ارزیابی پایداری خاک‌دانه‌ها در برخی مناطق ایران

فواز تاج‌الدین

چکیده

خاک‌دانه‌های فرعونی مهم و موثق در بحث ساختار خاک است که علاوه بر خصوصیات ذاتی خاک متاثر از کاربری و مدیریت اراضی بوده و پایداری آن را با ویژگی‌های مهم خاک مانند نفوذپذیری، همواری، مقاومت، نرمالی، اصلاح، آلاینده می‌گذارد. این گزارش به تدریج و با توجه به زمین‌شناسی و شیمیایی خاک پایداری خاک‌دانه‌ها، نمونه‌های نمونه‌گیری‌های خاک در شرق ایران در فاصله ۱۸۸۹ تا ۲۰۰۳ ساخته شده و پس از استفاده به آزمایشگاه‌های وارداتی و داخلی، درصد پایداری در خاک‌دانه‌های میلی‌متر و مقدار پراکنش رس در آنها به روش پونچاسکو و کرک (۱۹۹۶) اندازه‌گیری شده است.

تجزئی‌های واریانس داده‌های پژوهش برای پایداری پایداری خاک‌دانه‌های ترنشانگر معنی دار بودن تفاوت خاک‌ها در همه مناطق نمونه پژوهش است. ترتیب پژوهش نشان دهنده پایداری خاک‌دانه‌ها با آزمون دانکن و در سطح آماری پنج درصد زنین پایه است. ماهنامه <گلستان> که نشان می‌دهد از آزمایش غرفه تحقیق رگرسیون برای مجموعه نمونه و برای داده‌های در منطقه نیز انجام شده و نشانگر آن بوده که در مجموعه نمونه تغییرات پایداری خاک‌دانه‌ها به طور معنی‌دار متاثر از مقدار مبتنی (۳/۲۷) است. در حالی که در منطقه <گلستان> مدیریت رس و در منطقه آزمایش غرفه تغییرات چنین پیش‌ترین تأثیر داشتند. نتایج تحلیل رگرسیون به روش گام به گام نیز نشان‌دهنده ارتباط مداوم فاصله است که آن‌ها مقدار پایداری خاک‌دانه‌های تر در مناطق مبتنی را می‌توان از روش منجره‌ای دیگر خاک پراکنش نمونه کرد.

واژه‌های کلیدی: ساختار خاک، پایداری خاک‌دانه‌ها، تر، مقدار پراکنش رس

پایداری آنها بر ویژگی‌های فیزیکی خاک مانند نفوذپذیری (ویژگی‌ها یا هیدرولوژیک) به‌عنوان مقاومت خاک، فرسایش و توانایی خاک برای انتقال مایعات، بازیافت، اصلاح، تغییرات و ویژگی‌های (که

مقدمه

خاک‌دانه‌های فرعونی (Aggregation) به‌عنوان وابسته به مکان و زمان و متغیر از کاربری و مدیریت خاک می‌باشند. انتخاب خاک‌دانه‌ها و

۱. عضو هیئت علمی مؤسسه تحقیقات فنی و مهندسی کشاورزی، کرج

۱۰۷
با عت کاهش مواد آلی خاک و در نتیجه منجر به کاهش پایداری خاک‌های شده و حساسیت ساختنی خاک‌ها به خاک ورزی را نیز افزایش می‌دهد. همچنین، نیاز به ساختن خاک‌های مناسب تا تغییرات کیفیت خاک (Soil quality) ناشی از ممبینی‌های منقرض در شرایط مشخص محصول (Rizosphere) تولید می‌شود. پایداری کندن در محیط ریشه (Rizosphere) و یا می‌توان فاکتور‌های محصول نموده که طی آن مجموعه‌ای مواد آلی خاک‌های قرمز در کاربرد هم قرار می‌گیرد که نیروهای ترازو درون آنها قویتر هم نیروهای نرخ خاک‌های ساخته‌ای، و آنها نموده (13). همچنین، از دیدگاه کاربردی اگر خاک‌های بیشتر به برخورداری با ماسک‌ها و ادوات مکانیزه ملایم شوند، کمیابی این دو عاملی وجود از خاک و پایداری خاک‌های شده می‌تواند باعث نمایشگری پنجم منابع کربن در خاک شود. لذا، تأثیر آزمایش این نشان داده است که مقادیر DC در حیال می‌تواند به طور خالص مناسب با افزایش مقدار رطوبتی در زمان نمونه پایداری کاهش می‌یابد در حالی که مقادیر DC مناسب با افزایش رطوبتی افزایش می‌یابد. این در حیال است که بررسی‌های پانگک و وندر (33) رطوبت خاک در زمان نمونه پایداری اثر معنی‌داری بر پایداری خاک‌های ثابت است. نتایج بست مدت آمده توسط پرتوهای همکاران (22) بین نشان داده است که مقادیر رطوبت خاک و توده میکروبی، مؤثرترین عوامل در پایداری خاک‌های ثابت می‌باشد. رشد گیاه‌های آبادان، با استفاده از این دو بارامتر، 0.3 تغییرات زمانی توجهی به شده است. گلاکسی و همکاران (18) تیز با مربوط کردن خاک ثابت اشکال و بهبود گیاه‌پروری پایداری خاک‌های ثابت، رابطه خطی منفی بین پایداری خاک‌های ثابت و مقادیر رطوبت اولیه خاک را مشاهده نموده و نشان داده است که کریستال و رطوبت اولیه خاک، همگام با سطح موجود به دوای جدا شده، تا به پایداری خاک‌های ثابت کردن آلی و رطوبت اولیه خاک، هم‌بوده و در ساختن خاک‌های ثابت کمتر تحت تأثیر مقادیر رطوبت
اولیه خاک قرار گرفته است.

تا چند دهه پیش تصور می‌شد که املاح کلسیم در بوستان کلوینوها بسیار مؤثرند و آهسته‌ترین به طرف بهبود همواری رس‌های موجود در خاک‌های بر بوستان اطراف خاک‌های ما افزایش می‌یابد. ولی، به روایت اامریسون و دمن (۱۷) بیمار
در سالهای ۱۹۲۸ و ۱۹۲۹ و کاپیس در سال ۱۹۳۱، هنچ‌که افزایش قابل توجهی در پایداری خاک‌های ما ناشی از افزودن کلسیم (به‌جز در خاک‌های حاوی مقدار زیاد سدیم قابل تبدیل) مشاهده شد. در اندازه‌گیری (۲۰) را ویکس، نیز افزایش pH مناسب با افزایش رس، موارد آن و خاک WASH مقدار pH مناسب با افزایش رس، موارد آن و خاک افزایش یافته است. یوکس فایس و همکاران (۱۳) نیز بیان کرده‌اند که قبایل کلسیم و pH با خاک‌های تربورگ در pH مصرف تولید شده در حالی که تظهر آزمایش و در پایداری خاک‌های برنج در pH مناسب با افزایش رس افزایش pH به ویژه در SAR (شراطی که مقدار نسبت جذب سدیم (Sodium Adsorption Ratio) در حدید است که ذرات کانی ایلام از هم جدا شده، بر پراکش رس می‌افرورد. همچنین، وسترهوف و همکاران (۲۲) اظهار داشته‌اند که در سیستم‌های خاک‌های مرطوب برگیرنده در از میلی‌متر را پیش از سایر روشن‌ها دانسته است. سیلون و هریک (۲۷) نیز بیان داشتند که خاک‌های درصد برگیرنده در میلی‌متر بیشتر تحت تأثیر کاربرد مدیریت اراضی قرار می‌گیرند. در میان خاک‌های درشت، معمولاً درازه‌های باتری در ۶ میلی‌متر برای تعبیه‌ای استفاده می‌شود، ولی نتایج سیمون و هریک (۲۷) نشان داده است که خاک‌های درصد میلی‌متر حساس است.

بنی‌تی از مهم‌ترین مهم‌ترین موانع فهرستی مختلفی دارد.

هدف از انجام این پژوهش ارزیابی پایداری خاک‌های ما در برخی خاک‌های ایران و بررسی اثر ویژگی‌های ذاتی خاک و مدیریت کشت این انست. نتایج این پژوهش می‌تواند مقدمه‌ای برای کشت در ایران گردد. در این دانشگاهی به‌کار گرفته، توجه به مقاومت خاک‌های تمامی گزارش‌های مستند شده در تکمیل و همکاران (۱۶) مقدار کل رس را عامل تعبیه کننده‌ای در

پراکش رس و پایداری خاک‌های ما دانسته‌اند. استکه‌میون و لیزو (۲۸) نیز اظهار کرده‌اند که پایداری خاک‌های خشک را من روی از مقدار رس (۰.۷) برآورد نمود.

در مورد اندازه‌گیری‌ها، شیاطین و همکاران (۱۵) بیان کرده‌اند که مقدار همدایت الکتریکی (EC) با پایداری خاک‌های سار (Electrical Conductivity) (اندازه‌گیری شده توسط دستگاه باران ساز) هم‌بستگی نداشته است. در حالی که الی و لیه (۷) با پرکرگر و همکاران (۱۰) و لیه و S.A.R نتایج هم‌بستگی را ثابت کردند. مثابث‌پذیری گو. دانه (۱۹) نشان داده است که پایداری کلوئیدی خاک قوی‌مدثر، قدرت به‌روش گو و شرکت پی نهاییست. در صورت فیزیک کلسیم یا چند طرفیت، با موارد همکاری حاوی سفید به ویژه اسید آبیام می‌تواند عامل پایداری خاک شود در حالی که حضور کلسیم یا چند طرفیت‌های همکاری با موارد چند آبیام می‌تواند بر پراکش رس جلوگیری کند.

نه بوستونگ (۲۹) کارآیی روش اندازه‌گیری پایداری خاک‌های مصرف برگیرنده از ۶ میلی‌متر را پیش از سایر روشن‌ها دانسته است. سیلون و هریک (۲۷) نیز بیان داشتند که خاک‌های درصد برگیرنده در ۶ میلی‌متر بیشتر تحت تأثیر کاربرد مدیریت اراضی قرار می‌گیرند. در میان خاک‌های درشت، معمولاً درازه‌های باتری در ۶ میلی‌متر برای تعبیه‌ای استفاده می‌شود، ولی نتایج سیمون و هریک (۲۷) نشان داده است که خاک‌های درصد میلی‌متر حساس است.

بنی‌تی از مهم‌ترین مهم‌ترین موانع فهرستی مختلفی دارد.

هدف از انجام این پژوهش ارزیابی پایداری خاک‌های ما در برخی خاک‌های ایران و بررسی اثر ویژگی‌های ذاتی خاک و مدیریت کشت این انست. نتایج این پژوهش می‌تواند مقدمه‌ای برای کشت در ایران گردد. در این دانشگاهی به‌کار گرفته، توجه به مقاومت خاک‌های تمامی گزارش‌های مستند شده در تکمیل و همکاران (۱۶) مقدار کل رس را عامل تعبیه کننده‌ای در
مثال مطالعه خاک

یافتن معادلات مربوط به رابطه پارامترهای خاک با پایداری خاکانه‌ها

تاکید بر ضرورت اندازه‌گیری پایداری خاکانه‌ها به عوامل شاخص مهم ارزیابی ویژگی‌های فیزیکی خاکانه‌ها محسوب گردید.

مواد و روش‌ها

مکان‌ها و روش‌های اندازه‌گیری

پیش فرض انتخاب محل‌های نمونه‌برداری، نوع خاک‌ها از نظر شیمیایی و فیزیکی و به ویژه از جهت مقادیر مواد آلی و شرایط شور و سرمایه بوده است. مناطق نمونه پایداری شامل استان‌های گلستان، مازندران، آذربایجان غربی و کرمانشاه بوده است. نمونه‌برداری توسط استانداردهای طول 50 سانتی‌متری، ضخامت 6 میلی‌متر و قطر 17 سانتی‌متر که با و برش طولی حدود یک مچ نمونه‌برداری شد. نمونه‌های خاکی که در کاریک از عمق مورد نظر و از شکاف استاندارد گردید، برای این نمونه‌گیری، درجه سطح (2) برهم/7/8 درصد بوده که نشانگر کیفیت نمونه به آماده است. در هر محل نمونه‌برداری از حداقل یک کیفیت مختلف و در عمق‌های 100-200 سانتی‌متر (کد 7) و 50-100 سانتی‌متر (کد 2) از نمونه‌برداری شد. بسیار نمونه‌هایی با آزمایشگاه متنقل و در هوا خشک گردید و خاکانه‌های خاک در نمونه برداری خاک در تایپات سال 1387 انجام شده است.

تیم ویژگی‌های فیزیکی و شیمیایی خاک و اندازه‌گیری

پایداری خاکانه‌ها

EC pH ویژگی‌های فیزیکی و شیمیایی اندازه‌گیری شده شن شما

صادرات ابعاد خاک، درصد آهک، درصد کربن آلی، SAR و
جدول 1. مقادیر مانگنیس انداره‌گیری شده و یزی‌های فیزیکی و شیمیایی در نمونه‌های خاک DC و WAS

<table>
<thead>
<tr>
<th>شن (%)</th>
<th>سیلیت (%)</th>
<th>رس (%)</th>
<th>کربن آقرار (%)</th>
<th>SAR</th>
<th>EC (dS/m)</th>
<th>pH</th>
<th>DC (g/100g)</th>
<th>WAS (%)</th>
<th>منطقه نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEW1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEW2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GED1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GED2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAW1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAW2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGP1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGP2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGW1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGW2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKS1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKS2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKP1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKP2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GD1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GD2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAB1</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAB2</td>
<td>گنبدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>ماراکان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>ماراکان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL1</td>
<td>ماراکان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL2</td>
<td>ماراکان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSC1</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSC2</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KECA1</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KECA2</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEC1</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEC2</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMW1</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMW2</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMA1</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMA2</td>
<td>کرمان‌شهر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMN1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMN2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMS1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMS2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMW1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMW2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKC1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKC2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI1</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI2</td>
<td>آذربایجان غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
تجزیه و ارائه داده‌ها
نتایج تجزیه و ارائه برای متغیرهای WAS و معیارهای DC و سایر متغیرهای آماری مربوط در جدول ۲ تا ۴ آنها شده است. جدول ۵ و ۶ نیز نتایج آزمون دانک برای متغیرهای مربوط به فاکتورهای نوع و عمق خاک را نشان می‌دهد.

تحليل رگرسیون داده‌ها
رگرسیون یک متغیر
تحليل رگرسیون خطی داده‌ها برای پارامترهای پایداری خاک‌شناسی‌های تر (WAS) و مقدار پراکنش در (DC) میان متغیرها و مجموعه داده‌ها شامل تعیین مقدار میانگین میان متغیرها (جدول ۷) و به‌دست آوردن مناسب ترین مدل‌های رگرسیون با استفاده از روش گام به گام (جدول ۸) بوده که در آن وزیگه‌های عمومی خاک به‌عنوان متغیرهای مستقل و پارامترهای اندوزه‌گیری شده و WAS و یا به‌عنوان متغیرهای وابسته (سطح اطمینان ۹۵ درصد) در نظر گرفته شده‌اند.

بحث

تجزیه و ارائه داده‌ها تجربی برای پارامتر WAS (جدول ۲) نشان‌گر معنی‌دار بودن تفاوت خاک در سطح یک درصد در همه مناطق نمونه برداری بوده است که مبنی بر تأثیر فرض اولیه مبنی بر تغییر خاک‌های شمیمی، معنی‌دار دار نیست. تفاوت تکرارهای (جدول ۲) نشان دهنده یک تفاوت معنی‌دار تکرارهای خاک است. تفاوت عمق خاک‌ها نیز در خاک‌های دستگاه استیک‌رینکوتم برای ۱۵ مفرط برای چند ساله و با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین نمونه استیک‌رینکوتم قرار گرفت. هم‌زمان ۳۱ میلی‌متر در نظر گرفته و سپس در روزهایی با استحکام ۱۵ میلی‌متر تخلیه و با ۸۰ میلی‌متر مفرط شسته شد. از آنجایی که در هر دو یک تفاوت تکرارهای خاک و مقدار جذب بین

روش‌های تجزیه و تحلیل آماری

بررسی آماری نتایج توسط نرم افزار Excel و SAS/ver. 6.04 صورت گرفته است. شکل‌های مربوط به SAS و استاتسیون‌ها و تحلیل رگرسیون و DC و رگرسیون یک متغیر از نرم افزار SAS و محاسبات مربوط به تجزیه و ارائه و رگرسیون یک متغیر از نرم افزار Excel و استاتسیون‌ها و تحلیل رگرسیون و DC و رگرسیون یک متغیر است. استاتیک‌های فاکتور (با یک تفاوت نوع خاک و عمق خاک) در یک طرح بلوک هدف‌مند در دو پراکن صورت گرفت و آزمون معنی‌دار بودن تفاوت میانگین‌ها به روش دانک و در سطح ۱ درصد انجام شده است.

نتایج

تایپ آزمایشگاهی

مقادیر میانگین اندوزه‌گیری شده و یک هزینه‌های فیزیکی و شیمیایی و پارامترهای WAS در جدول ۱ آنها شده است.
ارزیابی پایداری خاک‌هایا در برخی مناطق ایران

شکل 1. منحنی و استخراج پراکنش رس (گرم در 100 گرم خاک) برای داده‌های منطقه گرگان

شکل 2. منحنی و استخراج پراکنش رس (گرم در 100 گرم خاک) برای داده‌های منطقه کرمانشاه

منطقه کرمانشاه می‌باشد که نشان‌دهنده مناسب‌ترین نقاء نمونه برداری در کرمانشاه از جهت توزیع خاک‌های است. می‌توان دانشجویان در منطقه کرمانشاه نیز تحقیقات و پژوهش‌های نادرستی پیش‌فرض یک‌پایی درون‌کارایی در هر فاکتور عمیق نمونه برداری در منطقه گلستان و کرمانشاه ناگفته می‌باشد که نشان‌دهنده مناسب‌ترین نقاء نمونه برداری در کرمانشاه غربی در سطح 5 درصد معنی‌دار بوده است. در حالی که تاکنون نبوده‌های همکاران (5) معنی‌داری در سطح 5 درصد میان معلام نمونه برداری را نشان داده است. علت این امر را می‌توان به تفاوت منشا و نوع خاک‌ها در مناطق نمونه برداری این پژوهش نشان داد که در نمونه‌برداری‌های احتمالی بعید می‌باشد مورد توجه قرار گیرد. تجربی و آزمایش داده‌ها برای پارامتر DC (جدول 3) نشانگر معنی‌دار بودن نتایج در بخش سطح 5 درصد در مناطق کرمانشاه و آذربایجان غربی و معنی‌دار بودن در سطح 5 درصد در منطقه کرمانشاه و معنی‌دار بودن نتایج در

113
جدول 2. تجزیه واریانس WAS

<table>
<thead>
<tr>
<th>متغیر</th>
<th>منطقه</th>
<th>درجه آزادی</th>
<th>SS</th>
<th>MS</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>گلستان</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>گلستان</td>
<td>6</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>گلستان</td>
<td>4</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>گلستان</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>گلستان</td>
<td>8</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>مازندران</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>مازندران</td>
<td>2</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>مازندران</td>
<td>3</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>مازندران</td>
<td>4</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>مازندران</td>
<td>5</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>2</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>3</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>4</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>5</td>
<td>1</td>
<td>1000</td>
<td>-</td>
<td>/0.0001</td>
</tr>
</tbody>
</table>

**: تفاوت معنی دار در سطح 0.01
*: تفاوت معنی دار در سطح 0.05
ns: نا معنی‌دار

از مقدار موارد آلی (در سطح احتمال 0.01) است. در منطقه گلستان مقدار رس و در منطقه آذربایجان غربی مقدار شن در تغییر پذیری پارامتر λ با تنها نشانده شده است. مقدار C.V (Coefficient of variation) در این مقدار هیچ گونه توجهی نیاز به ندارد. مقدار pH و SAR از میانگین داده‌های مبتنی بر گزارش‌های داده‌های دامنه pH و SAR، EC، و EC متغیرها و Measurement می‌باشند. بی‌پایتایی که در همه مناطق آزمون‌های برداری مقدار EC و SAR WAS در اغلب ضرایب ماتریسی با بالاترین توجهی می‌باشد. مقدار EC و SAR WAS در اغلب ضرایب ماتریسی با بالاترین توجهی می‌باشد. مقدار EC و SAR WAS در اغلب ضرایب ماتریسی با بالاترین توجهی می‌باشد.
جدول 3. تناوب تجزیه واریانس

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>منطقه درجه آزادی</th>
<th>SS</th>
<th>MS</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>گلستان</td>
<td>9</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>مازندران</td>
<td>1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>5</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>آذربایجان غربی</td>
<td>8</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

جدول 4. معیارهای آماری داده‌های (g/100g) و WAS (%)

<table>
<thead>
<tr>
<th>DC (g/100g)</th>
<th>WAS (%)</th>
<th>تعداد مشاهدات</th>
<th>میانگین</th>
<th>شبیه‌سازی تغییرات (CV)</th>
<th>میانگین رمایه‌ای خطای (MSE)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>گلستان</td>
<td>20</td>
<td>36</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>مازندران</td>
<td>20</td>
<td>36</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>20</td>
<td>36</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>آذربایجان غربی</td>
<td>20</td>
<td>36</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

اندازه‌گیری ذرات، نتایج این پژوهش با تحقیقات ذکر شده در مقدمه سازگار نبوده است. علت آن احتمالاً تفاوت در شرایط و روش آزمایش، خاک‌ها و تأثیر مقادیر رطوبت (که در این تحقیق بررسی نشده است) و نیز پیچیدگی‌های سیستم باز خاک و هم‌کاران (10) و رحمی و هم‌کاران (5) نشانگر رابطه مثبت پایداری با مقادیر EC بوده است که بافت دلیلی آن مستلزم انجام بررسی‌های بیشتر می‌باشد. در مورد اثر مقادیر رس، آهک و الکترولیت‌ها و همچنین اثر
جدول 5: مقایسه میانگین‌ها با آزمون دانکن در سطح پنج درصد برای فاکتور عمق نمونه برداری در مناطق مختلف نمونه برداری

<table>
<thead>
<tr>
<th>منطقه نمونه برداری</th>
<th>درصد پایداری (ایمپندنت)</th>
<th>براکش رنگ (100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH</td>
<td>52/225 c</td>
<td>0/7600 a</td>
</tr>
<tr>
<td>GEW</td>
<td>49/935 de</td>
<td>0/1433 a</td>
</tr>
<tr>
<td>GED</td>
<td>21/0678 e</td>
<td>0/1415 a</td>
</tr>
<tr>
<td>GAW</td>
<td>17/055 f</td>
<td>0/1444 a</td>
</tr>
<tr>
<td>GGP</td>
<td>32/4227 ef</td>
<td>0/6577 b</td>
</tr>
<tr>
<td>GGW</td>
<td>42/5278 bc</td>
<td>0/6537 b</td>
</tr>
<tr>
<td>GKS</td>
<td>37/9425 de</td>
<td>0/3427 b</td>
</tr>
<tr>
<td>GKP</td>
<td>48/2077 bc</td>
<td>0/3427 c</td>
</tr>
<tr>
<td>GD</td>
<td>55/3867 a</td>
<td>0/3437 a</td>
</tr>
<tr>
<td>GAB</td>
<td>22/7815 f</td>
<td>0/1430 a</td>
</tr>
</tbody>
</table>

جدول 6: مقایسه میانگین‌ها با آزمون دانکن در سطح پنج درصد برای فاکتور عمق نمونه برداری در مناطق مختلف (عمق 1: 0-10 سانتیمتر، عمق 2: 10-20 سانتیمتر)

<table>
<thead>
<tr>
<th>منطقه نمونه برداری</th>
<th>عمق نمونه برداری (سانتیمتر)</th>
<th>پراکنش رنگ (100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلستان</td>
<td>1</td>
<td>38/375 a</td>
</tr>
<tr>
<td>کلستان</td>
<td>2</td>
<td>37/225 a</td>
</tr>
<tr>
<td>مازندران</td>
<td>1</td>
<td>59/12 a</td>
</tr>
<tr>
<td>مازندران</td>
<td>2</td>
<td>59/12 a</td>
</tr>
<tr>
<td>کرمشکه</td>
<td>1</td>
<td>33/125 a</td>
</tr>
<tr>
<td>کرمشکه</td>
<td>2</td>
<td>37/388 b</td>
</tr>
<tr>
<td>آذری‌باجان غربی</td>
<td>1</td>
<td>29/354 a</td>
</tr>
<tr>
<td>آذری‌باجان غربی</td>
<td>2</td>
<td>26/999 b</td>
</tr>
</tbody>
</table>

116
درصد کربن آلی

شکل ۳. نمودار رگرسیون خطی یک متغیره رابطه پایداری خاکدانه‌های تر با درصد کربن آلی

شکل ۴. نمودار رگرسیون غیر خطی یک متغیره رابطه پایداری خاکدانه‌های تر با درصد کربن آلی

شکل ۵. نمودار رگرسیون غیر خطی یک متغیره رابطه WAS با هدایت الکتریکی (EC)
جدول 7 مقادیر ضریب همبستگی میان معیارهای اندازه‌گیری شده برای مجموعه مناطق

<table>
<thead>
<tr>
<th>شماره</th>
<th>سال</th>
<th>کربن آلی</th>
<th>رس</th>
<th>SAR</th>
<th>EC (ds/m)</th>
<th>pH</th>
<th>WAS (%)</th>
<th>DC (g/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره 1</td>
<td>1998</td>
<td>0.65</td>
<td>0.8</td>
<td>0.45</td>
<td>0.05</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>شماره 2</td>
<td>1999</td>
<td>0.75</td>
<td>0.9</td>
<td>0.55</td>
<td>0.06</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>شماره 3</td>
<td>2000</td>
<td>0.85</td>
<td>1.0</td>
<td>0.65</td>
<td>0.07</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>

شکل 6. نمودار رگرسیون غیر خطی بین متغیرهای WAS و pH با نسبت جذب سدیم (SAR) (SAR)^0.5

\[y = 1.5024x^{1.1228} \]

\[R^2 = 0.9281 \]

شکل 7. نمودار رگرسیون خطی (پس از تبدیل متغیرها) بین متغیرهای WAS و CaCO3/2 با آمک (CaCO3/2)^0.5

\[y = 6.9372x - 8.639 \]

\[R^2 = 0.8708 \]
شکل 8. نمودار رگرسیون غیر خطی یک متغیره رابطه WAS با مقدار پراکنش رس (DC) (جدول 8. معادله‌های خطی به‌دست آمده از تحلیل رگرسیون به روش گام به گام)

<table>
<thead>
<tr>
<th>منطقه نمونه برداری</th>
<th>معادله‌های خطی به‌دست آمده</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلرستان</td>
<td>(y = -7.1325 \ln(x) + 4.9588)</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>(y = -7.1325 \ln(x) + 4.9588)</td>
</tr>
</tbody>
</table>

شدن نتایج نمونه‌های خاک (جدول 2) و مشخصات عمومی خاک‌ها (طرح تحقیقاتی در دست انجام در مؤسسه تحقیقات فنی و مهندسی کشاورزی) می‌تواند نتیجه گرفته‌که مقدار پایداری خاک‌های این زمینه از نوع مدیریت کشت، متاثر از مقدار مواد آلی بوده است. خاک‌های در منطقه آذربایجان غربی در این UI است که رشدی به نتایج یکسان در پژوهش‌های مختلف را دشوار می‌سازد. در مورد اثر مواد آلی، موضوع بسیار پیچیده تر و نتایج گاه متناقض به نظر می‌رسد. در این پژوهش، صرف نظر از اثر نوع مواد آلی، تأثیر مثبت مقدار مواد آلی به پایداری خاک‌های مورد تأیید قرار گرفته است. با توجه به معنادار
مورد استنادی به نظر می‌رسد بالا پایداری خاک‌دانه‌ها و مقدار مواد آلی در آن به‌طور عمده منجر از نوع مدل‌پیوند کشت (بوتیجه دائم) بوده است.

اگر چه معادلات ساده‌تری به سمت آینده که در بررسی‌های بعدی می‌توانند مفید واقع شود، بر این اساس با در نظر گرفتن مجموعه مناطق، مسئله‌شده‌شده است که به‌طور طبیعی داده‌های WAS ناشی از مقدار مواد آلی بوده و معادله‌ی ۲ را می‌توان برای آن پیش‌نهادی نمود:

\[\% \text{WAS} = \frac{220}{R+1} \times 2/24 \times \text{(درصد کربن آلی)} \]

نکته قابل توجه آن است که معادلات به دست آمده در شرایط تحقیق حاضر و برای خاک‌های حاوی-

۱-۳۰ درصد کربن آلی قابل استفاده است. افزون بر این، با توجه به پیش‌های تجربی و همکاران (۳) و تیپلند و ادم (۲۰۰۳) با دستگاه رده‌بندی زیر گونه ساده انجامی‌های تیپ‌پایدار و خاک‌دانه‌ها همواره محدود قرار گرفت. با توجه به تحریک و نتایج به دست آمده از

ارجی‌پژوهی حاضر پیشنهادات ذیل قابل ارائه می‌باشد:

۱. استفاده گیرنده پایداری خاک‌دانه‌ها به نوع معیاری کمی از

ساختار خاک، در مطالعات خاک‌شناسی متوسط فرآیند گیرد.

۲. تخمین و برداری در انواع خاک‌های کشور (با مقدار متفاوت

میانگین SAR ، EC ، SAR و ...) به‌طور همزمان و با روشن

متابع مورد استنادی

۱. جای بوردی، م. ۱۳۸۲. کارهای انجام گرفته. دانشگاه تهران، تهران.

۲. برخی از اس. ۱۳۸۳. پایداری خاک‌های فیزیکی و مکانیکی خاک. تاریخچه جنب چند.

۳. اولی همچنین صاحب زاده، تهران، جلد اول.

۴. تاریخچه، ف. ا. پی‌پای و خ. رحمی. ۱۳۸۳. تاییه‌برداری آلی بر ویژگی‌های فیزیکی و مکانیکی خاک (پرسه‌های کلی). مجموعه مقالات

علمی تخصصی تحقیقات فنی و مهندسی کشاورزی، سال سوم، ۱۰:۱-۱۰۱.

۴. تاریخچه، ف. ا. پی‌پای و خ. رحمی. ۱۳۸۳. مروری بر روش‌های کمی ارزیابی پایداری خاک‌دانه‌ها. مجله علوم خاک و آب

۱۲۰
آرژینی پایداری خاک‌های‌ها در برخی مناطق ایران