمی رودخانه زاینده‌ی رود)
رس وزن (50 μm)
طبقه‌بندی کانی‌های رس شاک‌های گچی زین‌ریخت در منطقه شرق استان اصفهان

شکل 4. پراش نگاشت‌های پروتو X درات رس درشت افق Btky3

این کانی‌ها از مواد مادی، به اثر رسیدگی و لی بالی‌گورسکیت تفسیر گذاراگاهی را می‌طیفند. زیرا اثری از این کانی در سوسایت جوان رویی (افق A) و مواد مادی خاک‌های منطقه دیده نمی‌شود. عدم وجود این کانی در نمونه مواد مادی، مفرزلفی کشیده و بلند فیبرهای بالی‌گورسکیت (تصویر ۲) و تجمع مکان بالی‌گورسکیت با کانی‌های کلسیم (تصویر ۳-الف) و حضور مقدار قابل توجهی چگ تاناه به شکل مشابه با شکل آخک و فقط کانی‌های خاک‌ساز در افق‌های عمیق خاک‌های مخروطافکتهای پایت می‌شوند، به نظر می‌رسد که همان‌طور که منطقه شرق آخکی را در (Calcereetes and caliches) چهار ویدا می‌کند که به طور مربوط به شکل تداخل در جای بالی‌گورسکیت فراهم شود. تصویر ۳-الف (Calcite spars) نشان می‌دهد که اسپاره‌های کلسیت به وسیله کلاسیفیکهای بالی‌گورسکیت پوشیده شده‌اند و این
تصویر 2. تصویر میکروسکوپی SEM از توزیع رشته‌های پایگوشکایت در افق BtKy3 (مخلوط افکه پاکویه)

با توجه به کانال‌های اسکمکیت و پایگوشکایت حضور ندارند (جدول 2). قله‌های حد واسط 1/4 نانومتر پس از حرارت 550 °C نیمی نواند. مربوط به کانال‌های مخلوط نامنظم کلریر-اسکمکیت، کلریر-ریملیکولیت، میکا-اسکمکیت و حتی رس‌های با هیدروکسید بین لاها (ابا) تشکل کانال‌های مخلوط نامنظم کلریر-ریملیکولیت-میکا-اسکمکیت-طیزی به نظر می‌رسد. به طوری که در فرآیند هوازی می‌تواند است برعی‌هایی از هیدروکسید بین لاها در برخی نیاید کلریر به ریملیکولیت واکنش نامنظم باشد که باعث تشکل رس مخلوط گردیده (7). انحراف قله 1/4 نانومتر به سمت چپ در تیمار این بیلیول (اتباع پافت-کاتانی) نشان دهنده عدم وجود کانال کلریر-میکا است.

در حالی است که پلورهای در همر لفه ده و ورق‌های گچ با این کلافه‌ها پوشیده نشدند (تصویر 3-ب). همچنین به‌منظور مایرده‌هایی که کلافه‌های پایگوشکایت با پلورهای آهک (کلریرت) همراه بودند بهتر حفاظت می‌شود (12). سینگر (17) یکی از راه‌های تشکیل خاک‌کاکس پایگوشکایت در خاک‌ها را در این ارتباط می‌داند.

در لایه‌های سطحی خاک دشت دائمی (PP) در بخش رس ریز دانه کانال‌های اسکمکیت و میکا غالب بوده و کانال‌های کلریر-اسکمکیت دیبده می‌شود (شکل 5). در بخش رس درشت دانه وجود مقدار بیشتری از کانال‌های کلریر و کاتالیز و به‌مرور کوارتز مشاهده می‌گردد. همچنین در این
برای غلظت X در روند بقای آن کاری انجام نشده است. در شکل 5 نگاشته‌های پرتو بقای درهمچنین در تراکم‌های مختلف مرطوبه روند مطالعه علی رغم شباهت قله‌های فوق به هیدروکسیدهای بین لاوره از این کانی‌ها هیچ نامی برده نشده است. علت اصلی آن با بودن خاک‌های PH که برای تشکیل هیدروکسیدهای بین لاوره مساعد نیست. از طرفی تکنیک‌های غنی از آلومینیوم و با کربن میزانینی عموماً همراه با کانی‌های دیگر کولیت با هیدروکسیدهای بین لاوره اسکلتیت (HIV) و ورمی کولیت (HIS) است و به عنوان یک فاز نسبتاً باید از درک این موضوع به دقت مطرح شود (7).

با مقایسه شدت قله‌های 100 و 1/2 نانومتر در بخش ریز لاوره‌های آبی و لاوره‌های عمقی میانگین دامنه میزان به این نتیجه دست پایه که با افزایش عمق از مقدار کانی‌های 1/4 نانومتر کاسته و بر کانی‌هایی که دارای قله 1/0 نا
شکل ۱. پراش نگشته‌های پروتون X در جریان ریز افق Bru2

در شکل ۶ نشان داده شده که نسبت مولکول‌های درون C و حرارت ۵۵۰ °C در شکل ۶ تقریباً ثابت و در شکل ۷ ثابت ۱/۴ نانومتر کاسته و بر سر شدت قله ۱/۰ نانومتر افزوده شده است که نشان دهنده تبدیل کانی‌های انیسات پذیر به کانی اصلی تحت این تیمار می‌باشد. بنابراین افزایش اسمکتیت در سطح نبات مس گردد که با توجه به شرایط خاک که سطح آب زیرزمینی در گازشته‌ای نه چندان دور از بوده و از سطح به عمق وضعیت زوکتی خاک ضعیف‌تر می‌بپشد، که از عمق به سطح تبدیل پلیگروسکین به اسمکتیت محتمل می‌باشد. تا توجه به این که مقادیر پلیگروسکین در سطح نبات از این عمق محدود به اعتیاد سیب‌سازی از محض پلیگروسکین در اثر فرآیند هواگذاری به اسمکتیت تبدیل شده است (۸)

پراش نگشته‌های بخش‌های در شدت نمونه‌های آشامیدنی با پتانسیم در حرارت ۵۵۰ °C نشان می‌دهد که شدت قله ۱/۰ نانومتر افزایش یافته است (شکل‌های ۳ و ۴). به عقب‌داده بسیاری
نمایه‌کننده‌های رسی خاک‌های گچی زمین‌ریخته‌های مختلف در منطقه شرق اصفهان

شکل 7. پراش تگ‌آفکره‌های پروتو X ذرات رسی رز افق 2Bzy تیم‌های اول تراس قدیمی رودخانه (11)

است. بنابراین، افزایش پالیگوسکیت در سطح این خاک‌ها را می‌توان به اضافه شدن رسوبات بدیه صنعت فشرده زیاد پالیگوسکیت به سطح این خاک‌ها نسبت داد (تصویر 2). وجود پالیگوسکیت در بیشتر خاک‌های عربستان سعودی و به‌خصوص خاک‌های واقع در نواحی مرکزی و غربی این کشور، به انتقال این کاتی‌ها از رسوبات ترشیاری توسط بادهای غربی نسبت داده شده است(17).

در غلبه خاک‌ها و رسوبات، اسکینت و پالیگوسکیت همراه می‌باشند و این در حالی است که معمولاً اسکینت نسبت به پالیگوسکیت، آلومینیوم بیشتری دارد(17). همچنین مطالعات روابط با نبات‌های انگور آزاد تشکیل کاکوهای ناشان می‌دهند که تکامل پالیگوسکیت با افزایش در هر کدام از pH غلظت‌های Na2+ و Ca2+ افزایش اسکینت ترجیح داده می‌شود(17). بنابراین، افزایش بخشی از اسکینت نسبت به افزایش pH سایر‌ها در منطقه بیشتر شده است(17). می‌توان به افزایش رسی رز افق 2Bzy تیم‌های اول تراس قدیمی رودخانه اشاره کرد.

رودهای ای، زمین‌ریخته سطوح قدیمی فرسایش یافته (فلات) (Plateau) و خاک‌های پاپوکی و تراس قدیمی رودخانه واقع شده‌اند. نتیجه‌گیری این داده‌ها نشان می‌دهد که پالیگوسکیت کانی غالب بخش رس در رودخانه‌ای و عمقی خاک است(17). وسایل در چند دهه اخیر، برداشت نادرست و زیاد گچ و تخریب لایه سطحی (سکفرش پیازان) (Desert pavement) این اراضی سبب شده‌است. فرسایش باید در منطقه و برداشت و حمل ذرات خاک گچ و ترسیب آنها به روز سطوح اراضی تراس قدیمی رودخانه شده.
این متن به فارسی نوشته شده است و احتمالاً در مورد یک موضوع سختی از نظر العلمی یا در زمینه‌ی پژوهشی نوشته شده است. متن مربوط به علم و تحقیق است و ممکن است به صورت غیرقابل درک برای چنین مسایلی باشد.
مطالعه کانی‌های رسی شاخ‌های گچی زمین‌ریخت‌های مختلف در منطقه شرق اصفهان

![Diagram](image)

شکل 8. پراش نگاشت‌های پرتو X ذرات رس ریز افق 2BBr1 نیترات دوم تراس‌های قدیمی رودخانه (T2)

جدول 3: مقادیر نسبی کانی‌های رسی مختلف در بخش رس مواد فاقد آهک نمونه‌های سنگ سازندگی زمین‌شناسی منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>سازند</th>
<th>M</th>
<th>Pl</th>
<th>Sp</th>
<th>Ch</th>
<th>Ka</th>
<th>Sm</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>K4</td>
<td>XXXXX</td>
<td>tr</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>K2</td>
<td>XXXX</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tr</td>
</tr>
<tr>
<td>J</td>
<td>XXXX</td>
<td>tr</td>
<td>X</td>
<td>XXX</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>OM</td>
<td>XXX</td>
<td>XXXX</td>
<td>X</td>
<td>-</td>
<td>XX</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

** مشخصات:**

- K4 = میکا، Pl = پلی‌کورسکات، Sp = سیقبولت، Ca = کانی‌های Q = کوارتز.
- XXXXX = میکا، XXXX = پلی‌کورسکات، XXXX = سیقبولت، XXXX = Ca = کانی‌های Q = کوارتز.
- مقادیر نسبی X = لوله‌ای، XXX = خیلی ناچیز، Tr = تراز قابل مشاهده.

وجود مقادیر قابل توجه اسکوپت در سازندگی آهک می‌تواند نشانگر میزان زودگی و میزان دستیابی این مواد به تراز قابل توجه و دشت دامنه‌ای داشته باشد. با وجود مقادیر ناچیز از کانی‌های عمومی نیز، میکا-اسکوپت در نیترات‌های T1 و PP در بخش از اسکوپت را به میان‌بردهای میکا می‌توان نسبت داد. 3- با توجه به این که

بنا براین، وجود این کانی‌ها در خاک‌ها به مواد مادره نسبت داده می‌شود. از طرف دیگر، توزیع یکنواخت این کانی‌ها در زمین‌ریخت‌های مختلف و عدم تغییر در طول نیترات‌های خاک، خود نشان‌دهنده منشأ نواری این کانی‌هاست.

منشأ کانی‌های قبل انساب مخصوصاً اسکوپت در این خاک‌ها می‌تواند چندگانه باشد که عبارت از این 1- با توجه به

89
مقدار این کانی با وضعیت زوکشی‌های خاک‌های در ارتباط می‌باید.

به‌طوری‌که در تیبرخ‌های T1 و T2 با افزایش شدت وضعیت زوکشی ضعیف و در تیبرخ‌های آب‌زیرزمینی تغییر می‌گردد.

تشکیل اسکلت‌های صورت انسانی در این خاک‌ها بیشتر می‌شود. 2- افزایش بخشهای انسکلت در مقایسه با کاهش پالیگورسکیت در تیبرخ‌های T1 و T2 را می‌توان به تنش‌های ناشا و داتگری نشت، حل‌ها و میزان نشت در انسکلت‌های حاصل از هوادنگی پالیگورسکیت نسب داد. مشاهده چنین انسکلت‌های بخشهای بزرگ‌تری در شرایط زوکشی‌های مختلف و شرایط زوکشی خاک‌ها نسبت داده می‌شود.

در مورد مشاهده کانی‌های پالیگورسکیت در خاک‌های مورد مطالعه، به‌طوری‌که به توزیع الگوی این کانی در زمین‌ریخت‌های مختلف و تغییرات آن از سطح به عمق در بی‌پن به تغییرات به آن می‌توان تمایل داشته باشند که میزان نشت، دانه‌ها، پالیگورسکیت از مواد ماده به‌ارث رسیده است. زیرا در سایز‌های اندازه‌بزرگ

برنده شده‌اند.

می‌توان نشان داد که در این موارد مانند نسبت Mg/Ca (12). تحت چنین شرایطی تغییری، خود

شكّل 9. پرس‌نگاشته‌های پروتو X ذرات رس درشت افقی نمایش دهنده قندیمی رودخانه (T2)
مطالعه کانی‌های رس خاک‌های گچی زمین‌پرخی وسایل مختلف در منطقه شرق اصفهان

بتضمنالی بالی‌گورسکیت صورت گرفته است که بخش زیادی از پالی‌گورسکیت موجود در این خاک‌ها به
انتقال آن توسط فرآیندهای آب‌رفتی از پالی‌گورسکیت
در این خاک‌ها منشا پدیده‌ای دارد.

1. وجود مقادیر زیادی بالی‌گورسکیت در لایه‌های سطحی شیء
ترسان قدیمی (15) به انتقال این کانی از سطح قدیمی
فرسانه یافته (فلاکه‌ها) به سطح فرآیندهای افزایش بادی
نسبت داشته می‌شود.

2. توجه به اینکه روسای ترس قدیمی رودخانه زاینده رود
از نوع آب‌رفتی است و در طی سالانه توانایی از بخش‌های
اختلافی حوزه آبخیز رودخانه به این منطقه حمل شده‌اند و
حوزه آبخیز رودخانه مشکل از روش‌های متنوعی است که

مباحث مورد استفاده

1. اطلاعی، ع. و. م. ص. 135. تأثیر پستی و بلندی و زمان در تشکیل خاک با مواد مادری خیلی اهمیت در تحت شرایط نیمه
ختنک منطقه باجگاه. گزارش مقالات ارائه شده در سمینار کنگره علوم خاک ایران، دانشگاه تهران، کرخ.

2. تراوی کل سفید، ج. م. کریمی‌نژاد، ج. گیوی و ج. خادمی. 1380. مطالعه کانی‌های رسی در اراضی شالیکاری روی
زمین‌یاری‌های مختلف در شرق گیلان. مجله علوم خاک و آب، 15(1): 122-139.

3. خادمی موغزی، ج. 1368. مطالعه تکوین و شناسایی کانی‌های رسی خاک‌های منطقه رودخانه اصفهان. پایان‌نامه کارشناسی ارشد
خاکشناسی، دانشگاه صنعتی اصفهان.

4. قیامیان، ع. 1369. سیاست‌های فلاته‌ای ایران. انتشارات دانشگاه شهید باهنر، کرمان.

5. گیوی، ج. و. ج. استوی. 1378. آثاری از تغییر آب و هوای دیرینه در خاک‌های ایران. دویمین کنفرانس منطقه‌ای تغییر اقلیم، سازمان
هوسایش کشور، تهران.

